首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 283 毫秒
1.
在有氧和无氧条件下,利用罗曼光谱测定反应生成物的方法,研究了NO_2和含SO_3~(2-)溶液的反应饥理。反应的生成物中含有NO_2~-、SO_4~(2-)和S_2O_6~(2-),反应的初始产物是NO_2~-离子和SO_3~(·-)基团:NO_2+SO_3~(2-)→NO_2~-+SO_3~(·-)。SO_3(·-)基团可以进行重组,或与氧反应生成SO_3~(·-)基团。在无氧条件下,[SO_3~(2-)]/[S_2O_3~(2-)]=1.8士0.3,反映SO_3~(·-)基团重组的反应如下: SO_3(·-)+SO_3~(·-)→S_2O_6~(2-)或SO_3~(·-)+SO_3~(·-)→SO_3~(2-)+SO_3,研究结果表明NO_2与SO_3~(2-)的反应生成了SO_3(·-)和SO_5~(·-)基团,由此提出了在适当条件下,这个反应能有效地氧化大气微粒中的S(Ⅳ)。  相似文献   

2.
2015年1~12月对北京市城区开展PM_(2.5)中主要水溶性离子NH_4~+、NO_3~-和SO_4~(2-)(统称SNA)及其前体气体NH_3、NO、NO_2和SO_2的监测,共获得样本325组.用特氟龙滤膜采集PM_(2.5)中SNA,用在线仪器实时监测各前体气体.分析各前体气体和SNA的污染特征并同时对其相关性进行研究.观测期间NH_3、NO、NO_2、SO_2、NH_4~+、NO_3~-和SO_4~(2-)的年平均浓度分别为21.5、17.7、54.3、14.2、8.1、13.5和12.7μg·m~(-3),SNA质量浓度占PM_(2.5)的43.4%.NO、NO_2和SO_2冬季最高,夏季最低;NH_3为夏季最高,秋冬较低;NH_4~+浓度和体积分数四季波动不大;NO_3~-浓度和体积分数均夏季最低;SO_4~(2-)浓度为冬季最高,百分含量为夏季最大.全年([NO_3~-]+2[SO_4~(2-)])与NH_4~+的比值为0.97,表明阴离子主要以NO_3~-和SO_4~(2-)的形式存在.随着污染程度的增加,各化合物浓度均有明显上升,NO_3~-是重污染过程累积效应比较明显且贡献率最大的离子.SO_4~(2-)则在污染级别较低时,贡献率较大.NO_3~-与NO_2,NO、NH_4~+与NH_3,SO_4~(2-)与SO_2在置信度为0.01水平上均显著相关;SO_4~(2-)和SO_2变化规律呈负相关,NO_2和NO_3~-基本呈正相关,相比NH_3,NH_4~+浓度的高低受酸性气体NO_2、SO_2影响更大.  相似文献   

3.
为研究我国中原城市群中心城市郑州市的不同粒径大气颗粒物的组成特征,利用八级撞击式采样器在夏、秋季进行大气颗粒物分级采样,利用离子色谱测定Na~+、Ca~(2+)、NH_4~+、K~+、Mg~(2+)、F~-、Cl~-、NO_3~-和SO_4~(2-)共9种离子的浓度,利用在线离子色谱分析仪监测颗粒物中硝酸盐的实时浓度.结果表明,采样期间郑州市水溶性离子平均浓度为(70. 9±52. 1)μg·m~(-3),其中监测的9种水溶性离子浓度从大到小顺序依次为:NO_3~- SO_4~(2-) NH_4~+ Ca~(2+) Na~+ Cl~- Mg~(2+) K~+ F~-、NO_3~-、SO_4~(2-)和NH_4~+占总水溶性离子的质量分数为79. 9%;无论在秋季或夏季SO_4~(2-)主要集中在≤1. 1μm粒径段上,而NO_3~-主要集中在0. 65~3. 3μm粒径段上. NO_3~-和SO_4~(2-)夏季和秋季均呈双峰分布,主要分布于细粒子中; NH_4~+夏季呈双峰分布,秋季呈单峰分布,表现出季节变化.郑州市夏季臭氧污染严重,O_3与NO_3~-明显地"错峰"现象,表示大气中存在光化学反应;秋季颗粒物污染严重,采样期间[NO_3~-]/[SO_4~(2-)]的比值远大于0. 5,移动源成为颗粒物重要的来源.夏季NOR、SOR峰值在1. 1~2. 1μm粒径段上,秋季两者峰值在0. 65~1. 1μm粒径段上;夏季硫的气-粒转化大于氮的转化,而秋季则相反.  相似文献   

