首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2014年10月太原市一次空气重污染过程分析   总被引:1,自引:0,他引:1  
采用数值模拟(CAMx)与污染物、气象观测资料相结合的方式,对太原市及周边区域2014年10月6—12日一次典型空气重污染过程的大气环境背景、气象条件和形成原因进行了分析.结果表明:2014年10月8—10日太原ρ(PM_(2.5))日均值平均为175μg·m~(-3),太原城区约1460km~2的国土面积处于重度污染(ρ(PM_(2.5))150μg·m~(-3))之下,而京津冀约20×104km2的国土面积达到重度污染水平;区域稳定的气象条件是形成重污染的主要原因,重污染过程中大气层结稳定,逆温明显(2.14℃/100m)、风速小(1.91 m·s~(-1))、湿度大(68.13%)、负变压(-0.74 h Pa)、正变温(0.92℃).模拟结果显示,8—10日重污染期间区域输送对太原PM_(2.5)的贡献率在17%~24%之间,太原市PM_(2.5)浓度以本地贡献为主;估算的2014年太原城区PM_(2.5)排放量是其大气环境容量的1.4倍,重污染期间大气环境容量的大幅降低又加剧了空气污染的程度.  相似文献   

2.
2013年1月邯郸市严重霾天气的污染特征分析   总被引:1,自引:3,他引:1  
利用河北工程大学大气环境监测站点的PM10、PM2.5、SO2和NOx在线监测数据,并结合能见度、湿度数据,对邯郸市2012年12月1日到2013年1月31日的大气污染状况进行分析,特别是2013年1月持续发生的霾天气,以探讨严重霾污染的过程特征.结果表明,2013年1月,SO2与NOx的平均浓度分别为225.3 μg·m-3和217.8 μg·m-3,PM10和PM2.5的平均浓度分别为328.5 μg·m-3和229.4 μg·m-3,均超过新颁布的环境空气质量标准,是2012年12月平均浓度的1.4~3.5倍.重污染过程分析结果显示,污染峰值附近几天内PM10、PM2.5的时均浓度变化无明显规律.累积阶段的PM2.5/PM10在0.42~0.52之间,峰值前后上升并超过0.70,扩散阶段PM2.5/PM10降到0.70以下,且呈波动式变化.当PM2.5/PM10小于0.40时,能见度基本位于2~18 km之间;当PM2.5/PM10在0.40~0.60之间时,能见度在0.7~8 km之间;当PM2.5/PM10大于0.60时,能见度分布于2 km以下.  相似文献   

3.
2019年秋季在珠三角典型沿海城市珠海观测到一次中重度污染过程,本文对此次过程的污染特征、形成机制和来源进行了研究.通过 采集PM2.5样品,分析了9种水溶性无机离子(WSIIs)、有机碳(OC)、元素碳(EC)和水溶性有机碳(WSOC)等化学组分的浓度水平和污染特征;进一步结合污染过程中的不利天气形势、72 h后向气流轨迹及PM2.5的潜在源贡献因子(WPSCF)和浓度权重轨迹(WCWT)等方法分析了污染的形成机制和来源.结果表明,有机物(OM)是污染时期PM2.5中增长最快的组分,其次是占WSIIs约82.46%的SO42-、NO3-和NH4+(SNA). NO3-/SO42-均值为0.20,表明珠海以固定源污染为主;硫氧化率(SOR)均值为0.65,氮氧化率(NOR)均值为0.08,高温高湿的气象条件可能是 造成珠海比中国其他城市SOR偏高而NOR偏低的原因.在污染时段,二次有机碳(SOC)明显增加,WSOC/SOC随污染物的升高而降低并趋近于1,因此, 污染时期的WSOC可能主要是二次生成的.副高控制型、台风外围型和高压出海型等天气形势控制着整个珠三角地区时,不利于污染物的传输和扩散,使污染加剧.后向气流轨迹分析表明,污染时期的气团轨迹主要来自于高污染的内陆地区,这可能是造成此次污染形成的重要原因和来源.WPSCF和WCWT的高值区主要集中在江西、广东等内陆地区,因此,珠海在控制本地排放的同时,也应该关注上风向临近省市的污染排放.  相似文献   

