首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xpert Design & Diagnostics, LLC (XDD), & Conestoga‐Rovers and Associates (CRA) conducted a biosparging field trial at a Superfund site in New Jersey. The biosparging field trial proved that biosparging with oxygen was very effective in promoting the biological destruction of benzene. The approximately 265‐day period of oxygen injection successfully reduced benzene concentrations by several orders of magnitude, or even to non‐detect values, at least 40 feet from the point of injection. Through co‐precipitation of arsenic with oxidized iron, biosparging also effectively reduced total concentrations of arsenic and iron in groundwater. Based on the results of the biosparging field trial, the final remedy for the site has been amended to include the use of biosparging technology as an alternative to groundwater pumping and aboveground treatment in select locations. © 2001 John Wiley & Sons,Inc.  相似文献   

2.
Directionally drilled horizontal wells offer the opportunity for significant cost savings and technical advantages over alternative trenched well and vertical well soil and groundwater remediation systems in many cases. The magnitude of the cost savings is a function of the remediation technology deployed and the values placed on the reduction of site impacts, dramatic reduction in the time required to achieve site remediation goals and requirements, the ability of horizontal well remediation to easily treat normally recalcitrant contaminants such as MTBE, and the ability to drill under paved areas, operating plants, residential areas, landfills, lagoons, waterways, ponds, basins, and other areas that are normally difficult or impossible to access with conventional drilling or trenching methods. In addition to improvements in site access capabilities, horizontal wells have been found capable of addressing contaminants that vertical wells do not readily treat, even with the same remediation technology deployed, especially if air‐based remediation technologies are deployed. With biosparging, for example, greater treatment capabilities of horizontal wells over vertical wells are attributed to greater oxygen flux over a broader area, a larger treatment zone, and extremely prolonged residence of groundwater contaminants in the aerobic treatment area, typically months or years. This article describes the use of directionally drilled horizontal wells for application of a variety of treatment technologies and includes costs of various options with a detailed comparison of biosparging options. © 2002 Wiley Periodicals, Inc.  相似文献   

3.
A Before‐ After Control‐ Impact Paired (BACIP) model was used to evaluate the effectiveness of phytoremediation treatment on reduction of bentazon concentrations in shallow groundwater at a study site in Louisiana. Two different statistical approaches were made to evaluate the impact to this test site from the remediation program through time. Data were evaluated by Bayesian analysis of variance test methods. Data sets were unique in that the control data used for impact evaluation, as compared to before and after data, were compiled from groundwater upgradient monitoring wells existing prior to remediation. The statistical model supports the hypothesis that the phytoremediation program has positively impacted groundwater at the study site. © 2006 Wiley Periodicals, Inc.  相似文献   

4.
Plant transpiration is a critical process that affects the water balance in phytoremediation plots. The desired effect is to remove contaminated water from the soils through the plant metabolism. Thus, the transpiration rate can be a major component in modeling the groundwater flow and solute transport for a phytoremediation project and ultimately can determine the time expected to achieve remedial goals. Two phytoremediation plots of black willows (Salix nigra) were planted during October 1996 over separate,shallow groundwater plumes at a site in southeastern Louisiana. Concentrations of less than 10 mg/l of the herbicide bentazon were present in the shallow groundwater. Field experiments were developed and performed during the 1998 and 1999 growing seasons to measure sap flow as an indicator of plant transpiration. The tree‐trunk heat balance method was used to measure sap flow. Sap flow was indexed to the cross‐sectional area of the stem, and the sum of the available stem area for each plot was used to calculate the monthly water use in each plot. Daily water use in the plots averaged between 6 to 13 l/day/m2 during the periods tested in 1998 and 1999. By applying growth‐rate observations with the daily water use, annual water use at tree plot maturity was estimated to be 3.6×106 l/year in Plot 1 and 11.39×106 l/year in Plot 2. Application of these data will allow groundwater modeling to be performed to measure the effectiveness of phytoremediation and to predict closure of remediation at the test site. © 2001 John Wiley & Sons, Inc.  相似文献   

5.
An Erratum has been published for this article in Remediation 16(1) 2005, 155–157. Water‐level data collection is a fundamental component of groundwater investigations and remediation. While the locations and depths of monitored wells are important, the frequency of data collection may have a large impact on conclusions made about site hydrogeology. Data‐logging water‐level probes may be programmed to record water levels at frequent intervals, providing site decision makers with abundant, detailed information on the response of an aquifer to both anticipated and unforeseen stresses. In this study, a network of movable probes has provided several years of hourly water‐ level data. The understanding of the site's phytoremediation system has been enhanced by the continuous data, but subsequent insights into an unexpected situation regarding the site's infrastructure have been the most valuable result of the monitoring program. © 2005 Wiley Periodicals, Inc.  相似文献   

