首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: Understanding the effects of dams on the inundation regime of natural floodplain communities is critical for effective decision making on dam management or dam removal. To test the implications of hydrologic alteration by dams for floodplain natural communities, we conducted a combined field and modeling study along two reaches in the Connecticut River Rapids Macrosite (CRRM), one of the last remaining flowing water sections of the Upper Connecticut River. We surveyed multiple channel cross sections at both locations and concurrently identified and surveyed the elevations of important natural communities, native species of concern, and nonnative invasive species. Using a hydrologic model, HEC‐RAS, we routed estimated pre‐and post‐impoundment discharges of different design recurrence intervals (two year through 100 year floods) through each reach to establish corresponding reductions in elevation and effective wetted perimeter following post‐dam discharge reductions. By comparing (1) the frequency and duration of flooding of these surfaces before and after impoundment and (2) the total area flooded at different recurrence intervals, our goal was to derive a spatially explicit assessment of hydrologic alteration, directly relevant to natural floodplain communities. Post‐impoundment hydrologic alteration profoundly affected the subsequent inundation regime, and this impact was particularly true of higher floodplain terraces. These riparian communities, which were flooded, on average, every 20 to 100 years pre‐impoundment, were predicted to flood at 100 ? 100 year intervals, essentially isolating them completely from riverine influence. At the pre‐dam five to ten year floodplain elevations, we observed smaller differences in predicted flood frequency but substantial differences in the total area flooded and in the average flood duration. For floodplain forests in the Upper Connecticut River, this alteration by impoundment suggests that even if other stresses facing these communities (human development, invasive exotics) were alleviated, this may not be sufficient to restore intact natural communities. More generally, our approach provides a way to combine site specific variables with long term gage records in assessing the restorative potential of dam removal.  相似文献   

2.
ABSTRACT: We analyzed the type of hydrologic adjustments resulting from flow regulation across a range of dam types, distributed throughout the Connecticut River watershed, using two approaches: (1) the Index of Hydrologic Alteration (IHA) and (2) log‐Pearson Type III flood frequency analysis. We applied these analyses to seven rivers that have extensive pre‐and post‐disturbance flow records and to six rivers that have only long post‐regulation flow records. Lastly, we analyzed six unregulated streams to establish the regional natural flow regime and to test whether it has changed significantly over time in the context of an increase in forest cover from less than 20 percent historically to greater than 80 percent at present. We found significant hydrologic adjustments associated with both impoundments and land use change. On average, maximum peak flows decrease by 32 percent in impounded rivers, but the effect decreases with increasing flow duration. One‐day minimum low flows increase following regulation, except for the hydro‐electric facility on the mainstem. Hydrograph reversals occur more commonly now on the mainstem, but the tributary flood control structures experience diminished reversals. Major shifts in flood frequency occur with the largest effect occurring downstream of tributary flood control impoundments and less so downstream of the mainstem's hydroelectric facility. These overall results indicate that the hydrologic impacts of dams in humid environments can be as significant as those for large, multiple‐purpose reservoirs in more arid environments.  相似文献   

3.
ABSTRACT: Multivariate analyses and correlations revealed strong relations between watershed and riparian‐corridor land cover, and reach‐scale habitat versus fish and macroinvertebrate assemblages in 38 warmwater streams in eastern Wisconsin. Watersheds were dominated by agricultural use, and ranged in size from 9 to 71 km2 Watershed land cover was summarized from satellite‐derived data for the area outside a 30‐m buffer. Riparian land cover was interpreted from digital orthophotos within 10‐, 10‐to 20‐, and 20‐to 30‐m buffers. Reach‐scale habitat, fish, and macroinvertebrates were collected in 1998 and biotic indices calculated. Correlations between land cover, habitat, and stream‐quality indicators revealed significant relations at the watershed, riparian‐corridor, and reach scales. At the watershed scale, fish diversity, intolerant fish and EPT species increased, and Hilsenhoff biotic index (HBI) decreased as percent forest increased. At the riparian‐corridor scale, EPT species decreased and HBI increased as riparian vegetation became more fragmented. For the reach, EPT species decreased with embeddedness. Multivariate analyses further indicated that riparian (percent agriculture, grassland, urban and forest, and fragmentation of vegetation), watershed (percent forest) and reach‐scale characteristics (embeddedness) were the most important variables influencing fish (IBI, density, diversity, number, and percent tolerant and insectivorous species) and macroinvertebrate (HBI and EPT) communities.  相似文献   