4.
武汉地区秋冬季清洁与重污染过程的水溶性离子特征研究   总被引:6,自引:0,他引:6  
利用武汉地区2014年秋、冬季在线离子色谱分析仪Marga监测所得的大气PM_(2.5)中水溶性离子数据和武汉市环境空气质量自动监测的细颗粒物数据,分析了武汉地区秋、冬季重污染和清洁过程的大气污染特征.结果表明,PM_(2.5)是武汉地区秋、冬季大气污染的首要污染物,无论是在清洁还是重污染过程中,NO_3~-、SO_4~(2-)和NH_4~+3种成分都是PM_(2.5)的主要无机成分.重污染过程中PM_(2.5)的平均浓度是清洁过程的4.5倍,而3种主要水溶性离子平均浓度增长至清洁过程的5~6倍,且有着显著的相关性,二次生成水溶性离子的污染已成为武汉秋、冬季大气污染的主要因素.Cl-在重污染过程中的浓度及与PM_(2.5)的相关系数显著增大,表明化石燃料燃烧等过程也对重污染的形成产生了较显著的作用,值得关注的是,K~+在重污染过程中的浓度及与PM_(2.5)的相关系数增大也验证了燃烧过程对重污染起到的贡献.硫氧化率和氮氧化率的分析结果表明,重污染过程中的二次转化要多于清洁过程,可能是非均相反应生成了二次污染的硫酸盐和硝酸盐.线性回归分析的方程系数研究表明,NH_4NO_3和(NH_4)_2SO_4可能是清洁和重污染过程中主要的盐类物质.NO_3~-/SO_4~(2-)的平均质量浓度比说明移动源对武汉地区秋、冬季二次污染的形成和发展已经起到越来越大的作用,特别是重污染过程中的影响更大.  相似文献   

5.
利用2011年5月11—12日辽宁沙尘天气过程的相关资料,分析了沙尘天气对不同粒径颗粒物及空气质量的影响及此次沙尘过程的天气成因.结果表明:沙尘天气发生前后可吸入颗粒物PM10、PM2.5和PM1的浓度变化很大,沈阳、鞍山、本溪和丹东4城市PM10、PM2.5的小时浓度最大值都增大了1.5~20倍;粗粒子PM(2.5~10)的数量浓度分别增加了30~41倍,质量浓度分别增加了27~30倍;细粒子PM(1~2.5)的质量浓度分别增加了30~35倍,数量浓度分别增加了15~30倍;微粒子的数量浓度和质量浓度各城市表现不同,沈阳微粒子的数量浓度和质量浓度最大值增大了3倍和5倍,而鞍山PM1的数量浓度和质量浓度分别减少了50%和10%.受蒙古气旋的影响内蒙古地区产生大风降温天气,大风将内蒙古地区的沙尘带到高空并随西风带向东移动进入辽宁,由于辽宁地区风速比较小,造成了辽宁大部分地区的浮尘天气,并对辽宁各地空气质量造成了严重影响,除丹东外辽宁其他13个城市空气质量都达到了轻微污染到重度污染的级别,铁岭、阜新、沈阳和抚顺的污染指数分别超过了300,达到了重度污染的级别.  相似文献   

6.
2015年5月17~20日嘉兴市发生了一次持续性雾霾过程,本研究根据5月17~22日污染气体(O_3、SO_2、NO_2和CO)、PM_(10)、PM_(2.5)、10 nm~10μm气溶胶数浓度、气象要素及边界层探空数据,分析了这次过程的成因及其不同污染物的变化特征.结果表明,副高位置北抬、均压场结构、地面静小风和边界层中逆温层为这次雾霾过程的发生和维持提供了水汽、动力和热力条件.这次雾霾过程包含1次降雨和2次雾过程(雨雾和辐射-平流雾).雾霾过程中NO_2、CO、PM_(10)和PM_(2.5)的浓度较高,SO_2和O_3的浓度较低.强降雨对PM_(10)、PM_(2.5)和SO_2清除作用较大,弱降雨会加重污染过程.雨雾的发展过程中,PM的浓度持续积聚;辐射-平流雾过程中,PM浓度先快速下降然后再增加.不同过程中气溶胶数浓度谱均为单峰型分布,但是谱型差异较大,干净天、降雨、雾霾过程、雨雾和辐射-平流雾过程中气溶胶数浓度谱峰值分别位于20~30 nm、100 nm、30~60nm、120 nm和90 nm.表面积浓度谱在干净天、降雨、雾霾和雨雾过程中均为三峰型分布,辐射-平流雾为四峰型分布.  相似文献   

