首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
The Waste Framework Directive (WFD; 2008/98/EG) describes how waste materials are to be classified as hazardous or not. For complex waste materials chemical analyses are often not conclusive and the WFD provides the possibility to assess the hazardous properties by testing on the waste materials directly. As a methodology WFD refers to the protocols described in the CLP regulation (regulation on Classification, Labeling and Packaging of chemicals) but the toxicity tests on mammals are not acceptable for waste materials. The DISCRISET project was initiated to investigate the suitability of alternative toxicity tests that are already in use in pharmaceutical applications, for the toxicological hazard assessment of complex waste materials. Results indicated that Microtox was a good candidate as a first screening test in a tiered approached hazard assessment. This is now further validated in the present study. The toxic responses measured in Microtox were compared to biological responses in other bioassays for both organic and inorganic fractions of the wastes. Both fractions contribute to the toxic load of waste samples. Results show that the Microtox test is indeed a good and practical screening tool for the organic fraction. A screening threshold (ST) of 5 geq/l as the EC50 value in Microtox is proposed as this ST allows to recognize highly toxic samples in the screening test. The data presented here show that the Microtox toxicity response at this ST is not only predictive for acute toxicity in other organisms but also for sub lethal toxic effects of the organic fraction. This limit value has to be further validated. For the inorganic fraction no specific biotest can be recommended as a screening test, but the use of direct toxicity assessment is also preferable for this fraction as metal speciation is an important issue to define the toxic load of elutriate fractions. A battery of 3 tests (Microtox, Daphnia and Algae) for direct toxicity assessment of this fraction is recommended in literature, but including tests for mechanistic toxicity might be useful.  相似文献   

2.
In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1–15) of the waste which can be assessed from the hazardous properties of individual identified waste compounds or – if not all compounds are identified – from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different types of waste materials. Test results are presented in a second paper.As the application of many of the proposed test methods is new in the field of waste management, the principles of the tests are described. The selected tests tackle important hazardous properties but refinement of the test battery is needed to fulfil the a priori conditions.  相似文献   

3.
A generalized quantitative risk assessment for the use of source-segregated green waste (SSGW) compost use in livestock production is presented. This assessment focussed on potential risks associated with a specific product, PAS100 compost that meets the UK publicly available specification 100 and represents the majority of compost available for use in extensive Scottish livestock systems. A hazard screening approach was used to identify all potentially hazardous agents present in compost. A total of 497 potentially hazardous agents were screened, with 147 finally put forward for quantitative risk assessment. Scenarios modelled in the assessment included surface application of compost to grazing land and also incorporation into soil and subsequent uptake by fodder crops. Risk estimates were compared to those associated with six comparator materials, including various sludges, slurries and farm yard manures. Overall, five potentially hazardous agents (PCB28, PCB138, PCB153, 1,2,3,4,6,7,8-HpCDD, Clopyralid) returned a hazard quotient >1 but within margins of uncertainty, indicating that further investigation may be required. Within the limitations of available information, SSGW compost was found to pose less risk to grazing livestock, or the environment, than other commonly-used soil amendments. While this assessment relates to a specific product/standard used in the UK, the methodology could easily be applied to other composts/products/situations. Therefore these results have wider applicability.  相似文献   

4.
Air sparging is an innovative methodology for remediating organic compounds present in contaminated, saturated soil zones. In the application of the technology, sparging (injection) wells are used to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below or within the areas of contamination. Two major mechanisms of remediation are engaged/enhanced due to the sparging process. First, volatile organic compounds are dissolved in the groundwater and sorbed on the soil partition into the advective air phase, effectively simulating an in-situ air stripping system. The stripped contaminants are transported in the air phase to the vadose zone, generally within the radius of influence of a standard vapor extraction and vapor treatment system. Second, with optimal environmental conditions, volatile and semivolatile organic compounds may be biodegraded by utilizing the sparging process to oxygenate the groundwater, thereby enhancing the growth and activity of the indigenous bacterial community. Air sparging is a complex multifluid phase process which has been applied successfully in Europe since the mid-1980s. Major design considerations include site geology, contaminant type, gas injection pressures and flow rates, injection interval (areal and vertical), and site-specific biofeasibility parameters. Site-specific geology and biofeasibility are the dominant design parameters. Pilot testing and full-scale design considerations should also be addressed. Mathematical models have been developed to simulate the air flow field during the sparging process and to examine the limitations imposed by site geology. Correct design and operation of this technology have been demonstrated to achieve groundwater cleanup to low part-per-billion contaminant levels. Incorrect design and operation can introduce significant pollution liability through undesirable contaminant migration in both the dissolved and vapor phases.  相似文献   

