首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biosphere is a major pool in the global carbon cycle; its response to climatic change is therefore of great importance. We developed a 5 degrees x 5 degrees longitude-latitude resolution model of the biosphere in which the global distributions of the major biospheric variables, i.e. the vegetation types and the main carbon pools and fluxes, are determined from climatic variables. We defined nine major broad vegetation types: perennial ice, desert and semi-desert, tundra, coniferous forest, temperate deciduous forest, grassland and shrubland, savannah, seasonal tropical forest and evergreen tropical forest. Their geographical repartition is parameterized using correlations between observed vegetation type, precipitation and biotemperature distributions. The model computes as a function of climate and vegetation type, the variables related to the continental biospheric carbon cycle, i.e. the carbon pools such as the phytomass, the litter and the soil organic carbon; and carbon fluxes such as net primary production, litter production and heterotrophic respiration. The modeled present-day biosphere is in good agreement with observation. The model is used to investigate the response of the terrestrial biosphere to climatic changes as predicted by different General Circulation Models (GCM). In particular, the impact on the biosphere of climatic conditions corresponding to the last glacial climate (LGM), 18 000 years ago, is investigated. Comparison with results from present-day climate simulations shows the high sensitivity of the geographical distribution of vegetation types and carbon content as well as biospheric trace gases emissions to climatic changes. The general trend for LGM compared to the present is an increase in low density vegetation types (tundra, desert, grassland) to the detriment of forested areas, in tropical as well as in other regions. Consequently, the biospheric activity (carbon fluxes and trace gases emissions) was reduced.  相似文献   

2.
According to most global climate models, a continued build-up of CO2 and other greenhouse gases will lead to significant changes in temperature and precipitation patterns over large parts of the Earth. Below-ground processes will strongly influence the response of the biosphere to climate change and are likely to contribute to positive or negative biospheric feedbacks to climate change. Current global carbon budgets suggest that as much as 2000 Pg of carbon exists in soil systems. There is considerable disagreement, however, over pool sizes and flux (e.g. CO2, CH4) for various ecosystems. An equilibrium analysis of changes in global below-ground carbon storage due to a doubled-CO2 climate suggests a range from a possible sink of 41 Pg to a possible source of 101 Pg. Components of the terrestrial biosphere could be managed to sequester or conserve carbon and mitigate accumulation of greenhouse gases in the atmosphere.  相似文献   

3.
We used the Dynamic Land Ecosystem Model (DLEM) to estimate carbon (C) storage and to analyze the impacts of environmental changes on C dynamics from 1971 to 2001 in Great Smoky Mountain National Park (GRSM). Our simulation results indicate that forests in GRSM have a C density as high as 15.9kgm(-2), about twice the regional average. Total carbon storage in GRSM in 2001 was 62.2Tg (T=10(12)), 54% of which was in vegetation, the rest in the soil detritus pool. Higher precipitation and lower temperatures in the higher elevation forests result in larger total C pool sizes than in forests at lower elevations. During the study period, the CO(2) fertilization effect dominated ozone and climatic stresses (temperature and precipitation), and the combination of these multiple factors resulted in net accumulation of 0.9Tg C in this ecosystem.  相似文献   

4.
Zhou C  Zhou Q  Wang S 《Ambio》2003,32(1):6-12
Research on the terrestrial carbon cycle is an important component in the study of global change. Soil organic carbon, as the main part of the terrestrial carbon reservoir, plays an important role in the Earth's carbon cycle. To accurately estimate soil organic carbon storage, its composition and dynamic change must be determined. This presents a challenge to research on the soil carbon cycle, especially in China where the nationwide soil organic carbon reservoir largely remains unknown. This paper reports a research project that attempts to estimate the nationwide soil organic carbon reservoir. Data from 2473 soil profiles from the second national soil survey were collected and GIS technology was employed to quantify the national soil carbon reservoir. The analytical results show that the total amount of soil organic carbon is about 92.4 Pg (Pg = 10(15) g) and that the average carbon density is about 10.53 kg C m(-2). The spatial distribution of soil organic carbon was also analyzed and mapped. This study presents basic data and an analysis method for carbon-cycle studies and also provides scientific support for policy-making efforts to control CO2 emissions in China.  相似文献   

