首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Targeting of agricultural conservation practices to the most effective locations in a watershed can promote wise use of conservation funds to protect surface waters from agricultural nonpoint source pollution. A spatial optimization procedure using the Soil and Water Assessment Tool was used to target six widely used conservation practices, namely no‐tillage, cereal rye cover crops (CC), filter strips (FS), grassed waterways (GW), created wetlands, and restored prairie habitats, in two west‐central Indiana watersheds. These watersheds were small, fairly flat, extensively agricultural, and heavily subsurface tile‐drained. The targeting approach was also used to evaluate the model's representation of conservation practices in cost and water quality improvement, defined as export of total nitrogen, total phosphorus, and sediment from cropped fields. FS, GW, and habitats were the most effective at improving water quality, while CC and wetlands made the greatest water quality improvement in lands with multiple existing conservation practices. Spatial optimization resulted in similar cost‐environmental benefit tradeoff curves for each watershed, with the greatest possible water quality improvement being a reduction in total pollutant loads by approximately 60%, with nitrogen reduced by 20‐30%, phosphorus by 70%, and sediment by 80‐90%.  相似文献   

2.
Best management practices (BMPs) play an important role in improving impaired water quality from conventional row crop agriculture. In addition to reducing nutrient and sediment loads, BMPs such as fertilizer management, reduced tillage, and cover crops could alter the hydrology of agricultural systems and reduce surface water runoff. While attention is devoted to the water quality benefits of BMPs, the potential co‐benefits of flood loss reduction are often overlooked. This study quantifies the effects of selected commonly applied BMPs on expected flood loss to agricultural and urban areas in four Iowa watersheds. The analysis combines a watershed hydrologic model, hydraulic model outputs, and a loss estimation model to determine relationships between hydrologic changes from BMP implementations and annual economic flood loss. The results indicate a modest reduction in peak discharge and economic loss, although loss reduction is substantial when urban centers or other high‐value assets are located downstream in the watershed. Among the BMPs, wetlands, and cover crops reduce losses the most. The research demonstrates that watershed‐scale implementation of agricultural BMPs could provide benefits of flood loss reduction in addition to water quality improvements.  相似文献   

3.
To reduce nonpoint source pollution from nutrient, chemical, and sediment runoff, a number of environmental policy standards have been proposed. Such standards could be used to reduce nonpoint source pollution from nutrient, chemical, and sediment runoff to impaired water bodies. State governments can use voluntary approaches to meet nonpoint source pollution reduction goals. However, the practices that lower net returns will not be voluntarily adopted by farmers. Crop rotations and tillage practices may help producers to comply with the environmental standards while minimizing losses in farm profits. This study compares runoff from crop rotation practices and conventional continuous row cropping systems in Mississippi. The results are compared for different tillage systems in order to examine robustness of results. Nutrient runoff and sediment runoff are simulated using the Erosion Productivity Impact Calculator (EPIC). Sensitivity analysis of the sediment and nitrate reductions at 15 percent, 25 percent, and 35 percent are conducted. Under these scenarios, net returns are optimized under environmental constraints, and the marginal cost of sediment reduction ranges from US$1.61 to US$9.63 per ton depending on soil conditions, while the corresponding nitrate and phosphorus reductions costs range from US$1.21 to US$7.08 per kg and from US$0.09 to US$31.91, respectively. The empirical results from this study indicate that a nitrate reduction policy is relatively less costly than a sediment reduction policy. The results also demonstrate the importance of geophysical conditions and policy costs, which vary across regions.  相似文献   

4.
Implementing agricultural best management practices (BMPs) is influenced by a balance of desired environmental outcomes, economic feasibility, and stakeholder familiarity, the latter taken to be related to BMP acceptability. To explore this balance, we developed a multi‐objective decision support system for allocating BMP type and placement by coupling the Soil and Water Assessment Tool with a nondominated sorted genetic algorithm that minimizes total phosphorus (TP) yields from agricultural hydrologic response units (HRUs) and costs, while using stakeholder BMP familiarity as a constraint; conventional tillage, no tillage, nutrient management, riparian buffers, and contour cropping were explored. Using constraints representing current conditions, the optimization resulted in 59.6 to 81.0% reduction in agricultural TP yield from HRUs at costs ranging between US $0.8 and US $5.3 million. The constrained optimization tended to select mostly single BMPs or at most two BMPs for a given HRU due to these BMPs having higher acceptability to stakeholders. In contrast, the unconstrained case, representing full familiarity, selected 2‐ and 3‐BMP applications. There was little difference in costs between the constrained and unconstrained cases below an 80% TP yield reduction; however, significant differences were found at larger reductions, supporting the value of stakeholder education and extension efforts. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