4.
为研究天津冬季重污染天气过程中颗粒物水溶性离子的粒径谱分布及二次离子生成机制,于2014年1月利用Anderson撞击式分级采样器在中国气象局天津大气边界层观测站内采集颗粒物样品,并使用离子色谱仪分析Na~+、NH_4~+、K~+、Mg~(2+)、Ca~(2+)、Cl~-、NO_3~-、SO_4~(2-)等8种水溶性无机离子(TWSII).结果表明,采样期间PM_(2.5)和PM_(10)质量浓度均值分别为(138±100)μg·m~(-3)和(227±142)μg·m~(-3),粗、细粒子中TWSII的平均浓度分别为(34.07±6.16)μg·m~(-3)和(104.16±51.76)μg·m~(-3).细粒子中SO_4~(2-)、NO_3~-和NH_4~+这3种离子的浓度远高于其他离子,且相关性较好,粗粒子中NO_3~-、SO_4~(2-)、Cl~-浓度较高.随着污染程度加剧,细粒子中TWSII浓度增加明显,粗粒子中则变化不大.水溶性离子的粒径谱分布显示,SO_4~(2-)以单模态分布,优良天峰值出现在0.43~0.65μm,NO_3~-在优良日呈现三模态分布,峰值分别出现在0.43~0.65、2.1~3.3和5.8~9.0μm,NH_4~+呈双模态分布,优良日峰值出现在0.43~0.65μm和4.7~5.8μm,污染日3种二次离子峰值均以0.65~1.1μm的单模态分布为主,与三者之间的热动力平衡过程有关.细粒子中NH_4~+除与SO_4~(2-)和NO_3~-结合外,还与部分Cl~-结合,粗粒子中NH_4~+全部与NO_3~-和SO_4~(2-)结合后,剩余的NO_3~-和SO_4~(2-)与其他阳离子结合.  相似文献   

5.
本文建立了用碘离子选择电极测定食糖中 SO_2的分析方法,文中对测定条件进行了考察,优化了最佳试验条件,测定范围为0.22至5.20μg·ml~(-1)SO_2有线性关系,检测下限达0.22μg·ml~(-1),相关系数为0.9998,在此条件下,NO_2~-、HPO_4~(2-)、Br~-、Cl~-、SO_4~(2-)都不干扰测定.本法具有灵敏、迅速、设备简单、操作简便等特点.该法在食品检验和环境监测中有一定的适用性.  相似文献   

6.
高韩钰  魏静  王跃思 《环境科学》2018,39(5):1987-1993
为研究北京偏南地区细颗粒物(PM_(2.5))中水溶性无机离子的变化特征,利用大气细颗粒物快速捕集系统及化学成分分析系统RCFP-IC,于2016年对北京南郊区大兴PM_(2.5)中9种水溶性无机离子(Cl~-、NO_2~-、NO_3~-、SO_4~(2-)、Na~+、NH_4~+、K~+、Mg~(2+)和Ca~(2+))展开为期1 a的连续在线观测.结果表明,观测期间,9种水溶性无机离子总质量浓度为38.6μg·m~(-3),并呈现冬春高,夏秋低的特征,浓度水平高低顺序为SO_4~(2-)NO_3~-NH_4~+Ca~(2+)NO_2~-Cl~-Na~+K~+Mg~(2+);在冬季,SO_4~(2-)、NO_3~-和NH_4~+浓度占比高达75.7%;春季次之,为72.8%;夏季最低,仅为60.2%.并且随着空气污染的加剧,SO_4~(2-)、NO_3~-和NH_4~+浓度显著增加,这表明SO_4~(2-)、NO_3~-和NH_4~+与空气质量的恶化密切相关,但相比NO_3~-和NH_4~+,SO_4~(2-)在二次离子形成过程中占据主导地位;SO_4~(2-)、NO_3~-和NH_4~+存在显著的日变化特征,SO_4~(2-)统计日变化为双峰型,峰值分别出现在10:00和18:00左右,而NO_3~-和NH_4~+呈单峰型,峰值出现在10:00左右.基于后向轨迹聚类分析结果发现,对南郊区污染有影响的气团主要有3类,分别来自东南方向、西部和来自蒙古高原的高空气团,东南方向气流会加重南郊区水溶性盐的累积,而偏北气流有利于污染物扩散和稀释;基于主成分分析发现,北京南郊区水溶性盐的污染来源分别为二次源、燃煤源和土壤风沙尘及建筑扬尘的混合源.利用潜在源贡献因子分析法对南郊区冬季水溶性盐的潜在污染源区进行分析发现,影响大兴水溶性盐浓度潜在源区主要分布在南郊区的东南部.  相似文献   