5.
An assessment of impacts on Arctic terrestrial ecosystems has emphasized geographical variability in responses of species and ecosystems to environmental change. This variability is usually associated with north-south gradients in climate, biodiversity, vegetation zones, and ecosystem structure and function. It is clear, however, that significant east-west variability in environment, ecosystem structure and function, environmental history, and recent climate variability is also important. Some areas have cooled while others have become warmer. Also, east-west differences between geographical barriers of oceans, archipelagos and mountains have contributed significantly in the past to the ability of species and vegetation zones to relocate in response to climate changes, and they have created the isolation necessary for genetic differentiation of populations and biodiversity hot-spots to occur. These barriers will also affect the ability of species to relocate during projected future warming. To include this east-west variability and also to strike a balance between overgeneralization and overspecialization, the ACIA identified four major sub regions based on large-scale differences in weather and climate-shaping factors. Drawing on information, mostly model output that can be related to the four ACIA subregions, it is evident that geographical barriers to species re-location, particularly the distribution of landmasses and separation by seas, will affect the northwards shift in vegetation zones. The geographical constraints--or facilitation--of northward movement of vegetation zones will affect the future storage and release of carbon, and the exchange of energy and water between biosphere and atmosphere. In addition, differences in the ability of vegetation zones to re-locate will affect the biodiversity associated with each zone while the number of species threatened by climate change varies greatly between subregions with a significant hot-spot in Beringia. Overall, the subregional synthesis demonstrates the difficulty of generalizing projections of responses of ecosystem structure and function, species loss, and biospheric feedbacks to the climate system for the whole Arctic region and implies a need for a far greater understanding of the spatial variability in the responses of terrestrial arctic ecosystems to climate change.  相似文献   

6.
Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon sequestration and total carbon sequestration potential under alternative management options. Changes in the proportion and spatial distribution of land use could enhance or degrade that area's ability to sequester carbon in terrestrial ecosystems. As the ecosystems within a landscape change due to natural or anthropogenic processes, they may go from being a carbon sink to a carbon source or vice versa. Satellite image analysis has been tested for timely and accurate measurement of spatially explicit land use change and is well suited for use in inventory and monitoring of terrestrial carbon. The coupling of Landsat Thematic Mapper (TM) data with a physiologically based forest productivity model (PnET-II) and historic climatic data provides an opportunity to enhance field plot-based forest inventory and monitoring methodologies. We use periodic forest inventory data from the U.S. Department of Agriculture (USDA) Forest Service's Forest Inventory and Analysis (FIA) Program to obtain estimates of forest area and type and to generate estimates of carbon storage for evergreen, deciduous, and mixed-forest classes. The area information is used in an accuracy assessment of remotely sensed forest cover at the regional scale. The map display of modeled net primary production (NPP) shows a range of forest carbon storage potentials and their spatial relationship to other landscape features across the southern United States. This methodology addresses the potential for measuring and projecting forest carbon sequestration in the terrestrial biosphere of the southern United States.  相似文献   

7.
Abstract

Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon sequestration and total carbon sequestration potential under alternative management options. Changes in the proportion and spatial distribution of land use could enhance or degrade that area’s ability to sequester carbon in terrestrial ecosystems. As the ecosystems within a landscape change due to natural or anthropogenic processes, they may go from being a carbon sink to a carbon source or vice versa. Satellite image analysis has been tested for timely and accurate measurement of spatially explicit land use change and is well suited for use in inventory and monitoring of terrestrial carbon. The coupling of Landsat Thematic Mapper (TM) data with a physiologically based forest productivity model (PnET-II) and historic climatic data provides an opportunity to enhance field plot-based forest inventory and monitoring methodologies. We use periodic forest inventory data from the U.S. Department of Agriculture (USDA) Forest Service’s Forest Inventory and Analysis (FIA) Program to obtain estimates of forest area and type and to generate estimates of carbon storage for evergreen, deciduous, and mixed-forest classes. The area information is used in an accuracy assessment of remotely sensed forest cover at the regional scale. The map display of modeled net primary production (NPP) shows a range of forest carbon storage potentials and their spatial relationship to other landscape features across the southern United States. This methodology addresses the potential for measuring and projecting forest carbon sequestration in the terrestrial biosphere of the southern United States.  相似文献   

8.
Historically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most incoming radiation, to summer when the ecosystem absorbs most incoming radiation. Vegetation profoundly influences the water and energy exchange of Arctic ecosystems. Albedo during the period of snow cover declines from tundra to forest tundra to deciduous forest to evergreen forest. Shrubs and trees increase snow depth which in turn increases winter soil temperatures. Future changes in vegetation driven by climate change are therefore, very likely to profoundly alter regional climate.  相似文献   