5.
Phosphorus runoff: effect of tillage and soil phosphorus levels   总被引:2,自引:0,他引:2  
Continued inputs of fertilizer and manure in excess of crop requirements have led to a build-up of soil phosphorus (P) levels and increased P runoff from agricultural soils. The objectives of this study were to determine the effects of two tillage practices (no-till and chisel plow) and a range of soil P levels on the concentration and loads of dissolved reactive phosphorus (DRP), algal-available phosphorus (AAP), and total phosphorus (TP) losses in runoff, and to evaluate the P loss immediately following tillage in the fall, and after six months, in the spring. Rain simulations were conducted on a Typic Argiudoll under a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Elapsed time after tillage (fall vs. spring) was not related to any form of P in runoff. No-till runoff averaged 0.40 mg L(-1) and 0.05 kg ha(-1) DRP and chisel-plow plots averaged 0.24 mg L(-1) and 0.02 kg ha(-1) DRP concentration and loads, respectively. The relationship between DRP and Bray P1 extraction values was approximated by a logistic function (S-shaped curve) for no-till plots and by a linear function for tilled plots. No significant differences were observed between tillage systems for TP and AAP in runoff. Bray P1 soil extraction values and sediment concentration in runoff were significantly related to the concentrations and amounts of AAP and TP in runoff. These results suggest that soil Bray P1 extraction values and runoff sediment concentration are two easily measured variables for adequate prediction of P runoff from agricultural fields.  相似文献   

6.
ABSTRACT: Simulated rainfall was used on experimental field plots to compare the effect of chemical fertilizer and sludge application on sediment, nitrogen, and phosphorus in runoff from no-till and conventional tillage systems. Chemical fertilizer application under the no-till system resulted in the least amount of total N and P in surface runoff. However, sludge application under the no-till system resulted in the least amount of NO3-N and sediment in surface runoff. The worst water quality scenarios were observed when either sludge or chemical fertilizer were surface-applied under a conventional tillage system. Nitrogen losses from the conventional tillage system were minimized when sludge was incorporated into the soil. However, phosphorus and sediment yield from such a system were significantly higher when compared to phosphorus and sediment yield from the no-till system. The results from this study indicate that the use of sludge on agricultural land under a no-till system can be a viable alternative to chemical fertilizer for nitrogen and phosphorus control in runoff. A more cautious approach is recommended when the sludge is incorporated into the soil in a conventional tillage system because of potential for high sediment and phosphorus yield in surface runoff.  相似文献   

7.
Agricultural tillage influences runoff and infiltration, but consequent effects on watershed hydrology are poorly documented. This study evaluated 25 yr (1971-1995) hydrologic records from four first-order watersheds in Iowa's loess hills. Two watersheds were under conventional tillage and two were under conservation (ridge) tillage, one of which was terraced. All four watersheds grew corn (Zea mays L.) every year. Flow-frequency statistics and autoregressive modeling were used to determine how conservation treatments influenced stream hydrology. The autoregressive modeling characterized variations in discharge, baseflow, and runoff at multi-year, annual, and shorter time scales. The ridge-tilled watershed (nonterraced) had 47% less runoff and 36% more baseflow than the conventional watershed of similar landform and slope. Recovery of baseflow after drought was quicker in the conservation watersheds, as evidenced by 365-d moving average plots, and 67% greater baseflow during the driest 2 yr. The two conventional watersheds were similar, except the steeper watershed discharged more runoff and baseflow during short (<30 d), wet periods. Significant multi-year and annual cycles occurred in all variables. Under ridge-till, seasonal (annual-cycle) variations in baseflow had greater amplitude, showing the seasonality of subsurface contaminant movement could increase under conservation practices. However, deviations from the modeled cycles of baseflow were also more persistent under conservation practices, indicating baseflow was more stable. Indeed, flow-frequency curves showed wet-weather discharge decreased and dry-weather discharge increased under conservation practices. Although mean discharge increased in the conservation watersheds, variance and skewness of daily values were smaller. Ridge tillage with or without terraces increased stream discharge but reduced its variability.  相似文献   