7.
NaOH-H_2O_2吸收离子色谱法测定水中硫化物   总被引:2,自引:0,他引:2  
张建生  张国峰 《环境工程》1992,10(3):57-60,56
用小型抽气泵作动力,氮气或空气作载气,室温下将H_2S气体从烧瓶中随载气抽出,NaOH-H_2O_2溶液吸收。H_2S在碱性条件下被H_2O_2氧化成SO_4~(2-),离子色谱测定SO_4~(2-),换算成S~(2-)含量。方法的准确度和精密度均令人满意。取200ml水样,用15ml吸收液,检出限为0.005mg/L(S~(2-)),适用于地下水、地表水和污染源废水的监测。  相似文献   

8.
为探讨盘锦市冬季PM_(2.5)水溶性离子污染特征和来源,于2017年1月采集3个点位的PM_(2.5)样品,用ICS-900离子色谱仪分析了8种离子(Na~+、Mg~(2+)、Ca~(2+)、K~+、NH_4~+、SO_4~(2-)、Cl~-和NO_3~-).开展了PM_(2.5)和离子浓度特征分析、硫氧化率(SOR)和氮氧化率(NOR)计算、离子平衡计算、主成分分析等.结果表明:盘锦市冬季PM_(2.5)浓度与水溶性离子浓度特征为文化公园开发区第二中学;SO_4~(2-)、NO_3~-、NH_4~+质量浓度较大;冬季硫氧化率(SOR)和氮氧化率(NOR)的均值均大于0.10,说明SO_4~(2-)、NO_3~-主要由SO_2和NO_x转化而来;阳离子和阴离子当量相关性较强;开发区整体上呈现出中性,文化公园与第二中学呈现出偏碱性;盘锦市PM_(2.5)中水溶性离子主要来源于煤烟尘,生物质燃烧,二次粒子以及扬尘.  相似文献   

9.
为了探讨德州市大气颗粒物中二次粒子污染特征,于2012年2-9月在德州市城区及郊区布置采样点位6个,分为采暖季、风沙季、非采暖季3个季节进行了不同粒径(TSP、PM_(10)、PM_(2.5))颗粒物的样品采集;进行了颗粒物中阴离子(F~-、Cl~-、SO_4~(2-)、NO_3~-)、阳离子(NH_4~+、K~+、Na~+、Ca~(2+)、Mg~(2+))和碳组分(OC、EC)的测定。结果表明:德州市大气颗粒物中SNA/总水溶性离子为60.83%,SNA污染严重;SO_4~(2-)的平均浓度值变化趋势均为非采暖季风沙季采暖季,NH_4~+为采暖季风沙季非采暖季,NO_3~-没有呈现出明显的季节变化特征;SO_4~(2-)、NO_3~-、NH_4~+在PM_(2.5)中的浓度与其在PM_(10)中浓度的比值范围为0.60~0.90,二次无机离子更容易富集在细颗粒物中;NO_3~-/SO_4~(2-)的平均值为0.17,德州市大气颗粒物以燃煤污染占主导;OC、EC的平均浓度值变化趋势均为采暖季风沙季非采暖季,OC/EC的比值均2.0,说明德州市大气细粒子中SOC对OC有一定的贡献;SOC浓度值的季节变化趋势为采暖季风沙季非采暖季,SOC/OC的平均值在TSP、PM_(10)、PM_(2.5)中分别为16.91、22.15、19.27,说明SOC在OC中占有较大比例,是OC的重要组成部分。  相似文献   