9.
Terrestrial carbon modelling shows that the Goudriaan and Ketner and Esser simulations fit historical data well, but the results are sensitive to the decomposition rate coefficient of old sediment carbon. Modification of this rate constant over time, weighted by emission increases or linear increases, changes the model results to fit historic ice core data. Very old sediment carbon decomposition has an effect on the model postdictions only when the rate constant is 10 times greater than that predicted from sediment studies. Future estimates show that a maximum change from agriculture to forest has a small effect on abating emission increases. Controlling emission rates at 5.1 x 10(15) g C/a will result in almost a 50% increase in atmospheric CO(2) in 200 years, and reducing emission rates to 1960 levels (approximately 2.5 x 10(15) g C/a) immediately will still result in an increase in atmospheric CO(2).  相似文献   

10.
Impact of soil movement on carbon sequestration in agricultural ecosystems   总被引:6,自引:0,他引:6  
Recent modeling studies indicate that soil erosion and terrestrial sedimentation may establish ecosystem disequilibria that promote carbon (C) sequestration within the biosphere. Movement of upland eroded soil into wetland systems with high net primary productivity may represent the greatest increase in storage capacity potential for C sequestration. The capacity of wetland systems to capture sediments and build up areas of deposition has been documented as well as the ability of these ecosystems to store substantial amounts of C. The purpose of our work was to assess rates of sediment deposition and C storage in a wetland site adjacent to a small first-order stream that drains an agricultural area. The soils of the wetland site consist of a histosol buried by sediments from the agricultural area. Samples of deposited sediments in the riparian zone were collected in 5 cm increments and the concentration of 137Cs was used to determine the 1964 and 1954 deposition layers. Agricultural activity in the watershed has caused increased sediment deposition to the wetland. The recent upland sediment is highly enriched in organic matter indicating that large amounts of organic C have been sequestered within this zone of sediment deposition. Rates of sequestration are much higher than rates that have occurred over the pre-modern history of the wetland. These data indicate the increased sedimentation rates in the wetland ecosystem are associated with increased C sequestration rates.  相似文献   

11.
The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often considered in isolation while it has become increasingly clear that the two environments are strongly connected: Sea ice decline is one of the main causes of the rapid warming of the Arctic, and the flow of carbon from rivers into the Arctic Ocean affects marine processes and the air–sea exchange of CO2. This review, therefore, provides an overview of the current state of knowledge of the arctic terrestrial and marine carbon cycle, connections in between, and how this complex system is affected by climate change and a declining cryosphere. Ultimately, better knowledge of biogeochemical processes combined with improved model representations of ocean–land interactions are essential to accurately predict the development of arctic ecosystems and associated climate feedbacks.  相似文献   

12.
Much attention is being directed to the measurement and modeling of surface-atmosphere exchanges of CO2 for different surface types. However, as yet, few measurements have been conducted in cities, even though these environments are widely acknowledged to be major sources of anthropogenic CO2. This paper highlights some of the challenges facing micrometeorologists attempting to use eddy covariance techniques to directly monitor CO2 fluxes in urban environments, focusing on the inherent variability within and between urban areas, and the importance of scale and the appropriate height of measurements. Results from a very short-term study of CO2 fluxes, undertaken in Chicago, Illinois in the summer of 1995, are presented. Mid-afternoon minimum CO2 concentrations and negative fluxes are attributed to the strength of biospheric photosynthesis and strong mixing of local anthropogenic sources in a deep mixed layer. Poor night-time atmospheric mixing, lower mixed layer depths, biospheric respiration, and continued missions from mobile and fixed anthropogenic sources, account for the night-time maxima in CO2 concentrations. The need for more, longer-term, continuous eddy covariance measurements is stressed.  相似文献   

13.
Holocene biomass burning and global dynamics of the carbon cycle   总被引:10,自引:0,他引:10  
Fire regimes have changed during the Holocene due to changes in climate, vegetation, and in human practices. Here, we hypothesise that changes in fire regime may have affected the global CO2 concentration in the atmosphere through the Holocene. Our data are based on quantitative reconstructions of biomass burning deduced from stratified charcoal records from Europe, and South-, Central- and North America, and Oceania to test the fire-carbon release hypothesis. In Europe the significant increase of fire activity is dated approximately 6000 cal. yr ago. In north-eastern North America burning activity was greatest before 7500 years ago, very low between 7500-3000 years, and has been increasing since 3000 years ago. In tropical America, the pattern is more complex and apparently latitudinally zonal. Maximum burning occurred in the southern Amazon basin and in Central America during the middle Holocene, and during the last 2000 years in the northern Amazon basin. In Oceania, biomass burning has decreased since a maximum 5000 years ago. Biomass burning has broadly increased in the Northern and Southern hemispheres throughout the second half of the Holocene associated with changes in climate and human practices. Global fire indices parallel the increase of atmospheric CO2 concentration recorded in Antarctic ice cores. Future issues on carbon dynamics relatively to biomass burning are discussed to improve the quantitative reconstructions.  相似文献   