8.
ABSTRACT: Simulated water quality resulting from three alternative future land‐use scenarios for two agricultural watersheds in central Iowa was compared to water quality under current and historic land use/land cover to explore both the potential water quality impact of perpetuating current trends and potential benefits of major changes in agricultural practices in the U.S. Corn Belt. The Soil Water Assessment Tool (SWAT) was applied to evaluate the effect of management practices on surface water discharge and annual loads of sediment and nitrate in these watersheds. The agricultural practices comprising Scenario 1, which assumes perpetuation of current trends (conversion to conservation tillage, increase in farm size and land in production, use of currently‐employed Best Management Practices (BMPs)) result in simulated increased export of nitrate and decreased export of sediment relative to the present. However, simulations indicate that the substantial changes in agricultural practices envisioned in Scenarios 2 and 3 (conversion to conservation tillage, strip intercropping, rotational grazing, conservation set‐asides and greatly extended use of best management practices (BMPs) such as riparian buffers, engineered wetlands, grassed waterways, filter strips and field borders) could potentially reduce current loadings of sediment by 37 to 67 percent and nutrients by 54 to 75 percent. Results from the study indicate that major improvements in water quality in these agricultural watersheds could be achieved if such environmentally‐targeted agricultural practices were employed. Traditional approaches to water quality improvement through application of traditional BMPs will result in little or no change in nutrient export and minor decreases in sediment export from Corn Belt watersheds.  相似文献   

9.
ABSTRACT: This paper is a computer simulation analysis of an agricultural nonpoint pollution problem. Computer modeling is a universally applicable tool that can be used for establishing the linkages between and the quality of agricultural runoff in both surface and subsurface flow. The tradeoffs between the costs of soil conservation practices and water quality are reported, and the economic implications of such tradeoffs are discussed. Soil and nutrient losses resulting from crop production practices are analyzed using a field-scale computer simulation model (CREAMS). No-till planting, reduced tillage, and sod waterway systems are more cost effective than other practices for controlling soil and nutrient runoff losses. Nitrate leaching losses are increased slightly by most soil conservation practices. Terrace systems and permanent vegetative cover impose the greatest societal cost for water quality protection. Public cost sharing and tax incentives encourage farmers to adopt expensive structural practices, and policies are needed to get cost-effective practices implemented on critical acreage. Extensive treatment of land is necessary for agricultural best management practices (BMPs) to significantly improve water quality in areas that are intensively farmed.  相似文献   

10.
ABSTRACT: A rainfall simulator was used to study the effectiveness of no-till and fertilizer application method on reducing phosphorus (P) losses from agricultural lands. Simulated rainfall was applied to 12 experimental field plots, each 0.01 ha in size. The plots were divided into no-till and conventional tillage systems. Two fertilizer application methods, subsurface injection and surface application, were investigated for the two tillage systems. Phosphorus fertilizer was applied at a rate of 46 kg/ha, 24 to 48 hours before the start of rain simulation. Water samples were collected from the base of each plot and analyzed for sediment and P content. No-till was found to be very effective in reducing runoff and sediment losses. No-till reduced sediment loss and total runoff volume by 92 and 67 percent, respectively. Subsurface injection of fertilizer, as compared to surface application, reduced PO4 losses by 39 percent for no-till and by 35 percent for conventional tillage. The effect of tillage system on PO4 losses was not significant. Reductions in total-P (PT) losses due to no-till compared to the conventional tillage system were 89 and 91 percent for surface application and subsurface injection methods, respectively. Averaged across all fertilizer treatments, an equivalent of 0.9 and 8.9 percent of the P applied to the plots were lost from the no-till and conventional tillage plots, respectively.  相似文献   