6.
Phytoremediation is an emerging remediation technology that utilizes plants and microbes to clean up contaminated air, soil, and water. Tropical and subtropical environments have an advantage in that long plant‐growing seasons and increased soil temperature can accelerate phytoremediation processes. Various contaminated sites in Hawaii have been addressed using this technology. In this article, work progress and advances of phytoremediation are briefly reviewed and exemplified with seven chemically contaminated sites in Hawaii. The investigations were performed for one or more of the following remediation needs: explosive residues, hydrocarbons, pesticide residues, soil stabilization, and slaughterhouse wastewater. In this unique article, studies of testing of over 100 plant species for remediation are reviewed and documented. The general trend leads one to consider that salt‐ and/or drought‐tolerant plants can bear other potential stress‐inducing conditions. © 2004 Wiley Periodicals, Inc.  相似文献   

7.
In situ remediation represents a series of challenges in interpreting the monitoring data on remedial progress. Among these challenges are problems in determining the progress of the remediation and the mechanisms responsible, so that the process can be optimized. The release of organic pollutants to groundwater systems and in situ remediation technologies alter the groundwater chemistry, but outside of natural attenuation studies using inorganic chemical analyses as indicators of intrinsic biodegradation, typically little attention has been paid to the changes in inorganic groundwater chemistry. Smith (2008) noted that during an electrical resistance heating remediation that took place at a confidential site in Chicago, a two‐orders‐of‐magnitude increase in chloride concentrations occurred during the remediation. This increase in chloride resulted in a corresponding increase in calcium as a result of what is known as the common ion effect. Carbon dioxide is the gas found in highest concentrations in natural groundwater (Stumm & Morgan, 1981), and its fugacity (partial pressure) corresponds directly with calcium concentrations. Carbon dioxide at supersaturation in groundwater is capable of dissolving organic compounds, such as trichloroethene, facilitating removal of nonaqueous‐phase liquids at temperatures below the boiling point of water. One means of diagnosing these reactions is through the use of compound‐specific isotopic analysis, which is capable of distinguishing between evaporation, biodegradation, and differences in sources. The appropriate diagnosis has the potential to optimize the benefits from these reactions, lower energy costs for removal of nonaqueous‐phase liquids, and direct treatment where it is needed most. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
This article presents site closure strategies of source material removal and dissolved‐phase groundwater natural attenuation that were applied at two manufactured gas plant (MGP) sites in Wisconsin. The source removal actions were implemented in 1999 and 2000 with groundwater monitoring activities preceding and following those actions. Both of these sites have unique geological and hydrogeological conditions. The article briefly presents site background information and source removal activities at both of these sites and focuses on groundwater analytical testing data that demonstrate remediation of dissolved‐phase MGP‐related groundwater impacts by natural attenuation. A statistical evaluation of the data supports a stable or declining MGP parameter concentration trend at each of the sites. A comparison of the site natural attenuation evaluation is made to compare with the requirements for site closure under the Wisconsin Department of Natural Resources regulations and guidance. © 2003 Wiley Periodicals, Inc.  相似文献   