14.
Uncertainties in the role of land vegetation in the carbon cycle   总被引:6,自引:0,他引:6  
Adams JM  Piovesan G 《Chemosphere》2002,49(8):805-819
Since the late 1950s the CO2 concentration of the atmosphere has been increasing by around 0.5-3 ppm per year. Understanding of carbon sinks is vital to understanding this trend and its future behaviour. Here we examine some of the factors which may affect the proportion of anthropogenic CO2 ending up in the atmosphere in the present and in the future, and variability in the CO2 increase from one year to another. We also examine the evidence for the potential of terrestrial ecosystem carbon sinks to take up or release CO2. In some cases, a careful re-examination of the research methods used to deduce present and future feedbacks may be necessary. The most advanced technology and the most complex models do not necessarily produce reliable results. They should be carefully checked against a general background knowledge of ecological processes before their results are accepted.  相似文献   

15.
Karlberg L  Gustafsson D  Jansson PE 《Ambio》2006,35(8):448-458
Estimates of carbon fluxes and turnover in ecosystems are key elements in the understanding of climate change and in predicting the accumulation of trace elements in the biosphere. In this paper we present estimates of carbon fluxes and turnover times for five terrestrial ecosystems using a modeling approach. Multiple criteria of acceptance were used to parameterize the model, thus incorporating large amounts of multi-faceted empirical data in the simulations in a standardized manner. Mean turnover times of carbon were found to be rather similar between systems with a few exceptions, even though the size of both the pools and the fluxes varied substantially. Depending on the route of the carbon through the ecosystem, turnover times varied from less than one year to more than one hundred, which may be of importance when considering trace element transport and retention. The parameterization method was useful both in the estimation of unknown parameters, and to identify variability in carbon turnover in the selected ecosystems.  相似文献   

16.
The interest in biomass fuel is continuing to expand globally and in the northeastern United States as wood pellets are becoming a primary source of fuel for residential and small commercial systems. Wood pellets for boilers are often stored in basement storage rooms or large bag-type containers. Due to the enclosed nature of these storage areas, the atmosphere may exhibit increased levels of carbon monoxide. Serious accidents in Europe have been reported over the last decade in which high concentrations of carbon monoxide (CO) have been found in or near bulk pellet storage containers. The aim of this study was to characterize the CO concentrations in areas with indoor storage of bulk wood pellets. Data was obtained over approximately 7 months (December 2013 to June 2014) at 25 sites in New Hampshire and Massachusetts: 16 homes using wood pellet boilers with indoor pellet storage containers greater than or equal to 3 ton capacity; 4 homes with wood pellet heating systems with outdoor pellet storage; 4 homes using other heating fuels; and a university laboratory site. CO monitors were set up in homes to collect concentrations of CO in the immediate vicinity of wood pellet storage containers, and data were then compared to those of homes using fossil fuel systems. The homes monitored in this study provided a diverse set of housing stock spanning two and a half centuries of construction, with homes built from 1774 to 2013, representing a range of air exchange rates. The CO concentration data from each home was averaged hourly and then compared to a threshold of 9 ppm. While concentrations of CO were generally low for the homes studied, the need to properly design storage locations for pellets is and will remain a necessary component of wood pellet heating systems to minimize the risk of CO exposure.

Implications: This paper is an assessment of carbon monoxide (CO) exposure from bulk wood pellet storage in homes in New Hampshire and Massachusetts. Understanding the CO concentrations in homes allows for better designs for storage bins and ventilation for storage areas. Hence, uniform policies for stored wood pellets in homes, schools, and businesses can be framed to ensure occupant safety. Currently in New York State rebates for the installation of wood pellet boilers are only provided if the bulk pellet storage is outside of the home, yet states such as New Hampshire, Vermont, and Maine currently do not have these restrictions.  相似文献   