11.
Dutta, Sudarshan, Shreeram Inamdar, Jerry Tso, Diana S. Aga, and J. Tom Sims, 2012. Dissolved Organic Carbon and Estrogen Transport in Surface Runoff from Agricultural Land Receiving Poultry Litter. Journal of the American Water Resources Association (JAWRA) 48(3): 558-569. DOI: 10.1111/j.1752-1688.2011.00634.x Abstract: Dissolved organic carbon (DOC) provides a reactive substrate for the transport of organic contaminants with runoff. Very few studies have investigated the export of DOC from agricultural land, especially those receiving manure applications. We investigated exports of DOC in surface runoff from agricultural fields receiving various treatments of poultry litter (raw vs. pelletized). In addition, we also investigated how estrogens in runoff were associated with DOC. Different forms of estrogens studied were: estrone, 17β-estradiol, estriol, and their conjugates. Experimental agricultural plots were 12 m × 5 m long and had reduced tillage and no-till management practices. The aromatic content of DOC was characterized using specific ultraviolet absorbance (SUVA). Flow-weighted concentrations of DOC and SUVA in surface runoff from plots with poultry litter were significantly (p ≤ 0.10) greater than the control (no litter) plots. Compared to pelletized poultry litter, reduced-tillage plots with raw litter yielded higher DOC concentrations and SUVA values. No significant differences (p ≥ 0.10) in DOC and SUVA were observed between litter treatments for plots with no-till. Total estrogen concentrations (including all forms) were positively and significantly (p ≤ 0.10) correlated with DOC. These results can help select and guide agricultural management practices that can reduce the exports of DOC and associated contaminant from agricultural land receiving manure applications.  相似文献   

12.
ABSTRACT: Intensive cropping systems based on mechanical movement of soil have induced land degradation in most agricultural areas due to soil erosion and soil fertility losses. Thus, farmers have been increasing fertilization rates to maintain an economically competitive crop yield. This practice has resulted in water quality degradation and lake eutrophication in many agricultural watersheds. Research was conducted in the Patzcuaro watershed in central Mexico to develop appropriate technology that prevents nonpoint source pollution from fertilizers. Organic matter (OM) and nitrogen (N) losses in runoff and nitrate (NO3‐N) percolation in Andisols with corn under conventional till (CT) and no‐till (NT) treatments using variable percentages of crop residue as soil cover were investigated for steep‐slope agriculture. USLE type runoff plots were used to collect water runoff, while suction tubes with porous caps at 30, 60, and 90 cm depth were used to sample soil water solutes for NO3‐N analyses. Results indicated a significant reduction of N and OM losses in runoff as residue cover increased in the NT treatments. Inorganic N in runoff was 25 kg/ha for NT without residue cover (NT‐0) and 6 kg/ha for the NT with 100 percent residue cover (NT‐100). Organic matter losses in runoff were 157 and 24 kg/ha for the NT‐0 and NT‐100 treatments, respectively. Nitrate‐N percolation was evident in CT and NT with 100 percent residue cover (NT‐100). However, NT‐100 had higher NO3‐N concentration at the root zone, suggesting the possibility of reducing fertilization rates with the use of NT treatments.  相似文献   

13.
An issue in evaluating the success of agricultural management practices is the speed that eroded particles make their way through the downstream waters. In this study at Old Woman Creek (OWC) and Rock Creek (RC), two largely agricultural watersheds in Ohio, the flux of sediment and radionuclides (7Be, 210Pb, and 137Cs) in thunderstorm runoff was examined to better understand transport of eroded agricultural soils. The hydrograph in an agricultural area under no-till was similar in timing, but of lesser magnitude, than the hydrograph from a similar-sized area under conventional tillage. The activities of 210Pb and 7Be are linearly correlated and are higher in suspended sediments derived from no-till subbasins than those derived from conventionally tilled subbasins. A suspended sediment plume, identified by its unique radionuclide signature, was traced through 17 km of OWC stream channel in approximately 13.4 h (0.35 m/s). The downstream exponential decrease of 7Be activities in suspended sediments 3 to 12 h after passage of the sediment plume was used to estimate transport distances of suspended sediment from 2 to 17 km, respectively. Transport distances of suspended sediments were also calculated from wave kinematics and indicate that at OWC suspended sediment transport distances were longer in streams draining areas of no-till (19-26 km) than in the streams draining areas of conventional tillage (6-15 km). Suspended sediments travel 7 to 22 km at RC. The transport distances are long relative to the lengths of the stream channel and indicate that erosion control methods implemented in the watershed should be reflected quickly in downstream waters.  相似文献   