5.
Database and information technology has been widely used in process industries to manage data related to environmental performance. However, apart from being collected and archived for subsequent retrieval, the data has not been effectively exploited for improving environmental performance. In this paper we report our work on application of data mining and knowledge discovery technology to the analysis of a database of aqueous effluents from an organic manufacturing plant. The focus is on developing a software analyser for Microtox prediction. However, this methodology is applicable to any ecotoxicity measurement and will therefore offer a means of minimising difficult and tedious testing. Principal component analysis is used to pre-process the data for removing noise and reducing dimensionality. Automatic clustering is employed to group the multidimensional data into classes, and from each class training and testing data sets are selected for developing a back-propagation neural network to predict Microtox. The result shows that the software analyser is able to give satisfactory predictions for both training and test data. The errors for all the training and testing data are shown to satisfy a normal distribution. The software analyser is further used to carry out sensitivity studies in order to identify compounds responsible for observed toxicity value, based on which improved process operational strategies can be developed. Several approaches are investigated, including correlation coefficient analysis, sensitivity study based on differential analysis, one variable deletion, fuzzy curve approach and combination of the above with principal component analysis.  相似文献   

6.
The practice of incorporating certain waste products into highway construction and repair materials (CRMs) has become more popular. These practices have prompted the National Academy of Science, National Cooperative Highway Research Program (NCHRP) to research the possible impacts of these CRMs on the quality of surface and ground waters. State department of transportations (DOTs) are currently experimenting with use of ground tire rubber ( crumb rubber) in bituminous construction and as a crack sealer. Crumb rubber asphalt concrete (CR-AC) leachates contain a mixture of organic and metallic contaminants. Benzothiazole and 2(3H)-benzothiazolone (organic compounds used in tire rubber manufacturing) and the metals mercury and aluminum were leached in potentially harmful concentrations (exceeding toxic concentrations for aquatic toxicity tests). CR-AC leachate exhibited moderate to high toxicity for algae ( Selenastrum capriconutum) and moderate toxicity for water fleas ( Daphnia magna). Benzothiazole was readily removed from CR-AC leachate by the environmental processes of soil sorption, volatilization, and biodegradation. Metals, which do not volatilize or photochemically or biologically degrade, were removed from the leachate by soil sorption. Contaminants from CR-AC leachates are thus degraded or retarded in their transport through nearby soils and ground waters.  相似文献   

7.
The classification of waste as hazardous could soon be assessed in Europe using largely the hazard properties of its constituents, according to the the Classification, Labelling and Packaging (CLP) regulation. Comprehensive knowledge of the component constituents of a given waste will therefore be necessary. An analytical protocol for determining waste composition is proposed, which includes using inductively coupled plasma (ICP) screening methods to identify major elements and gas chromatography/mass spectrometry (GC–MS) screening techniques to measure organic compounds. The method includes a gross or indicator measure of ‘pools’ of higher molecular weight organic substances that are taken to be less bioactive and less hazardous, and of unresolved ‘mass’ during the chromatography of volatile and semi-volatile compounds. The concentration of some elements and specific compounds that are linked to specific hazard properties and are subject to specific regulation (examples include: heavy metals, chromium(VI), cyanides, organo-halogens, and PCBs) are determined by classical quantitative analysis. To check the consistency of the analysis, the sum of the concentrations (including unresolved ‘pools’) should give a mass balance between 90% and 110%. Thirty-two laboratory samples comprising different industrial wastes (liquids and solids) were tested by two routine service laboratories, to give circa 7000 parameter results. Despite discrepancies in some parameters, a satisfactory sum of estimated or measured concentrations (analytical balance) of 90% was reached for 20 samples (63% of the overall total) during this first test exercise, with identified reasons for most of the unsatisfactory results. Regular use of this protocol (which is now included in the French legislation) has enabled service laboratories to reach a 90% mass balance for nearly all the solid samples tested, and most of liquid samples (difficulties were caused in some samples from polymers in solution and vegetable oil). The protocol is submitted to French and European normalization bodies (AFNOR and CEN) and further improvements are awaited.  相似文献   