10.
于2016年春夏季搭载航次采集了黄、东、南海及西北太平洋的海洋降水,用离子色谱法测定了其中的Cl~-、NO_3~-、SO_4~(2-)、PO_4~(3-)、Cl~-、NH_4~+、K~+、Mg~(2+)和Ca~(2+)离子浓度,并计算了其湿沉降通量及对海洋初级生产力的影响.结果表明,海洋降水样品主要受海洋影响,海盐离子浓度较高且不同海域主要离子类似;西北太平洋主要离子为Cl~-、Cl~-、SO_4~(2-)、Mg~(2+),黄海主要离子NO_3~-、SO_4~(2-)、Ca~(2+)、Cl~-,东海和南海主要离子均为Cl~-、Na~+、NO_3~-、SO_4~(2-).海洋降水中总离子浓度(mmol/L)的空间分布为西北太平洋(1.27)南海(0.53)东海(0.40)黄海(0.31).海洋降水中无机氮主要以硝态氮的形式存在,在气团由陆地向海洋传输的过程中,硝态氮在无机氮中的贡献也不断增加.Cl~-、NO_3~-、SO_4~(2-)、PO_4~(3-)、Na~+、NH_4~+、K~+、Mg~(2+)和Ca~(2+)的湿沉降通量[mg/(m~2·h)]范围分别是:3.47~451.43、0.60~49.36、1.13~124.02、0.0015~0.094、1.21~383.37、0.06~7.57、0.25~28.86、0.17~47.39和0.37~27.24.在靠近源区、降水量多的区域主要无机离子的湿沉降通量较高.估算结果显示,每小时降水所含氮磷可为各海域提供占初级生产力0.13‰~32.08%的新生产力.  相似文献   

11.
为了研究湿度对受污染的空气中二氧化硫的气相氧化作用,及接着发生的气溶胶形成过程的影响,进行了光照射试验。试验箱4M~3中存SO_2、NO和C_3H_6的混合物,浓度均在ppm(即百万分之一)范围内,用模拟的太阳光照射,并在不同相对湿度下试验系统中光化学反应的情况。二氧化硫氧化的总量,采用气溶胶产品的化学分析,测定SO_2~(2-)的产量求得。由OH根氧化的那一部分,是按C_3H_6分解率估计的OH  相似文献   

12.
苏州市PM2.5中水溶性离子的季节变化及来源分析   总被引:2,自引:27,他引:2  
2015年在苏州市城区采集大气细颗粒物PM_(2.5)样品共87套,用重量法分析了PM_(2.5)的质量浓度,离子色谱法分析了颗粒物中F-、Cl-、NO_3~-、SO_4~(2-)、Na~+、NH_4~+、K~+、Mg~(2+)和Ca~(2+),共9种水溶性无机离子.观测期间,苏州市PM_(2.5)的年均质量浓度为(74.26±38.01)μg·m-3,其季节特征为冬季春季秋季夏季;9种水溶性离子的总质量浓度为(43.95±23.60)μg·m~(-3),各离子的浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Na~+Cl~-K~+Ca~(2+)F-Mg~(2+);SNA(SO_4~(2-)、NO_3~-和NH_4~+三者的简称)是最主要的水溶性离子;SO_4~(2-)、NO_3~-和NH_4~+三者之间具有显著的相关性,它们在PM_(2.5)中主要是以NH_4NO_3和(NH_4)_2SO_4的结合方式存在.苏州市PM_(2.5)中水溶性离子的主要来源包括工业源、燃烧源、二次过程和建筑土壤尘等.  相似文献   

