首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 718 毫秒
1.
利用SBR,控制曝气量为60 L/h,利用在线pH曲线控制曝气时间,成功实现了短程生物脱氮过程,并考察了不同进水方式下SBR运行性能及N2O产量。结果表明,分段进水能够有效降低短程生物脱氮过程中外加碳源投加量。在原水进水碳氮比较低时,采用递增进水量的进水方式,能够有效降低生物脱氮过程中NO-2积累量,从而降低系统N2O产量。1次进水、2次等量进水和2次递增进水方式下,生物脱氮过程中N2O产量分别为11.1、8.86和5.04 mg/L。硝化过程中NO-2-N的积累是导致系统N2O产生的主要原因。部分氨氧化菌(AOB)在限氧条件下以NH+4-N作为电子供体,NO-2-N作为电子受体进行反硝化,最终产物是N2O。  相似文献   

2.
DO浓度对间歇曝气单级自养脱氮系统N2O排放的影响   总被引:1,自引:0,他引:1  
以单级自养脱氮系统为研究对象,采用有效容积为15 L的SBBR反应器,系统进水NH+4-N浓度约为360 mg/L,控制温度为(30±2)℃,采用间歇曝气方式运行,曝气段DO浓度从2.4~2.6 mg/L逐渐下降到0.9~1.1 mg/L,研究了单级自养脱氮系统的脱氮性能与N2O排放情况。结果表明,反应器曝气段DO浓度从2.4~2.6 mg/L下降到0.9~1.1mg/L,系统TN去除率均达到80%,但在相同运行时间内的TN去除率依次降低,NH+4-N平均反应速率从0.19 mg/(L·min)降低至0.05 mg/(L·min),NO-3-N累计产生量稳定于14.9~16.5 mg/L,NO-2-N浓度在反应器内未产生明显的积累。随着曝气段DO浓度的下降,最大N2O释放速率逐渐降低,N2O累计释放量从73.8 mg下降到61.0 mg,N2O转化率介于2.4%~2.9%。  相似文献   

3.
研究不同曝气方式下亚硝化的实现以及基质浓度、曝气频率和温度对NO-2-N积累效果的影响。以实际污泥脱水液为研究对象,控制进水NH+4-N浓度在50~80 mg/L范围内,温度为27℃,pH值为7.8~8.2,DO浓度为0.5~1.0mg/L,分别采用连续曝气和间歇曝气2种方式启动SBR亚硝化反应器,并考察了在不同基质浓度、曝气频率和温度条件下NO-2-N累积情况。实验研究结果表明,经过40 d左右的运行,在2种不同曝气方式下SBR均成功实现了亚硝化,稳定运行阶段,NO-2-N积累率分别达到95%和85%。经SEM扫描电镜观察发现,在驯化成熟的活性污泥中,亚硝化细菌多呈球状和杆状,大小不同,外形饱满。当进水氨氮浓度小于200 mg/L,曝气频率为曝气15 min/停曝15 min,温度为27℃时,NO-2-N积累效果最佳,平均积累率可达90%以上。间歇曝气可以有效促进亚硝化细菌富集,有利于实现较高浓度的NO-2-N积累。基质浓度、曝气频率和温度对NO-2-N积累效果的影响显著。  相似文献   

4.
为了实现主流的短程硝化反硝化和厌氧氨氧化,设计了基于pH-DO和阀ON-OFF间歇曝气的在线控制系统,搭建了中试级别的短程硝化SBR,在高DO条件下基于城市生活污水恢复种泥活性后,加入反硝化稳定短程,最后接入厌氧氨氧化滤池实现全过程自养脱氮。将脱氮率、NO-2-N积累率等作为考察指标,研究了系统的启动过程和稳定性。结果表明:控制SBR(sequencing batch reactor)中DO=2~2.5 mg·L~(-1)、HRT=8~10 h、SRT=4~5 d、T=25℃,启动恢复3个月后,系统能保持90%以上的NO-2-N积累率、NO-2-N/NH+4-N=0.96±0.18;短程硝化反硝化能达到50%左右的NH+4-N去除率,60%左右的TIN去除率;短程硝化接厌氧氧氨氧化能保证90%左右的NH+4-N去除率和TIN去除率,出水达一级A标准。由实验结果分析,系统在高DO条件下能恢复短程硝化污泥的活性,基于pH-DO和阀ON-OFF间歇曝气的在线控制系统稳定性高,能保证短程硝化系统的稳定运行;恢复活性后,后接厌氧氨氧化滤池能实现中试级别的全过程自养脱氮。  相似文献   