8.
The quality of sewage sludge-based products, such as composts and growth media, is affected by the contamination of sewage sludge with, potentially, hundreds of different substances. Therefore, it is difficult to achieve the reliable environmental quality assessment of sewage sludge-based products solely based on chemical analysis. In the present work, we demonstrate the use of the kinetic luminescent bacteria test (ISO 21338) to evaluate acute toxicity and the Vitotox? test to monitor genotoxicity of sewage sludge and composted sewages sludge. In addition, endocrine-disrupting and dioxin-like activity was studied using yeast-cell-based assays. The relative contribution of industrial waste water treated at the Waste Water Treatment Plants led to elevated concentrations of polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and -furans (PCDD/F) in sewage sludge. The effect of elevated amounts of organic contaminants could also be identified with biotests able to demonstrate higher acute toxicity, genotoxicity, and potential for endocrine-disruptive properties. Additional extraction steps in kinetic luminescent bacteria test with DMSO and hexane increased the level of toxicity detected. Composting in a pilot-scale efficiently reduced the amounts of linear alkylbenzensulphonates (LASs), nonylphenols and nonylphenolethoxylates (NPE/NPs) and PAH with relative removal efficiencies of 84%, 61% and 56%. In addition, decrease in acute toxicity, genotoxicity and endocrorine-disrupting and dioxin-like activity during composting could be detected. However, the biotests did have limitations in accessing the ecotoxicity of test media rich with organic matter, such as sewage sludge and compost, and effects of sample characteristics on biotest organisms must be acknowledged. The compost matrix itself, however, which contained a high amount of nutrients, bark, and peat, reduced the sensitivity of the genotoxicity tests and yeast bioreporter assays.  相似文献   

9.
Octenyl succinic starch (OSA starch) was synthesized from an aqueous medium and pyridine medium using previously established literature methods. Such a substitution would conceivably impart some hydrophobicity to the already hydrophilic starch chain. Thus, an amphiphilic character could be introduced wherein while the water solubility of the final product would be retained or enhanced, interactions with hydrophobic phases could be enhanced. These products find a variety of applications. The emulsifying activity of OSA starch was tested against different oil phases. It was found that the activity was dependent on the oil phase chosen. The activity was largely independent of the concentration of the substrates when the modification was conducted in an aqueous medium. Products from an organic medium did show an increase in activity with concentration. This difference in activity was attributed to the molecular weight of the final product, which seemed to be lower for the products from an organic medium as suggested by viscometry. The granular state of starch could also have a great effect on the properties of modified starch.  相似文献   

10.
In a pilot test experiment involving approximately 200,000 gallons of groundwater, Electrochemical Peroxidation (ECP) was used to degrade aqueous phase volatile organic compounds (VOCs) including benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and methyl tertbutyl ether (MTBE) from a petroleum spill. ECP involves a form of the Fenton's Reagent reaction, which uses electrochemically generated iron and dilute hydrogen peroxide (<30 mg/L) to break down organic molecules through oxidation to carbon dioxide and water. This article discusses a pilot scale demonstration of the ECP technology and its application to aqueous phase organic contaminants. The remedial approach used at the pilot test site involves three phases: (1) ex‐situ chemical oxidation, (2) in‐situ oxidation by reinjection of treated effluent near the plume origin, and (3) reestablishment of aerobic biodegradation as the residual hydrogen peroxide discharged to a series of upgradient wells degrades to oxygen. Analytical results of the pilot demonstration indicate that the ex‐situ chemical oxidation reduced total BTEX concentrations in groundwater from over 1,000 ppb to undetectable concentrations (<1 ppb). © 2000 John Wiley & Sons, Inc.  相似文献   