7.
2013年12月上海市PM2.5重污染过程数值模拟研究   总被引:1,自引:0,他引:1  
基于2013年11月30日-12月13日上海一次PM2.5重污染过程,利用Model-3/CMAQ模式及过程分析技术,定量评估不同时段各大气过程对上海PM2.5浓度变化的影响.结果表明:Model-3/CMAQ模式系统能较好的模拟出实况PM2.5的浓度变化趋势与特点.研究期间,白天源排放的增强和大气传输的影响、加上较强的气溶胶和云过程生成贡献,是造成上海PM2.5浓度上升至重污染的主要原因.不同污染时段对PM2.5浓度上升贡献率最大的过程均为输送,其中,西北部点位(青浦淀山湖和虹口凉城输送)的贡献率最大,且重污染时段输送的贡献率明显高于非重污染时段.  相似文献   

8.
本研究在河北工程大学监测站点开展了大气中56种VOCs、NOx以及气象参数的长期在线监测,结合2013—2019年国控站的在线监测数据,对邯郸市PM2.5-O3复合污染特征进行分析.结果表明,邯郸市2013—2019年复合污染天数波动较大,近几年呈现增加趋势,且集中在每年的春夏季.2013—2017年复合污染天数峰值均出现在6月,2018年和2019年出现在3月和4月.气象因素分析结果表明,温度、湿度和气压对邯郸市复合污染影响较明显,当温度为21.0~29.0℃、湿度较高、气压偏低的条件下,更容易发生复合污染,而风速对邯郸市复合污染影响较小.对PM2.5与O3相互作用分析发现,冬季高浓度PM2.5对O3有抑制作用,夏季PM2.5浓度不超标时,O3浓度随其升高而上升,PM2.5浓度超标后变化趋势相反,当PM2.5浓度大于125 μg·m-3时不再出现PM2.5-O3复合污染.虽然近年来PM2.5、SO2和NO2浓度下降,但二次转化率依然较高甚至有加强趋势.利用VOCs/NOx值分析邯郸市O3生成敏感性,结果显示邯郸市春冬季属于VOCs控制到NOx控制的过渡区,夏秋季属于NOx控制区,且复合污染日VOCs/NOx值(6.3)最小,清洁日(9.3)最大.复合污染时NO3-和OC浓度较高,OC/EC值与其他污染日相比最大,说明复合污染时二次污染严重,有效治理PM2.5-O3复合污染必须减排能同时形成O3和二次有机气溶胶的高活性有机物.  相似文献   

9.
成都平原大气颗粒物中无机水溶性离子污染特征   总被引:7,自引:6,他引:7  
蒋燕  贺光艳  罗彬  陈建文  王斌  杜云松  杜明 《环境科学》2016,37(8):2863-2870
为探讨成都平原大气颗粒物中水溶性离子的污染特征,识别水溶性离子的组成、分布和时空变化,有针对性地控制重污染和灰霾天气,于2013年8月~2014年7月,在成都平原的5个监测点位共采集1 476个颗粒物样品,应用离子色谱法对PM10和PM_(2.5)中8种无机水溶性离子(SO_4~(2-)、NO_3~-、NH_4~+、K~+、Na~+、Ca~(2+)、Mg~(2+)、Cl~-)进行测量.结果表明在观测期间,PM_(2.5~10)和PM_(2.5)中无机水溶性离子总量分别为11.35μg·m-3和36.93μg·m-3,分别占ρ(PM_(2.5)~10)和ρ(PM_(2.5))的37.8%和46.6%;其中二次离子(SO_4~(2-)、NO_3~-和NH~+4,SNA)约占各自水溶性离子总量的81.1%和89.9%.水溶性离子质量浓度冬季最高,春秋季相当,夏季最低.ρ(SO2-4)/ρ(PM_(2.5))夏秋季较高,而ρ(NO_3~-)/ρ(PM_(2.5))冬季最高,夏季最低.SNA、Cl~-、K~+大多分布在PM_(2.5)中,Ca~(2+)和Mg~(2+)主要分布在PM_(2.5~10)中.PM_(2.5)基本呈中性,水溶性离子主要以(NH_4)_2SO_4、NH_4NO_3、KNO_3、NaCl、KCl等形式存在.ρ(NO_3~-)/ρ(SO_4~(2-))揭示固定源依然是PM_(2.5)的主要来源.硫氧化速率(SOR)和氮氧化速率(NOR)年均值分别为0.31和0.13,SOR夏季最高,NOR冬季最高,二者变化趋势相反.成都平原PM_(2.5)呈区域性复合污染特征,SNA是造成ρ(PM_(2.5))增加的主导因素.  相似文献   