9.
Established groundwater contaminants such as chlorinated solvents and hydrocarbons have impacted groundwater at hundreds of thousands of sites around the United States and have been responsible for multibillion dollar remediation expenditures. An important question is whether groundwater remediation for the emerging contaminant class comprised of per‐ and polyfluoroalkyl substances (PFAS) will be a smaller, similar, or a larger‐scale problem than the established groundwater contaminants. A two‐pronged approach was used to evaluate this question in this paper. First, nine quantitative scale‐of‐remediation metrics were used to compare PFAS to four established contaminants: chlorinated solvents, benzene, 1,4‐dioxane, and methyl tert‐butyl ether. These metrics reflected the prevalence of the contaminants in the U.S., attenuation potential, remediation difficulty, and research intensity. Second, several key challenges identified with PFAS remediation were evaluated to see similar situations (qualitative analogs) that have been addressed by the remediation field in the past. The results of the analysis show that four out of nine of the evaluated quantitative metrics (production, number of potential sites, detection frequency, required destruction/removal efficiency) indicate that the scale of PFAS groundwater remediation may be smaller compared to the current scale of remediation for conventional groundwater contaminants. One attenuation metric, median plume length, suggests that overall PFAS remediation could pose a greater challenge compared to hydrocarbon sites, but only slightly larger than chlorinated volatile organic compounds sites. The second attenuation metric, hydrophobic sorption, was not definitive regarding the potential scale of PFAS remediation. The final three metrics (regulatory criteria, in‐situ remediation capability, and research intensity) all indicate that PFAS remediation might end up being a larger scale problem than the established contaminants. An assessment of the evolution of groundwater remediation capabilities for established contaminants identified five qualitative analogs for key PFAS groundwater remediation issues: (a) low‐level detection analytical capabilities; (b) methods to assess the risk of complex chemical mixtures; (c) nonaqueous phase dissolution as an analog for partitioning, precursors, and back diffusion at PFAS sites; (d) predictions of long plume lengths for emerging contaminants; and (e) monitored natural attenuation protocols for other non‐degrading groundwater contaminants. Overall the evaluation of these five analogs provided some comfort that, while remediating the potential universe of PFAS sites will be extremely challenging, the groundwater community has relevant past experience that may prove useful. The quantitative metrics and the qualitative analogs suggest a different combination of remediation approaches may be needed to deal with PFAS sites and may include source control, natural attenuation, in‐situ sequestration, containment, and point‐of‐use treatment. However, as with many chlorinated solvent sites, while complete restoration of PFAS sites may be uncommon, it should be possible to prevent excessive exposure of PFAS to human and ecological receptors.  相似文献   

10.
Enhanced bioremediation is quickly developing into an economical and viable technology for the remediation of contaminated soils. Until recently, chlorinated organic compounds have proven difficult to bioremediate. Environmentally recalcitrant compounds, such as polychlorinated biphenyls (PCBs) and persistent organic pesticides (POPs) such as dichlorodiphenyl trichloroethane (DDT) have shown to be especially arduous to bioremediate. Recent advances in field‐scale bioremedial applications have indicated that biodegradation of these compounds may be possible. Engineers and scientists at the Savannah River Site (SRS), a major DOE installation near Aiken, South Carolina, are using enhanced bioremediation to remediate soils contaminated with pesticides (DDT and its metabolites, heptachlor epoxide, dieldrin, and endrin) and PCBs. This article reviews the ongoing remediation occurring at the Chemicals, Metals, and Pesticides (CMP) Pits using windrow turners to facilitate microbial degradation of certain pesticides and PCBs. © 2003 Wiley Periodicals, Inc.  相似文献   

11.
A common technology to remediate and/or contain contaminated groundwater is pump‐and‐treat remediation (P&T). Traditionally, P&T systems have been designed to operate continuously to achieve steady‐state capture zones, for which large amounts of energy are required. Green and sustainable remediation (GSR) is emerging as a viable method to minimize the adverse effects of remediation on the environment. One of the challenges associated with photovoltaic‐ (PV‐) powered P&T systems is the assessment of their performance given the intermittent nature of the power availability. This article characterizes the hydraulic containment effectiveness of a PV‐powered P&T system without energy storage using data collected at two different remediation sites, a Dry‐Cleaning Environmental Response Trust Fund site in Rolla, Missouri, and the Former Nebraska Ordnance Plant near Mead, Nebraska. Additionally, a method to estimate the effectiveness of the hydraulic containment as a function of the total volume of groundwater expected to be extracted is being proposed. Two transient and a continuously pumped capture zones were modeled using Visual MODFLOW® 2012.1 along with MODPATH and compared. The study shows that smaller capture zones will be generated from intermittent pumping when compared to continuous pumping. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
A common remedial technology for properties with subsurface soil and groundwater contamination is multiphase extraction (MPE). MPE involves the extraction of contaminated groundwater, free‐floating product, and contaminated soil vapor from the subsurface. A network of recovery wells conveys fluids to a vacuum pump and to the treatment system for the contaminated groundwater and soil vapor. This article describes a study of MPE operational data from nine similar remediation projects to determine the most important design parameters. Design equations from guidance manuals were used to estimate the expected radius of influence (ROI) based on measured field data. ROIs were calculated for the vapor flow rate through the subsurface and for the groundwater drawdown caused by the MPE remediation activities. The calculated ROIs were compared to the measured ROIs to corroborate the assumptions made in the calculations. Once it was established that the calculated and field‐measured ROIs were comparable, a sensitivity analysis determined ranges of different design and operational parameters that most affected the ROIs. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
When used in combination with source management strategies, monitored natural attenuation (MNA) is likely to be a technically feasible remediation option if the contaminant persistence time along the flow path is less than (a) the transport time to the compliance point and (b) the time available for groundwater remediation objectives to be achieved. Biodegradation is often the most significant natural attenuation process for benzene, toluene, ethylbenzene, and xylenes (BTEX) in groundwater. While BTEX transport rates increase with groundwater velocity, examination of data obtained from the published literature for seven sites undergoing MNA revealed significant positive correlations between groundwater velocity and first‐order biodegradation rates for toluene (r = 0.83, P < 0.05), ethylbenzene (r = 0.93, P < 0.01), m‐ and p‐xylene (r = 0.96, P < 0.01), and o‐xylene (r = 0.78, P < 0.05). This is attributed to increased dispersion at higher velocities leading to more mixing of electron acceptors with the contaminant plume. There was no positive correlation between groundwater velocity and first‐order biodegradation rates for benzene due to noise in the relationship caused by variations in (a) the concentrations of electron acceptors in the uncontaminated groundwater and (b) the proportions of benzene in the total BTEX concentration in the source area. A regression model of the relationship between groundwater velocity and the first‐order biodegradation rate can be used to delineate operating windows for groundwater velocity within which the contaminant persistence time is less than the transport and remediation times for a given source concentration, target concentration, distance to compliance point, retardation factor, and remediation time. The operating windows can provide decision makers with a rapid indication of whether MNA is likely to be a technically feasible remediation option at a given site. © 2005 Wiley Periodicals, Inc.  相似文献   