11.
Municipal and Industrial Solid Waste Incineration (MISWI) bottom ash is mainly deposited in landfills, but natural resources and energy could be saved if these ash materials would be used in geotechnical constructions. To enable such usage, knowledge is needed on their potential environmental impact. The aim of this study was to evaluate the ecotoxicity of leachates from MISWI bottom ash, aged for five years, in an environmental relevant way using a sequential batch leaching method at the Liquid/Solid-ratio interval 1–3, and to test the leachates in a (sub)chronic ecotoxicity test. Also, the leachates were characterized chemically and with the technique of diffusive gradients in thin films (DGTs). By comparing established ecotoxicity data for each element with chemically analysed and labile concentrations in the leachates, potentially problematic elements were identified by calculating Hazard Quotients (HQ). Overall, our results show that the ecotoxicity was in general low and decreased with increased leaching. A strong correspondence between calculated HQs and observed toxicity over the full L/S range was observed for K. However, K will likely not be problematic from a long-term environmental perspective when using the ash, since it is a naturally occurring essential macro element which is not classified as ecotoxic in the chemical legislation. Although Cu was measured in total concentrations close to where a toxic response is expected, even at L/S 3, the DGT-analysis showed that less than 50% was present in a labile fraction, indicating that Cu is complexed by organic ligands which reduce its bioavailability.  相似文献   

12.
介绍了美国高产量(HPV)化学品数据库的内容、格式和发展情况,以及采用HPV化学品数据筛选优先化学品的程序。HPV化学品数据库主要包括化学品数据、化学品毒性特征描述、优先风险评估以及数据资助方、提交方及测试方的相关信息,支持物质名称或化学文摘社登记号搜索。采用HPV化学品数据可通过自动分类、毒性特征描述和风险优先等级评价三级筛选程序筛选优先化学品。  相似文献   

13.
The suitability of using cement-stabilized sludge products as artificial soils in earth works was evaluated. The sludge products investigated were cemented sludge, cement-treated clay-amended sludge (SS+MC), and cement-treated copper slag-amended sludge (SS+CS). The leachability of lead (Pb), zinc (Zn), copper (Cu), and chromium (Cr) were assessed using the sequential extraction technique, toxicity characteristic leaching procedure (TCLP), NEN 7341 availability test, and column leaching test. The results indicated that Zn leachability was reduced in all the cement-stabilized sludge products. In contrast, Cu was transferred from the organic fraction to the readily leachable phases in the cement-stabilized sludge products and therefore exhibited increased leachability. The increased Cu leachability could be attributed to dissolution of humic substances in the sludge as a result of elevated pH. Good correlation between dissolved organic carbon (DOC) and heavy metal leaching from the cement-stabilized sludge products was observed in the column leaching experiment. Even with a cement percentage as small as 12.5%, calcium silicate hydrate (C-S-H) was formed in the SS+MC and SS+CS products. Inclusion of the marine clay in the SS+MC products could reduce the leaching potentials of Zn, and this was the great advantage of the marine clay over the copper slag for sludge amendment.  相似文献   