10.
2013年京津冀重污染特征及其气象条件分析   总被引:3,自引:0,他引:3  
2013年中国东部地区多次发生持续的重霾污染事件.为探究其气象条件与重污染事件的关系,本文使用欧洲中心2013年东亚地区的逐日气象数据和北京、天津、石家庄的逐时PM2.5浓度数据以及2013年MICAPS观测数据,分析了重污染事件对应的天气形势,并使用NAQMPS针对2013年1月的重污染事件进行情景模拟.研究结果表明:1北京、天津和石家庄地区PM2.5浓度,夏秋季节日变化不显著,秋冬季节白天低夜间高;3地PM2.5浓度均表现为12-1月浓度最高,7月最低;.2500 hPa平直西风气流,850 hPa弱暖平流,地面处于弱高压后部或高压底部高低空配置下的天气系统,对应着重污染事件的高发期;3源强不变的情况下,京津冀地区由弱高压前部控制转为弱高压控制时,地面温度升高0~5℃,相对湿度增加30%~50%,风速下降2~3 m·s-1,PM2.5浓度变化可达300 μg·m-3.  相似文献   

11.
为研究典型物流城市临沂市冬季重污染天气过程中PM_(2.5)化学组分特征,探讨污染成因,于2016年12月~2017年1月在6个采样点连续采集28 d的PM_(2.5)样品,并对其离子、元素、碳组分进行分析.采样期间PM_(2.5)质量浓度均值(145. 2±87. 8)μg·m~(-3),日均值超标率为82%; 2次污染过程中PM_(2.5)均值浓度分别为(187. 3±79. 8)μg·m~(-3)和(205. 3±92. 0)μg·m~(-3),为《环境空气质量标准》(GB 3095-2012)年均二级标准的5. 4和5. 9倍.化学组分质量重构结果显示二次无机离子(SNA)是冬季PM_(2.5)的主要组分(所占质量分数为51. 2%),其次为有机物OM(23. 8%),再次为矿物尘MIN(12. 7%).结合污染过程中化学组分的变化趋势和累积速率发现,第1个污染过程中SNA和OM是引起PM_(2.5)浓度增加的原因之一,第2个污染过程中SNA是导致污染的主因,硫氧化率(SOR)、氮氧化率(NOR)和OC/EC比值的日均变化趋势进一步验证了该结论. PMF源解析结果表明,临沂市冬季大气PM_(2.5)的首要源类为二次颗粒物和生物质燃烧混合源(分担率50. 0%),其次为燃煤源(16. 8%)、机动车(12. 9%)和城市扬尘(10. 0%),再次为工业源(5. 3%)和土壤尘(5. 0%). 2次污染过程中二次颗粒物的贡献较之冬季平均有明显增加,说明不利气象条件下二次颗粒物的生成、累积是导致重污染期形成的主因.  相似文献   