4.
ABSTRACT: Hydraulic modification of flood plains by human activity is the primary cause of rising flood damages throughout the world. As flood‐plain hydraulic roughness increases, so does the water level for a fixed flow rate. This raises the flood damage associated with a flood of given return period, and thus, magnifies the flood risk. This article presents an approach that integrates climatic, hydrologic, and hydraulic principles and presents models to discern the probable causes of flood damage in a basin that undergoes flood‐plain development. The article documents key factors that govern flood damage and presents a case study that illustrates the principles of forensic hydrology in an impacted flood plain. The study demonstrates flood level rise caused by hydraulic alteration of a flood plain between 1969 and 1995 and apportioned the increased water level among agricultural and structural factors located in the study area.  相似文献   

5.
ABSTRACT: Intensive cropping systems based on mechanical movement of soil have induced land degradation in most agricultural areas due to soil erosion and soil fertility losses. Thus, farmers have been increasing fertilization rates to maintain an economically competitive crop yield. This practice has resulted in water quality degradation and lake eutrophication in many agricultural watersheds. Research was conducted in the Patzcuaro watershed in central Mexico to develop appropriate technology that prevents nonpoint source pollution from fertilizers. Organic matter (OM) and nitrogen (N) losses in runoff and nitrate (NO3‐N) percolation in Andisols with corn under conventional till (CT) and no‐till (NT) treatments using variable percentages of crop residue as soil cover were investigated for steep‐slope agriculture. USLE type runoff plots were used to collect water runoff, while suction tubes with porous caps at 30, 60, and 90 cm depth were used to sample soil water solutes for NO3‐N analyses. Results indicated a significant reduction of N and OM losses in runoff as residue cover increased in the NT treatments. Inorganic N in runoff was 25 kg/ha for NT without residue cover (NT‐0) and 6 kg/ha for the NT with 100 percent residue cover (NT‐100). Organic matter losses in runoff were 157 and 24 kg/ha for the NT‐0 and NT‐100 treatments, respectively. Nitrate‐N percolation was evident in CT and NT with 100 percent residue cover (NT‐100). However, NT‐100 had higher NO3‐N concentration at the root zone, suggesting the possibility of reducing fertilization rates with the use of NT treatments.  相似文献   

6.
ABSTRACT: We tracked vegetation succession on a debris‐flow deposit in Oregon's Coast Range to examine factors influencing the development of riparian plant communities following disturbance. Plots were stratified across five areas of the deposit (bank slump, seep, upper and lower sediment wedge, log jam) the first growing season after debris flow. At six times during the next ten years we estimated cover of vascular plants and tallied density of woody plants. Plant colonization occurred within two years. Total cover increased two‐to seven‐fold on the five areas within three years. Red alder and salmonberry were the dominant species, although weedy herbs persisted where woody species were lacking. Ordination of cover data showed that the five areas remained floristically distinct over time, while undergoing similar shifts related to the increasing dominance of alder and salmonberry. Rapid height growth of alder allowed it to outcompete salmonberry and effectively capture most areas by the tenth year, even where sprouts from transported rhizomes gave salmonberry an early advantage. Our results suggest that successional patterns were influenced by substrate variability, species composition of initial colonizers, propagule sources and their distribution, and species life‐history traits such as growth rate, competitive ability, and shade tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号