14.
This article describes the design, implementation, and operating results for an ex situ ultraviolet/hydrogen peroxide (UVP) system to treat methyl tert‐butyl ether (MTBE) in extracted groundwater. The UVP modification was designed to reduce the operation and maintenance costs of an existing groundwater pump‐and‐treat treatment system that relied on air stripping and carbon adsorption. The UVP system is relatively inexpensive and can easily be scaled to cope with different groundwater extraction rates up to 80 gpm by adding UV lamps in series or in parallel at the higher groundwater extraction rates. The MTBE concentration in the effluent from the UVP system to the carbon vessels decreased from an average of 590 μg/L to approximately 2 μg/L on average over 33 months of operation of the UVP. Incorporation of this UVP modification as a second‐stage treatment to the groundwater pump‐and‐treat/soil vapor extraction system, after the air stripper and prior to the carbon vessels, significantly increased the usable life of the carbon (from two months previously to about two years after installation) and completely resolved the issue of frequent MTBE breakthroughs of the carbon that had plagued the remediation system since its inception. © 2006 Wiley Periodicals, Inc.  相似文献   

15.
Remediation of contaminated sites has focused largely on restoration of groundwater aquifers. Often the stated remedial goal is to achieve conditions allowing unrestricted use and unrestricted exposure. Such total groundwater cleanup has occurred at some sites, but is the exception rather than the rule. At the same time, significant effort occurs to perform risk assessments for potential exposure to contaminants in groundwater at sites, both before and after remediation. The logical synergy between risk assessment and remediation is for risk management to seek opportunities for optimal use of groundwater based upon realistic expectations of cleanup technologies and the relevant acceptable residual (postremediation) levels of contaminants. This article explores an approach to improve this synergistic relationship between risk assessment, risk management, and remediation for groundwater cleanups. ©2015 Wiley Periodicals, Inc.  相似文献   

16.
Over the past 10 years, there has been an increased recognition that matrix diffusion processes are a significant factor controlling the success of groundwater remediation. New field techniques and modeling tools have, consequently, been developed to understand how contaminants diffuse into and then out of low‐permeability (“low‐k”) zones and assess the resulting impact on groundwater quality. Matrix diffusion, in turn, is driven by one key factor: geologic heterogeneity. The importance of heterogeneity is being emphasized in the groundwater field by general rules of thumb such as “90% of the mass flux occurs in 10%‐20% of the cross‐sectional area” and conceptual models that show most of the groundwater flow occurs through the aquifer's “mobile porosity” which just a small fraction of commonly used effective porosity values (between 0.02 and 0.10 for mobile porosity vs. 0.25 for effective porosity). For this study, 141 boring logs from 43 groundwater remediation sites were evaluated to develop an empirically based estimate of the groundwater flow versus aquifer cross‐sectional area to confirm or reject the general flow versus area rules of thumb. This study indicated that at these 43 sites, an average of 30% of the cross‐sectional area carried 90% of the groundwater flow. Our flow‐only analysis does provide moderate (but not confirmatory) support for the “mobile porosity” concept with an estimated representative mobile porosity value of about 0.11 at the 43 sites.  相似文献   