14.
Comprehensive assessment of the total greenhouse gas (GHG) budget of reduced tillage agricultural systems must consider emissions of nitrous oxide (N2O) and methane (CH4), each of which have higher global warming potentials than carbon dioxide (CO2). Tillage intensity may also impact nitric oxide (NO) emissions, which can have various environmental and agronomic impacts. In 2003 and 2004, we used chambers to measure N2O, CH4, and NO fluxes from plots that had been managed under differing tillage intensity since 1991. The effect of tillage on non-CO2 GHG emissions varied, in both magnitude and direction, depending on fertilizer practices. Emissions of N2O following broadcast urea (BU) application were higher under no till (NT) and conservation tillage (CsT) compared to conventional tillage (CT). In contrast, following anhydrous ammonia (AA) injection, N2O emissions were higher under CT and CsT compared to NT. Emissions following surface urea ammonium nitrate (UAN) application did not vary with tillage. Total growing season non-CO2 GHG emissions were equivalent to CO2 emissions of 0.15 to 1.9 Mg CO2 ha(-1) yr(-1) or 0.04 to 0.53 Mg soil-C ha(-1) yr(-1). Emissions of N2O from AA-amended plots were two to four times greater than UAN- and BU-amended plots. Total NO + N2O losses in the UAN treatment were approximately 50% lower than AA and BU. This study demonstrates that N2O emissions can represent a substantial component of the total GHG budget of reduced tillage systems, and that interactions between fertilizer and tillage practices can be important in controlling non-CO2 GHG emissions.  相似文献   

15.
The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam.  相似文献   

16.
The necessity of incorporating societal and environmental concerns into publicly funded agricultural initiatives in research, extension, and practice is increasingly evident. Agriculturalists are urged to acknowledge and respond to societal concerns before an insensitive and largely ill-informed urban majority assumes a dominant posture in agricultural policy. In recent history, the availability of unrealistically cheap energy encouraged the evolution of a form of commercial agriculture unfettered by sound ecological principles. At present, external, resource-intensive intervention of increasing magnitude is needed to compensate for the apparent ecological instability generated by practices such as intensive cereal management or conservation tillage practices. Polarization of the enterprises of plant and animal agriculture to enable centralized, concentrate-intensive, confinement feeding has disrupted the natural cycling of nutrients and carbon in the soil, encouraged the withdrawal of perennial forages from crop rotations, and invoked a widely ramifying network of agricultural and societal problems. Solutions to these problems must evolve from a holistic and far-reaching appraisal of causes, rather than from a piecemeal approach to individual symptoms.  相似文献   

17.
The Indo‐Gangetic plain is characterized by intensive agriculture, largely by resource‐poor small and marginal farmers. Vast swathes of salt‐affected areas in the region provide both challenges and opportunities to bolster food security and sequester carbon after reclamation. Sustainable management of reclaimed soils via resource conservation strategies, such as residue retention, is key to the prosperity of the farmer, as well as increases the efficiency of expensive initiatives to further reclaim sodic land areas, which currently lay barren. After five years of experimentation on resource conservation strategies for rice‐wheat systems on partially reclaimed sodic soils of the Indo‐Gangetic region, we evaluated changes in different soil carbon pools and crop yield. Out of all resource conservation techniques which were tested, rice‐wheat crop residue addition (30% of total production) was most effective in increasing soil organic carbon (SOC). In rice, without crop residue addition (WCR), soils under zero‐tillage with transplanting, summer ploughing with transplanting and direct seeding with brown manuring showed a significant increase in SOC over the control (puddling in rice, conventional tillage in wheat). In these treatments relatively higher levels of carbon were attained in all aggregate fractions compared to the control. Soil aggregate sizes in meso (0.25‐2.0 mm) and macro (2‐8 mm) ranges increased, whereas micro (< 0.25 mm) fractions decreased in soils under zero‐till practices, both with and without crop residue addition. Direct seeding with brown manuring and zero tillage with transplanting also showed an increase of 135% and 95%, respectively, over the control in microbial biomass carbon, without crop residue incorporation. In zero tillage with transplanting treatment, both with and without crop residue showed significant increase in soil carbon sequestration potential. Though the changes in accrued soil carbon did not bring about significant differences in terms of grain yield, overall synthesis in terms of balance between yield and carbon sequestration indicated that summer ploughing with transplanting and zero tillage with transplanting sequestered significantly higher rates of carbon, yet yielded on par with conventional practices. These could be appropriate alternatives to immediately replace conventional tillage and planting practices for rice‐wheat cropping systems in the sodic soils of the Indo‐Gangetic region.  相似文献   