12.
2020年天津市两次重污染天气污染特征分析   总被引:4,自引:5,他引:4  
为了解2020年天津市两次重污染天气污染特征,基于2020年1~2月高时间分辨率的在线监测数据,对天津市2020年1月16~18日(重污染过程Ⅰ)和2020年2月9~10日(重污染过程Ⅱ)进行分析,结果表明,两次重污染过程均呈现前期区域输送和后期本地不利气象条件叠加双重影响的特点,重污染过程期间平均风速均较低,平均相对湿度接近70%,部分时段接近饱和,边界层高度低于300 m,水平和垂直扩散条件均较差.与重污染过程Ⅰ相比,重污染过程Ⅱ主要污染物浓度和污染程度均降低,尤其是NO2浓度下降明显,重污染过程Ⅱ北部地区PM2.5和CO浓度较高.两次重污染过程PM2.5中化学组分浓度和占比发生明显变化,重污染过程Ⅰ二次无机离子(SO42-、 NO-3和NH+4)、 EC和Ca2+平均浓度较高,OC和Cl-平均浓度略低于重污染过程Ⅱ,K+...  相似文献   

13.
为分析APEC会议前后北京地区PM2.5变化特征,利用中国科学院大学雁栖湖校区超级站在2014年10—12月的连续观测数据,对APEC会议前后北京地区污染物分布及变化特征、气象影响因素和气团传输路径特征进行了分析. 结果表明:APEC会议期间北京地区减排效果显著,ρ(PM2.5)平均值比会前下降了60.5%. 气象条件对污染物扩散起到积极作用,APEC期间平均风速为1.40 m/s,平均相对湿度为31.9 %,近地面气象条件优于APEC会前、会后. 北京地区受到外来污染物输送的影响,在2.00~3.00 m/s的南风下易发生来自南部地区的PM2.5和SO2输送. APEC会议期间北京地区主要受来自西北地区的高速、高海拔气团控制,其出现频率为39.6%,远低于APEC会前 (15.9%)和会后(20.8%),而来自南部地区的低速、低海拔污染气团的出现频率仅为2.1%,扩散条件总体良好. 研究显示,除了减排措施有效削减了污染物排放以外,有利的气象条件也是APEC会议期间北京地区保持良好空气质量的重要因素.   相似文献   

14.
为深入了解唐山市采暖期PM2.5污染成因与来源,采用在线监测设备于2017年12月1日-2018年1月28日连续监测了唐山市PM2.5及其水溶性离子和碳质组分(OC、EC)的质量浓度变化,并结合部分常规气体污染物及气象数据进行对比分析.结果表明:①相对湿度的增加和风速的降低促进了污染的发展.②清洁、轻中度污染和重污染时,SOR(硫氧化率)分别为0.05、0.08、0.20,NOR(氮氧化率)分别为0.05、0.12、0.26,随着污染的加重,SO2、NOx向PM2.5中SO42-、NO3-的二次转化现象更加明显.③清洁时,ρ(OC)、ρ(EC)、ρ(SO42-)和ρ(Cl-)占PM2.5化学组分(水溶性离子、碳质组分)质量浓度总和的68%,主要污染源为燃煤;清洁、轻中度污染和重污染时,ρ(NO2)/ρ(SO2)分别为0.96、1.14、1.44,ρ(NO3-)/ρ(SO42-)分别为0.94、1.57和1.75;重污染时,ρ(SO42-)、ρ(NO3-)、ρ(NH4+)三者之和占PM2.5化学组分质量浓度总和的61%,二次污染物成为主要污染源.④观测期,唐山市轻中度污染和重污染时,受经北京市、天津市等唐山市西部地区方向气团影响频率分别为61%、63%,受该方向气团影响时,ρ(NO2)/ρ(SO2)、ρ(NO3-)/ρ(SO42-)明显增大.研究显示,相较于燃煤排放物在大气污染物中的占比变化,随着污染的加重,工业工艺和机动车尾气排放产生的污染物占比明显增大,区域传输对大气污染影响不可忽略,政府有必要开展区域联防联控、停产限产和限行限号的措施.   相似文献   