13.
模拟林火中生物质明燃和闷燃的两种燃烧方式,对9种树叶进行模拟燃烧试验,测定了其排放烟尘中水溶性离子的组成.结果表明:绿叶明燃烟尘中含有Cl~-、SO_4~(2-)、Na~+、NH_4~+、K~+、Mg~(2+)6种离子,其平均总含量为45.02g/kg;Cl~-、SO_4~(2-)、K~+是主要组分,其平均总排放因子为2.43g/kg.绿叶闷燃烟尘中的离子成分与明燃烟尘相似,但未检出SO_4~(2-),却检出了低含量的NO_3~-,其平均总含量为9.95g/kg;Cl~-和NH4+是含量最高的组分,其平均总排放因子为1.04g/kg.明燃时从落叶烟尘中检出的水溶性离子种类比绿叶多出了Ca~(2+),其平均总含量为56.40g/kg;Cl~-和SO_4~(2-)是主要成分,其平均总排放因子为0.96g/kg.落叶闷燃烟尘中水溶性离子的种类与其明燃烟尘完全相同,其平均总含量为16.86g/kg,SO_4~(2-)是含量最高的组分,离子的平均总排放因子为1.43g/kg.在相同的燃烧条件下,不论是绿叶还是落叶,其所产生烟尘中绝大部分水溶性离子的含量及排放因子均随树叶种类而变.对于绿叶而言,明燃比闷燃更有利于水溶性离子的排放,对于落叶则恰恰相反.  相似文献   

14.
为研究长沙市城南地区PM_(2.5)中微量元素的污染特征,采用电感耦合等离子质谱仪(ICP-AES)和离子色谱分析仪(IC)分别对大气颗粒气溶胶中无机元素及大气溶胶中水溶性无机离子进行分析测定。通过研究得知,长沙市各元素总体平均浓度从高到低依次为:CaSFeAlCuMgZnHgCrPbMnAsTiCdNi。其中S、Ca、Fe的浓度在1 000 ng/m~3以上,Al、Cu、Mg、Zn、Hg、Cr和Pb在1 000与100 ng/m~3之间,Mn、As、Cd、Ti、Ni等其他元素在100 ng/m~3以下。长沙市的PM_(2.5)中无机金属元素污染主要来源采矿业、燃煤及机动车燃油。长沙市PM_(2.5)中水溶性无机离子主要为3种无机离子:SO_4~(2-)、NH_4~+以及NO_3~-,长沙市PM_(2.5)中SO_4~(2-)、NH_4~+以及NO_3~-3种离子总和占PM_(2.5)的17.77%~33.03%。通过比较长沙市NO_3~-/SO_4~(2-)的平均比值,长沙市内空气污染主要为燃煤及机动车燃油尾气的复合型污染。  相似文献   

15.
陶月乐  李亲凯  张俊  李斯奇  李晓东 《环境科学》2017,38(10):4034-4043
利用Anderson冲击式分级采样器,于2012年2月~2013年1月在成都市城东成都理工大学校园内按月采集了不同粒径的大气颗粒物样品,分析了颗粒物样品的质量浓度以及9种水溶性离子含量.结果表明,采样期间成都市PM_(2.1)和PM_(11)的年平均浓度分别为(125.9±56.14)μg·m~(-3)和(224.5±83.64)μg·m~(-3),颗粒物浓度冬季最高,春季次之,秋季浓度最低;成都市水溶性离子浓度平均水平为37.15μg·m~(-3),其中检测的9种离子浓度从大到小顺序依次为SO_4~(2-)NO_3~-NH_4~+Ca~(2+)Cl~-Mg~(2+)K~+Na~+F~-,SO_4~(2-)、NO_3~-和NH_4~+占总水溶性离子的78%,是主要的离子组分.SO_4~(2-)、NO_3~-、NH_4~+呈单峰分布,其主要分布于细粒子中;Ca~(2+)和F~-也呈单峰分布,但是主要分布在粗粒子中;Cl~-和K~+粒径分布相似,Mg~(2+)和Na~+分布相似,均呈双峰分布.成都市冬、春季节粗、细颗粒物中的水溶性离子浓度均明显高于夏、秋季节.结合离子相关性分析,细颗粒物中的SO_4~(2-)、NO_3~-和NH_4~+可能主要以(NH_4)_2SO_4或NH_4HSO_4、NH_4NO_3的形式存在,而粗颗粒物中的主要离子组分SO_4~(2-)、NO_3~-和Ca~(2+)则可能以Ca(NO_3)2、CaSO_4等形式存在.主成分分析结果表明,颗粒物中水溶性离子主要来自二次过程、土壤扬尘、生物质燃烧和农业源.  相似文献   