5.
在成功实现生活污水短程生物脱氮的基础上,采用体积为3 L的小试反应器,利用在线DO监测手段控制DO=1.0 mg·L~(-1),通过投加Na NO2的方式控制系统初始NO~(-2)-N=40 mg·L~(-1),以丙烯基硫脲(ATU)抑制NH+4-N的氧化过程,考察了生物脱氮好氧阶段不同反应过程中N_2O的产生量。结果表明,除缺氧反硝化细菌的反硝化过程外,好氧条件下,氨氧化菌(AOB)能够以NH+4-N作为电子供体,NO~(-2)-N作为电子受体,进行反硝化脱氮过程,其反硝化产物为N_2O。生物脱氮好氧阶段AOB的好氧反硝化和异养菌的缺氧反硝化反应中,N_2O的产量分别占分别占进水总氮(NH+4-N+NO~(-2)-N)的7.23%和7.80%。好氧阶段NH+4-N和NO~(-2)的氧化过程中,几乎没有N_2O的产生。  相似文献   

6.
厨余发酵液中含有丰富的VFA、乳酸等快速降解有机物,以及碳水化合物、蛋白质等慢速降解的有机物,利用厨余发酵液作为外增碳源强化生物脱氮的可行性。首先利用SBR处理投加厨余发酵液后的低C/N污水,经过40 d的培养,最终TN去除率稳定在85%左右,出水COD低于40 mg/L,说明厨余发酵液具有强化生物脱氮的能力;然后利用批式实验研究其在不同C/N条件下的反硝化规律,发现当C/N≤5.1时,出水出现了NO-2-N积累现象,C/N升高到最佳的6.5时,NO-2-N积累现象消失,反硝化速率为3.77 mg NO-3-N/(g VSS·h)。  相似文献   

7.
以焦化废水特征有机污染物苯酚、喹啉、吡啶和吲哚为碳源,研究了不同C/N(COD/NO-3-N)比值进水条件下,反硝化过程中NO-2-N积累特征及反硝化动力学特征。结果表明,进水C/N比在2.5~17的条件下,均会出现NO-2-N积累的现象。当C/N比值为2.5时,NO-2-N出现稳定积累。基于完全反硝化且COD去除率最高的进水条件为,进水C/N比为6。随着C/N比值从2.5增至17,达到NO-2-N的最大积累量时间从140 min降至60 min,NO-2-N的最大积累率从51.7%降至23.1%。相同进水C/N比条件下,在NO-2-N积累阶段,NO-3-N比还原速率大于NO-2-N比还原速率,导致NO-2-N积累;在NO-2-N还原阶段,NO-3-N比还原速率小于NO-2-N比还原速率。不同进水C/N比条件下,在NO-2-N积累阶段,NO-2-N比积累速率基本不变,为0.072 g N/(g VSS·d)左右。不同进水C/N比值条件下,NO-2-N积累阶段的表观碳氮比均大于NO-2-N还原阶段的表观碳氮比。  相似文献   

8.
SBR法短程硝化-反硝化生物脱氮工艺的研究   总被引:4,自引:1,他引:4  
针对目前传统生物脱氮工艺存在的问题 ,结合国内外在该方向的研究现状 ,以实际豆制品废水为研究对象 ,控制反应器内混合液温度在 31± 0 .5℃的条件下 ,实现了短程硝化 反硝化生物脱氮工艺 ,NO-2 N NOx N的比率始终维持在90 %以上。并在此试验基础上 ,考察了曝气时间对反应器内氮形态变化的影响及系统对进水COD和NH3 N浓度的抗冲击负荷能力。结果显示 ,曝气时间对硝化效果影响较大 ,同时 ,本工艺具有较强的抗冲击负荷能力。  相似文献   