14.
The identification and quantitation of non-method-specific target analytes have greater importance with respect to EPA's current combustion strategy. The risk associated with combustion process emissions must now be characterized. EPA has recently released draft guidance on procedures for the collection of emissions data to support and augment site-specific risk assessments (SSRAs) as part of the hazardous waste incineration permitting process. This guidance includes methodology for quantifying total organic (TO) emissions as a function of compound volatility. The ultimate intent is to compare the amount of organic material identified and quantified by target analyte-specific methodologies to organic emissions quantified by the TO methodology. The greater the amount accounted for by the target analyte-specific methodologies, the less uncertainty may be associated with the SSRAs. A limitation of this approach is that the target analyte-specific methodologies do not routinely quantify compounds of low toxicological interest; nor do they target products of incomplete combustion (PICs). Thus, the analysis can miss both toxic and non-toxic compounds. As a result, it is unknown whether the uncharacterized fraction of the TO emission possesses toxic properties. The hypothesis that we propose to test is that organic emissions and organics extracted from particulate matter (PM) are more complex than standard GC-MS-based instrumentation can currently measure. This complexity can affect quantitation for toxic compounds, thereby potentially affecting risk assessments. There is a pressing need to better characterize these organic emissions from hazardous waste incinerators and PM extracts from various other combustion sources. We will demonstrate that multidimensional gas chromatography-mass spectrometry (MDGC-MS) procedures significantly improve chromatographic separation for complex environmental samples. Sequential repetitive heart-cutting MDGC, with coupled mass spectrometry will be shown to be a complete analysis technique. The ability of this technique to disengage components from complex mixtures taken from hazardous and municipal waste incinerators will be shown.  相似文献   

15.
Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.  相似文献   

16.
In Emilia-Romagna region (Northern Italy) the integrated waste treatment system consists of material collection and recycling, incineration with energy recovery and landfill as final disposal. In particular, at least one incineration plant is working in almost every province of the region. In this work, a screening life cycle assessment approach is applied to seven different incinerators, to compare the different plant technologies and identify the most relevant environmental impacts and processes. The characterization method used in the life cycle impact assessment step is Eco-indicator 99. The functional unit is 1 ton of waste input. As a first result, it can be noted that while the combustion systems are rather similar, the main variables are ascribable to gas cleaning options and efficiency in energy recovery, which result in quite different environmental performances. Among heavy metals, particular attention must be paid to Cd and As, due to their high toxicity, despite their low quantities. The impact due to dioxin emission is orders of magnitude lower than other contaminants (e.g., heavy metals). Furthermore, a catalytic system could be useful for a complete removal of organic contaminants and for a more effective abatement of nitrogen oxides. Finally, the environmental impact assessment sorts the various plants according to their age, i.e., the most recent plants provide the best environmental performances for the same quantity of combusted waste.  相似文献   

17.
The aim of our study was to evaluate biotreatability of mature municipal landfill leachate by using white rot fungus and its extracellular enzymes. Leachates were collected in one active and one closed regional municipal landfill. Both chosen landfills were operating for many years and the leachates generated there were polluted by organic and inorganic compounds. The white rot fungus Dichomitus squalens was able to grow in the mature leachate from the closed landfill and as it utilizes present organic matter as a source of carbon, the results were showing 60% of DOC and COD removal and decreased toxicity to the bacterium Aliivibrio fischeri. On the other hand, growth of the fungus was inhibited in the presence of the leachate from the active landfill. However, when the leachate was introduced to a crude enzyme filtrate containing extracellular ligninolytic enzymes, removal levels of COD and DOC reached 61% and 44%, respectively. Furthermore, the treatment led to detoxification of the leachate to the bacterium Aliivibrio fischeri and to reduction of toxicity (42%) to the plant Sinapis alba. Fungal and enzymatic treatment seems to be a promising biological approach for treatment of mature landfill leachates and their application should be further investigated.  相似文献   