16.
基于四川省自贡市2015年9月-2016年9月的大气颗粒物采样数据,利用离子色谱仪对其中8种水溶性离子(SO_4~(2-)、NO_3~-、NH_4~+、Na~+、K~+、Cl~-、Ca~(2+)和Mg~(2+))进行了浓度测定。分析结果表明,自贡市PM_(10)平均浓度为(88.4±59.2)μg/m~3,PM_(2.5)为(76.2±51.7)μg/m~3,各季节PM_(2.5)/PM_(10)的浓度比值均大于80%,说明自贡市大气颗粒物污染以PM_(2.5)为主;水溶性离子是颗粒物的主要化学组分,其总质量浓度对PM_(10)和PM_(2.5)的贡献率分别为40.3%和42.7%,其中SNA(二次水溶性无机离子,SO_4~(2-)、NO_3~-和NH_4~+)、Cl~-、K~+、Ca~(2+)、Na~+和Mg~(2+)在PM_(2.5)的占比分别为39.5%、1.8%、1.2%、0.5%、0.3%和0.04%;SO_4~(2-)是自贡市春季和秋季污染天主要来源,其在PM_(2.5)水溶性离子中的贡献率均为45.5%,NO_3~-对应的贡献率分别为22.3%和23.6%,冬季污染天SO_4~(2-)和NO_3~-的贡献率分别为33.5%和35.7%,NO_3~-的贡献率显著上升。利用因子分析法对PM_(2.5)中水溶性离子进行源解析发现,其来源主要为二次污染源、燃烧源、农业源以及道路扬尘源。  相似文献   

17.
苗红妍  温天雪  王璐  徐慧 《环境科学》2016,37(6):2017-2024
为了解沈阳大气气溶胶中水溶性无机离子浓度水平和季节变化,探究污染期与清洁期气溶胶特性的差异,本研究采集了2012年6月至2013年5月沈阳大气气溶胶分级样品,测定了其中水溶性无机离子浓度.结果表明,沈阳细粒子和粗粒子中水溶性无机离子的浓度总和分别为22.30μg·m~(-3)和14.29μg·m~(-3),其中含量最高的离子分别是SO~(2-)_4和Ca~(2+).细粒子中NH~+_4主要以(NH_4)_2SO_4和NH_4NO_3的形式存在,SO~(2-)_4/NO~-_3质量比为2.28.细粒子中水溶性无机离子的浓度总和(total water soluble inorganic ions,TWSI)季节变化明显,冬春季浓度高,夏秋季浓度低,化石燃料燃烧是细粒子中二次离子冬季出现高值的主要原因;粗粒子中TWSI季节变化不明显,秋季略高,冬季略低,风沙扬尘使秋季粗粒子中的Ca~(2+)出现了显著高值.SO~(2-)_4、NO~-_3、NH~+_4这3种离子浓度总和在冬季清洁期细粒子中比例为80%,污染期则上升为94%;清洁期的离子在细粒径段的峰值主要出现在0.43~0.65μm粒径处,而污染期的离子在细粒径段的峰值主要出现在0.43~2.1μm处,污染期SO~(2-)_4、NO~-_3、NH~+_4这3种离子在细粒径段的峰值由0.43~0.65μm处转移至1.1~2.1μm处,出现了由凝结模态向液滴模态转移的现象;清洁期气团主要生成在贝加尔湖附近,经高空远距离传输至采样点;而污染期气团主要生成并经过我国东北工业区,经低空短距离输送至采样点.  相似文献   