18.
ABSTRACT: Field studies were conducted to investigate the effects of tillage practices on the saturated hydraulic conductivity, and quantity and quality of surface runoff water resulting from the application of the liquid swine manure as a fertilizer. As part of the study, infiltration experiments were conducted on silt-loam soil with no-tillage (NT) and disk tillage (DT) practices. Liquid swine manure was applied on test plots, and the rainfall was applied by the portable rainfall simulator. The infiltration data was analyzed for the saturated hydraulic conductivity (K8) and runoff volume determinations. The surface runoff water was analyzed for total N, total P, ammonia, and nitrate concentration determinations. The study indicated that the tillage had significant effects on Ks, and quantity and quality of runoff water. The Ks values of the NT plots were found to vary from 0.693 to 1.734 mm/min, with a mean of 1.494 mm/min, while they varied from 1.056 to 2.543 mm/min, with a mean of 2231 mm/mm in the DT plots. The total N, total P, ammonium nitrogen and nitrate nitrogen concentrations were lower in runoff generated from DT plots, compared to that from the NT plots. The chemical concentration levels were significantly different in runoff waters collected one-day after manure application than in those collected 40-days after the manure application. Study suggested that the DT practice must be preferred over the NT practice if liquid swine manure is used as the fertilizer. The study is further continued to assess the long-term impacts of swine manure application and tillage on the quantity and quality of surface runoff water.  相似文献   

19.
A runoff study was conducted near Tifton, GA to measure the losses of water, sediment, and diclosulam (N-(2,6-dichlorophenyl)-5-ethoxy-7-fluoro-[1,2,4]triazolo-[1,5c]-pyrimidine- 2-sulfonamide), a new broadleaf herbicide, under a 50-mm-in-3-h simulated rainfall event on three separate 0.05-ha plots. Results of a runoff study were used to validate the Pesticide Root Zone Model (PRZM, v. 3.12) using field-measured soil, chemical, and weather inputs. The model-predicted edge-of-field diclosulam loading was within 1% of the average observed diclosulam runoff from the field study; however, partitioning between phases was not as well predicted. The model was subsequently used with worst-case agricultural practice inputs and a 41-yr weather record from Dublin, GA to simulate edge-of-field runoff losses for the two most prevalent soils (Tifton and Bibb) in the southeastern U.S. peanut (Arachis hypogaea L.) market for 328 simulation years, and showed that the 90th percentile runoff amounts, expressed as percent of applied diclosulam, were 1.8, 0.6, and 5.2% for the runoff study plots and Tifton and Bibb soils, respectively. The runoff study and modeling indicated that more than 97% of the total diclosulam runoff was transported off the field by water, with < 3% associated with the sediment. Diclosulam losses due to runoff can be further reduced by lower application rates, tillage and crop residue management practices that reduce edge-of-field runoff, and conservation practices such as vegetated filter strips.  相似文献   

20.
ABSTRACT: Farmers can generate environmental benefits (improved water quality and fisheries and wildlife habitat), but they may not be able to quantify them. Furthermore, farmers may reduce their incomes from managing lands to produce these positive externalities but receive little monetary compensation in return. This study simulated the relationship between agricultural practices, water quality, fish responses to suspended sediment and farm income within two small watersheds, one of a cool water stream and one of a warm water stream. Using the Agricultural Drainage and Pesticide Transport (ADAPT) model, this study related best management practices (BMPs) to calculated instream suspended sediment concentrations by estimating sediment delivery, runoff, base flow, and streambank erosion to quantify the effects of suspended sediment exposure on fish communities. By implementing selected BMPs in each watershed, annual net farm income declined $18,000 to $28,000 (1 to 3 percent) from previous levels. “Lethal” fish events from suspended sediments in the cool water watershed decreased by 60 percent as conservation tillage and riparian buffers increased. Despite reducing suspended sediments by 25 percent, BMPs in the warm water watershed did not reduce the negative response of the fisheries. Differences in responses (physical and biological) between watersheds highlight potential gains in economic efficiency by targeting BMPs or by offering performance based “green payments.”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号