17.
The chlorinated solvent stabilizer 1,4‐dioxane (DX) has become an unexpected and recalcitrant groundwater contaminant at many sites across the United States. Chemical characteristics of DX, such as miscibility and low sorption potential, enable it to migrate at least as far as the chlorinated solvent from which it often originates. This mobility and recalcitrance has challenged remediation professionals to redesign existing treatment systems and monitoring networks to accommodate widespread contamination. Furthermore, remediation technologies commonly applied to chlorinated solvent co‐contaminants, such as extraction and air stripping or in situ enhanced reductive dechlorination, are relatively ineffective on DX removal. These difficulties in treatment have required the industry to identify, develop, and demonstrate new and innovative technologies and approaches for both ex situ and in situ treatment of this emerging contaminant. Great strides have been made over the past decade in the development and testing of remediation technologies for removal or destruction of DX in groundwater. This article briefly summarizes the fate and transport characteristics of DX that make it difficult to treat, and presents technologies that have been demonstrated to be applicable to groundwater treatment at the field scale.  ©2016 Wiley Periodicals, Inc.  相似文献   

18.
In January 2005, a gasoline tanker carrying approximately 8,500 gallons of gasohol (gasoline containing 10 percent ethanol) overturned and caught fire in the front yard of a residence. Emergency response crews responded to the accident, extinguished the fire, and recovered residual gasoline on the ground surface. Soil impacted by the release was then removed and disposed of off‐site and free‐phase gasohol was recovered using a combination of vacuum recovery, pumping, and bailing to the extent practicable. Following free product recovery efforts, a feasibility evaluation was completed to select a technology to address the remaining dissolved‐phase contaminants that resulted in biosparging pilot testing and, ultimately, the installation of a full‐scale biosparging system. The full‐scale system has been operating for approximately 21 months, and contaminant concentrations within the heart of the plume have decreased dramatically over a short period of time—in most cases, to below applicable cleanup standards. Despite the complex hydrogeologic conditions and significant initial concentrations, biosparging has proven to be an effective technology to remediate this gasohol release, and it is anticipated that drinking‐water standards can be achieved following two to three years of biosparging (i.e., an additional 3 to 15 months of operations). © 2010 Wiley Periodicals, Inc.  相似文献   

19.
Thermally enhanced hydrolysis of halogenated alkanes such as 1,1,1‐trichlorethane has become a proven method of in situ soil and groundwater remediation. Electrical resistance heating is commonly used to heat soil and groundwater to accelerate the rate of hydrolysis. This article provides practical information to extend the hydrolysis remediation toolkit to include treatment of common pesticides and explosives. Sites with comingled volatile compounds, pesticides, and/or explosives can also be treated via a single solution.  相似文献   

20.
This study demonstrates a remedial approach for completing the remediation of an aquifer contaminated with 1,1,2‐trichlorotrifluoroethane (Freon‐113) and 1,1,1‐trichloroethane (TCA). In 1987, approximately 13,000 pounds of Freon‐113 were spilled from a tank at an industrial facility located in the state of New York. The groundwater remediation program consisted of an extraction system coupled with airstripping followed by natural attenuation of residual contaminants. In the first phase, five recovery wells and an airstripping tower were operational from April 1993 to August 1999. During this time period over 10,000 pounds of CFC‐13 and 200 pounds of TCA were removed from the groundwater and the contaminant concentrations decreased by several orders of magnitude. However, the efficiency of the remediation system to recover residual Freon and/or TCA reduced significantly. This was evidenced by: (1) low levels (< 10 ppb) of Freon and TCA captured in the extraction wells and (2) a slight increase of Freon and/or TCA in off‐site monitoring wells. A detailed study was conducted to evaluate the alternative for the second‐phase remediation. Results of a two‐year groundwater monitoring program indicated the contaminant plume to be stable with no significant increase or decrease in contaminant concentrations. Monitored geochemical parameters suggest that biodegradation does not influence the fate and transport of these contaminants, but other mechanisms of natural attenuation (primarily sorption and dilution) appear to control the fate and transport of these contaminants. The contaminants appear to be bound to the soil matrix (silty and clay units) with limited desorption as indicated by the solid phase analyses of contaminant concentrations. Results of fate and transport modeling indicated that contaminant concentrations would not exceed the action levels in the wells that showed a slight increase in contaminant concentrations and in the downgradient wells (sentinel) during the modeled timeframe of 30 years. This feasibility study for natural attenuation led to the termination of the extraction system and a transaction of the property, resulting in a significant financial benefit for the original site owner. © 2003 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号