15.
利用2018~2020年北京市33个环境评价站和5个区域评价站的空气质量数据,以及气象数据和北京市城区PM2.5组分数据,研究了3年间北京PM2.5的浓度演变、时空变化和重污染发生情况,并对PM2.5组分和气象条件变化进行比较分析.结果发现,3年间北京市ρ(PM2.5)分别为51、42和38μg·m-3,2020年的PM2.5相比2017年下降30.9%,但仍超过国际标准8.6%;北京市PM2.5空间分布依旧维持南高北低的特征,但南北差异逐年减小,区域浓度趋于均一化;1~3月PM2.5浓度相对较高,8~9月PM2.5浓度相对较低,采暖季各污染物浓度均显著高于非采暖季,NOx和CO分别偏高58.4%和52.9%,PM2.5偏高27.5%;采暖季和非采暖季PM2.5日变化出现反向特征,采暖季夜间PM2.5明显...  相似文献   

16.
2018年12月30日至2019年1月15日石家庄市发生了连续的灰霾天气,出现12个重污染天,首要污染物均为PM2.5.本文从污染演变、时空分布、组分分析、污染来源和气象因素等多方面展开分析探讨污染成因.结果表明,PM2.5主要成分为二次无机离子(65. 4%),主要来源为燃煤(24. 4%)和工业工艺源(23. 7%).随污染加剧SO42-占比和二次无机源贡献均大幅增加.先后受来自偏南-东南和偏西-西南方向低空气团及特殊地形、静稳高湿、近地逆温等不利气象条件影响,燃煤、工业和机动车尾气等一次源产生的污染物在太行山前快速积累,气态污染物二次转化和颗粒物吸湿增长推高PM2.5,硫酸盐暴发式增长加剧污染发生.建议重污染应急响应期间在确保各项减排措施落实到位情况下,加强二次无机组分前体物SO2、NOx及NH3排放源的管控,并重点关注SO2排放源(散煤等),同时加强市区东北方向新乐、无极、深泽、晋州...  相似文献   

17.
为了解天津市2020年冬季重污染过程气溶胶消光特征,基于2020年1~2月高时间分辨率的在线监测数据,对1月16~18日(重污染过程Ⅰ)、1月26~28日(重污染过程Ⅱ)和2月9~10日(重污染过程Ⅲ)进行气溶胶消光特性及其来源分析.结果表明,3次重污染过程PM2.5平均浓度分别为(229±52)、(219±48)和(161±25)μg·m-3,NO3-、SO42-、NH4+、OC、EC、Cl-和K+为PM2.5中主要组分.3次重污染过程气溶胶散射系数(Bsp550)和吸收系数(Bap550)分别为(1055.65±250.17)、(1054.26±263.22)、(704.44±109.89) Mm-1和(52.96±13.15)、(39.72±8.21)、(34.50±8.53) Mm-1,散射效应高于吸收效应.重污染天气下硝酸盐(38.9%~48.8%)、硫酸盐(31.1%~40.7%)和OM (9.9%~21.8%)为PM2.5中最主要消光成分.3次重污染过程PM2.5组分对气溶胶消光的贡献发生明显变化,重污染过程Ⅰ,硝酸盐对消光系数的贡献最高;重污染过程Ⅱ,受春节期间烟花爆竹燃放影响,OM对消光系数的贡献升高;重污染过程Ⅲ,交通出行减少但燃煤源排放相对稳定,硝酸盐对消光系数的贡献降低,硫酸盐的贡献升高.来源解析结果显示,重污染天气气溶胶消光的主要来源为二次无机气溶胶(37.1%~42.0%)、燃煤和工业(22.9%~24.2%)、机动车(23.9%~27.2%)、扬尘源(5.0%~6.4%)和烟花爆竹及生物质燃烧排放(3.9%~6.2%).与重污染过程Ⅰ相比,重污染过程Ⅱ烟花爆竹及生物质燃烧排放对消光系数的贡献升高;重污染过程Ⅲ机动车对消光系数的贡献明显降低;燃煤和工业对消光系数的贡献在3次重污染过程中较接近.后轨迹分析表明,重污染天气期间天津市主要以来自河北的小尺度、短距离以及内蒙古中部的中尺度、中短距离气团传输轨迹为主.  相似文献   