17.
Assessing the long-term exchange of trace gases and energy between terrestrial ecosystems and the atmosphere is an important priority of the current climate change research. In this regard, it is particularly significant to provide valid data on simultaneous fluxes of carbon, water vapor and pollutants over representative ecosystems. Eddy covariance measurements and model analyses of such combined fluxes over a subalpine coniferous forest in southern Wyoming (USA) are presented. While the exchange of water vapor and ozone are successfully measured by the eddy covariance system, fluxes of carbon dioxide (CO(2)) are uncertain. This is established by comparing measured fluxes with simulations produced by a detailed biophysical model (FORFLUX). The bias in CO(2) flux measurements is partially attributed to below-canopy advection caused by a complex terrain. We emphasize the difficulty of obtaining continuous long-term flux data in mountainous areas by direct measurements. Instrumental records are combined with simulation models as a feasible approach to assess seasonal and annual ecosystem exchange of carbon, water and ozone in alpine environments. The viability of this approach is demonstrated by: (1) showing the ability of the FORFLUX model to predict observed fluxes over a 9-day period in the summer of 1996; and (2) applying the model to estimate seasonal dynamics and annual totals of ozone deposition and carbon, and water vapor exchange at our study site. Estimated fluxes above this subalpine ecosystem in 1996 are: 195 g C m(-2) year(-1) net ecosystem production, 277 g C m(-2) year(-1) net primary production, 535 mm year(-1) total evapo-transpiration, 174 mm year(-1) canopy transpiration, 2.9 g m(-2) year(-1) total ozone deposition, and 1.72 g O(3) m(-2) year(-1) plant ozone uptake via leaf stomata. Given the large portion of non-stomatal ozone uptake (i.e. 41% of the total annual flux) predicted for this site, we suggest that future research of pollution-vegetation interactions should relate plant response to actively assimilated ozone by foliage rather than to total deposition. In this regard, we propose the Physiological Ozone Uptake Per Unit of Leaf Area (POUPULA) as a practical index for quantifying vegetation vulnerability to ozone damage. We estimate POUPULA to be 0.614 g O(3) m(-2) leaf area year(-1) at our subalpine site in 1996.  相似文献   

18.
Tareq SM  Tanoue E  Tsuji H  Tanaka N  Ohta K 《Chemosphere》2005,59(11):1655-1665
Evidence of changing vegetation in the tropical wetland (Rawa Danau, west Java, Indonesia) over the past 7428 years is illustrated by elemental (soot) carbon (EC) and n-alkane composition of sedimentary geolipids. In this study, vegetation changes and relevant controlling factors (e.g. forest fire and climate change) were documented on a decadal to centennial scale. The n-alkane composition that changes with depth might record changes in sources of organic matter (OM) in the wetland. The presence of EC (0.01–0.24% of organic carbon: OC) during late (0–1700 cal. year BP) and mid (3500–4500 cal. year BP) Holocene (at depths 0–50 cm, and 160–210 cm) indicated that large-scale forest fires severely affected the tropical vegetation. The hydrocarbon indices (CPI: carbon preference index, MCN: mean carbon number, and HVI: hydrocarbon vegetation index) significantly correlated with one another while a comparison of EC profile with the profiles of hydrocarbon indices indicated that n-alkane composition of the geolipid in lake sediment could record signatures of changes in catchment vegetation. Forest fire and vegetation changes might be related to regional climatic shifts relating to ENSO activity as well as being influenced by human influences.  相似文献   

19.
全球变化背景下,城市作为主要的碳源,对其碳循环的研究成为陆地生态系统碳循环的重点内容之一。以上海市奉贤区为研究对象,基于涡度相关技术,结合定点连续观测的车流量数据,分析节假日(元旦)前后CO2浓度和碳通量的变化特征,及其与车流量的关系。结果表明,CO2浓度和通量日变化呈现明显的双峰型曲线,节假日CO2浓度(385.6mg/L)平均值低于工作日(401.1 mg/L)。在本研究时段内该系统表现为碳源,尽管在白天的某些时段是碳汇,表明城市系统碳通量受自然和人为2个因素共同作用,自然因素比如该系统中的香樟、雪松等常绿植物的光合作用,人为因素由人类活动造成。基于车流量与交通流量的线性回归分析表明,机动车量碳排放对于碳通量变化产生18%的贡献。  相似文献   

20.
The study concerning carbon dioxide measurements taken during the 1997, 1998 and 1999 summer campaigns at two different altitude stations and biospheric conditions are presented. The higher station (Mt. Cimone, 2165 m a.s.l.) is characterised by 360° free horizon and is located on a rocky mountain while the lower (Ninfa lake, 1550 m a.s.l.) is located inside the red spruce and beech forest. The different behaviour of CO2 at the two mountain stations has been registered. It shows the strong effect of nighttime soil emission and vegetation respiration on CO2 mixing ratio increases and of diurnal vegetative activity on CO2 concentration decreases at the lower measurement site. The baseline character of the higher measurement site has been confirmed by comparison of CO2 diurnal amplitudes recorded at the two stations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号