18.
The NanoRem European research project aims to support and develop the appropriate use of nanotechnology for contaminated land remediation by facilitating practical, economic, and exploitable nanotechnology for in situ remediation. This can only be achieved in parallel with a comprehensive understanding of the environmental risk‐benefit balance for the use of the nanoparticles (NPs) being investigated. While the NanoRem NPs could have a significant toxicity this is likely to be less potent than NPs currently being released into the environment, such as those from a variety of antibacterial products. The NanoRem NPs are likely to interact with the aquifer matrix, each other, and groundwater chemistry to rapidly cease to be mobile and are unlikely to penetrate into the aquifer more than a few meters from the point of injection. In terms of the source‐pathway‐receptor paradigm, the NanoRem NPs are cautiously presumed to represent a hazard (i.e., source). At least one receptor, in the form of not yet polluted groundwater, is present at all the NanoRem case study sites. While there are considerable uncertainties particularly with regards to the transport of NanoRem NPs, the ability of NPs to penetrate far into the formation is likely to be very limited. The relatively short travel distances reported in the literature for a variety of NP types and geological conditions suggest that the pathways are at best very limited in extent. Overall, this means that in many cases the level of risk renegade NPs can pose to the environment or human health is at most minimal. A qualitative protocol developed for the NanoRem field trials can demonstrate that injecting NanoRem NPs into contaminated groundwater poses a minimal level of risk due to the reduced pathway. ©2016 Wiley Periodicals, Inc.  相似文献   

19.
A pilot‐scale study was performed using a palladium‐catalyzed and polymer‐coated nanoscale zero‐valent iron (ZVI) particle suspension at the Naval Air Station in Jacksonville, Florida. A total of 300 pounds of nanoscale ZVI particle suspension was injected via a gravity feed and recirculated through a source area containing chlorinated volatile organic compounds (VOCs). The recirculation created favorable mixing and distribution of the iron suspension and enhanced the mass transfer of sorbed and nonaqueous constituents into the aqueous phase, where the contaminants could be reduced. Between 65 and 99 percent aqueous‐phase VOC concentration reduction occurred, due to abiotic degradation, within five weeks of the injection. The rapid abiotic degradation processes then yielded to slower biological degradation as subsequent decreases in ‐elimination parameters were observed—yet favorable redox conditions were maintained as a result of the ZVI treatment. Post‐treatment analyses revealed cumulative reduction of soil contaminant concentrations between 8 and 92 percent. Aqueous‐phase VOC concentrations in wells side gradient and downgradient of the source were reduced up to 99 percent and were near or below applicable regulatory criteria. These reductions, coupled with the generation of innocuous by‐products, indicate that nanoscale ZVI effectively degraded contamination and reduced the mass flux from the source, a critical metric identified for source treatment. A summary of this project was recently presented at the US EPA Workshop on Nanotechnology for Site Remediation in Washington, D.C., on October 21–22, 2005. This case study supplied evidence that nanoscale zero valent iron, an emerging remediation technology, has been implemented successfully in the field. More information about this workshop and this presentation can be found at www.frtr.gov/nano/index.htm. © 2006 Wiley Periodicals, Inc.  相似文献   

20.
Groundwater treatment biowalls may be located close to a surface water body to prevent contaminant discharge from a groundwater plume into the surface water. Groundwater contaminants passing through the biowall are treated within the biowall or immediately downgradient of the biowall. Biowalls designed and constructed for the treatment of chlorinated solvents typically contain either a solid and/or liquid source of organic carbon to promote contaminant degradation by enhanced anaerobic reductive dechlorination. Common solid organic materials in biowalls include wood mulch or similar waste plant material, and common liquid organic materials are vegetable oil (possibly emulsified) or other long‐chain fatty acids. Such biowalls then develop anaerobic conditions in the constructed biowall volume, and potentially downgradient, as dissolved oxygen originally present in the aquifer is consumed. This groundwater condition can lead to the appearance of sulfide if groundwater influent to the biowall contains moderate to high sulfate concentrations. Other researchers have presented evidence for groundwater conditions downgradient of a biowall or a permeable reactive barrier (PRB) that are altered in relation to groundwater quality, besides the desired effect of contaminant degradation or removal by precipitation. The objective of this work was to investigate with modeling the changes in downgradient groundwater species chemistry as a result of a constructed biowall. This was accomplished with a chemical species model to predict levels of sulfate and sulfide present in groundwater in close downgradient proximity to the biowall. The results indicate that downgradient chemical changes could impact a surface water body to which groundwater discharges. The model described could be enhanced by incorporating additional design variables that should be considered in biowall feasibility assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号