18.
为了研究沈阳市采暖期与非采暖期空气PM_(2.5)污染特征及来源,于2015年1月29日~2016年1月26日在沈阳市采集PM_(2.5)有效样品113组,并分析了其载带的水溶性离子、碳组分及元素组分.结果表明,采样期间沈阳市PM_(2.5)质量浓度均值为66μg·m~(-3),其中31. 0%的样品超过《环境空气质量标准》(GB 3095-2012)日均值二级标准(75μg·m~(-3)),采暖期PM_(2.5)的平均浓度和超标率(90μg·m~(-3)、68. 6%)明显高于非采暖期(51μg·m~(-3)、31. 4%).采样期间21种元素(除了Mg、Ti、Ca、Fe、Si)、水溶性离子(除Ca~(2+)以外)和OC、EC质量浓度均呈现出采暖期高于非采暖期的趋势;[NO_3~-]/[SO_4~(2-)]比值表明非采暖期受移动源影响明显增加,燃煤等固定源仍是采暖期PM_(2.5)的主要来源,PM_(2.5)中水溶性离子是固定源和移动源共同作用的结果;氮氧化率(NOR)和硫氧化率(SOR)分析得到NO_x二次转化程度较弱,SO_2二次转化程度较强,特别是在非采暖期;富集因子结果表明EF值较高的元素主要来自燃煤、交通污染和工业排放. PM_(2.5)组分重构质量与实测质量呈现较好的相关性,采暖期和非采暖期PM_(2.5)中主要组分均为有机物(OM 28. 0%、23. 1%)、矿物尘(MIN 14. 5%、26. 0%)和SO_4~(2-)(15. 1%、19. 9%),PM_(2.5)受二次粒子、燃烧源和扬尘源影响较大.  相似文献   

19.
北京2012~2013年的冬春多次出现雾霾天气,可吸入颗粒物(PM10)污染严重.而PM2.5作为PM10中粒径较小的部分,在PM10中所占比重越高,污染越严重.因此,本研究选取了能够覆盖北京所有区县的30个PM2.5和PM10的质量浓度监测点,对该地区的PM2.5和PM10污染特征进行分析,确定其空间差异特征和时间性变化特征.普通克里格插值(Original Kriging)法得到的北京地区冬、春季颗粒物浓度分布图显示,颗粒物浓度从北部山区到南部地区逐渐递增,在中心城区处,西部高于东部,且局部地区存在一定的城乡差异.颗粒物浓度月变化曲线呈单峰单谷型,1月最高,4月最低;逐日变化反映了PM2.5和PM10浓度具有较好的相关性,且受气象条件影响显著;日变化呈双峰趋势.本文选取日平均气温(℃)、相对湿度(%)、风速(风级)、降水量(mm)等气象因子,利用Spearman秩相关分析研究各个气象因子对大气PM2.5和PM10浓度的影响.北京冬季PM2.5和PM10的质量浓度分别与气温、相对湿度正相关,与风速负相关,风速和相对湿度是影响污染物质量浓度分布的主要因素.  相似文献   

20.
为研究北京冬季重污染过程的污染特征及成因,采用边界层风场、温/湿场和气溶胶垂直探测等雷达综合遥测手段,对2018年3月北京两会期间的一次典型重污染过程,从边界层气象要素演变进行综合研究.结果表明:①整个污染过程历时7 d,轻度以上污染时数达118 h(占污染过程总小时数的69.8%),严重污染时数达16 h(占污染过程总小时数的9.5%),ρ(PM2.5)最高达333.5 μg/m3.②从气溶胶的垂直空间演变来看,重污染天气的形成,除受本地源排放积累的影响外,还存在北京南部和东部的外部污染传输.贴地或上部逆温的稳定温度层结基本上对应ρ(PM2.5)的累积过程,其中,重污染时段逆温维持达68 h,逆温层厚度为500~1 100 m,最大平均逆温强度为0.6℃/(100 m).大气边界层高度偏低(积累过程白天在1 000 m以下,夜间只有300~500 m),导致污染物持续积累.整个污染过程中,高湿时段引起PM2.5吸湿增长和转化加重了污染程度;近地层持续小风导致污染积累;西南、东或东南方向大风层(10 m/s左右)向低空下探,有利于污染的缓解;强西北风或北风作用,使污染得以清除.研究显示,污染过程与边界层气象要素的演变密切相关.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号