18.
云冈石窟大气细颗粒物水溶性离子污染特征   总被引:1,自引:0,他引:1  
为了解大同云冈石窟景区大气PM_(2.5)浓度及PM_(2.5)中水溶性离子污染特征,分别于2012年12月16-22日、2013年7月3-6日、10月28-31日、2014年4月13-18日使用中流量大气PM_(2.5)采样器在景区内两采样点共采集PM_(2.5)样品42个,运用称重法计算大气PM_(2.5)质量浓度,使用离子色谱仪测定了PM_(2.5)中Na~+、K~+、Mg~(2+)、Ca~(2+)、NH_4~+、F~-、Cl~-、NO_3~-和SO_4~(2-) 9种水溶性无机离子含 量。结果表明:采样点大气PM_(2.5)质量浓度介于28.1~q257.8μg/m~3。20#石窟采样点大气PM_(2.5)浓度均值普遍高于研究院采样点,与石窟前人类活动较多有关。所测离子中二次离子SO_4~(2-)、NO_3~-、NH_4~+所占比重较大,三者结合方式主要为(NH_4)_2SO_4、NH_4HSO_4、NH_4NO_3。除10月外,其它采样期内[NO_3~-]/[SO_4~(2-)]比值均小于1,景区周围固定源对大气二次颗粒物的影响大于移动源。  相似文献   

19.
2014年3-12月,对遵义丁字口(市区点)和凤凰山(背景点)按季节进行了PM_(2.5)的样品采集,对其中二次水溶性无机离子(NH_4~+、NO_3~-、SO_4~(2-))分布特征及存在形态进行研究。结果表明,NH_4~+、NO_3~-和SO_4~(2-)是遵义市PM_(2.5)的主要离子,其季节变化规律明显:NO_3~-、SO_4~(2-)的质量浓度表现为秋冬春夏;NH_4~+则表现冬秋春夏。丁字口PM_(2.5)中NH_4~+、NO_3~-和SO_4~(2-)的质量浓度均高于凤凰山。相关性分析表明,遵义PM_(2.5)中NH_4~+、NO_3~-、SO_4~(2-)在春、冬季主要以(NH_4)_2SO_4和NH_4NO_3的形式存在;夏季主要以NH_4HSO_4和NH_4NO_3的形式存在;秋季主要以NH_4HSO_4的形式存在。PM_(2.5)的酸碱度分析显示遵义PM_(2.5)主要呈酸性。SOR(硫表观氧化率)和NOR(氮表观氧化率)均值大于0.1,且丁字口SOR、NOR值略高于凤凰山;丁字口、凤凰山NO_3~-/SO_4~(2-)年均值分别为0.46±0.08和0.43±0.10,说明遵义市大气中的硫和氮主要来自于固定源。  相似文献   

20.
内蒙古乌达煤田煤火已持续燃烧50余年,不仅烧毁大量煤炭资源、危及矿井生产安全,而且会释放有毒有害物质,威胁生态环境。为探究乌达矿区及其周边区域地表灰尘污染特征,该研究在乌达区约220 km2范围内采集地表灰尘224件,对其中9种无机水溶离子进行了分析。结果显示,乌达区及其周边区域地表灰尘中F~-、Cl~-、NO_3~-、SO_4~(2-)、K~+、NH_4~+、Na~+、Ca~(2+)、Mg~(2+)总均值分别为13.42、1 592、615、5 981、533、258、708、6 072和534μg/g,均高于背景区乌海湖小岛地表灰尘水溶离子背景值,SO_4~(2-)、Cl~-、NO_3~-、Na~+相对背景值提升倍数分别高达11.08、6.84、4.45、3.73。地表灰尘总水溶离子含量表现出工业园煤矿区城区农场外围,各区域中均以Ca~(2+)、SO_4~(2-)、Cl~-3种离子对灰尘中无机离子组分贡献较大。SO_4~(2-)、Cl~-、NO_3~-、Na~+在不同区域存在较大差异,为当地地表灰尘的显著污染因子。采样期间地表灰尘整体呈弱碱性,而工业园和煤矿区呈弱酸性;SO_4~(2-)主要以CaSO_4和(NH_4)_2SO_4形式存在;NO_3~-存在形式可能为NH_4NO_3;Cl~-主要以NH_4Cl和NaCl形式存在。主成分分析结果表明,乌达区地表灰尘水溶离子主要来自地下煤火、煤矸石自燃、工业活动、机动车运输、地表煤尘、矸石山尘、地表土壤尘。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号