9.
采用序批式生物膜反应器(SBBR),在连续曝气全程好氧的运行条件下,考察不同溶解氧浓度对同步硝化反硝化脱氮性能及N2O产量的影响。控制溶解氧浓度恒定在1、2、2.5和3 mg/L。结果表明,DO为2 mg/L和2.5 mg/L时,氨氮去除率分别为97.9%和98.5%,同步硝化反硝化率均为99%。DO为2 mg/L时,系统中N2O产生量最低,为0.423 mg/L,占氨氮去除量的1.4%;DO为3 mg/L时N2O的产生量最高,为2.01 mg/L,是DO为2 mg/L时的4.75倍。系统中亚硝酸盐的存在可能是高溶解氧条件下N2O产量增加的主要原因,同步过程中没有NOx-的积累即稳定的SND系统有利于降低生物脱氮过程中N2O的产生量。  相似文献   

10.
SBR用于焦化废水生物处理的试验研究   总被引:2,自引:0,他引:2  
采用SBR工艺对焦化废水的有机物降解和生物脱氮进行了研究。试验结果表明,焦化废水的生物脱氮是以短程硝化/反硝化的途径存在的,而且在好氧阶段存在同时硝化/反硝化(SND)过程。好氧阶段的反硝化效率约占整个反应周期脱氮效率的37.0%。SBR反应器对NH3-N的去除效率在95.8%~99.2%,COD的去除率在85.3%~92.6%。由于出水中NO2-N的积累,NO2-N对COD浓度贡献值得关注。  相似文献   

11.
固态碳源去除地下水硝酸盐的模拟实验   总被引:3,自引:0,他引:3  
选取了5种研究较少的固体材料,棉花、丝瓜络、甘蔗渣、可降解餐盒、木屑作为去除地下水硝酸盐的外加碳源。在锥形瓶中进行反硝化对比实验,研究了不同固态碳源下NO3--N、NO2--N、NH4+-N及pH的变化情况,分析了NO3--N及总氮的去除率。研究结果表明,反硝化过程中pH呈升高趋势,在6.9~8.5范围内浮动。可降解餐盒和丝瓜络相对于其他的固态碳源来说,对NO3--N和总氮有较高的去除率,但丝瓜络的总氮去除率明显低于可降解餐盒。可降解餐盒的硝酸盐去除率达到98.28%,总氮去除率达到93.48%。可降解餐盒能够有效地去除地下水硝酸盐,达到以废治废的效果,是经济有效的最佳固态碳源。  相似文献   

12.
混合固定化硝化菌和好氧反硝化菌处理焦化废水   总被引:4,自引:1,他引:3  
蔡昌凤  梁磊 《环境工程学报》2009,3(8):1391-1394
对传统的聚乙烯醇(PVA)固定化方法进行了改进,试制了加入麦秸粉末的固定化球和以活性炭纤维膜为载体膜固定化细胞产品。混合固定化硝化细菌和好氧反硝化细菌对经过厌氧折流板反应器酸化后的焦化废水进行脱氮,焦化废水在厌氧折流板反应器中经过18 h的酸化后,pH在8.0左右,开始进入好氧槽进行脱氮。在有效容积为5 L好氧槽中经过12 h的曝气处理,加入麦秸粉末的固定化球对氨氮的去除率高达94.3%;纤维膜固定化细胞产品对氨氮的去除率为85%。整个脱氮过程无NO-2-N和NO-2-N的积累,实现了好氧条件下的同时硝化和反硝化。  相似文献   

13.
Wastewater treatment is an important source of nitrous oxide (N2O), which is a strong greenhouse gas and dominate ozone-depleting substance. The purpose of this study was to evaluate the effect of carbon source on N2O emission from anoxic/oxic biological nitrogen removal process. The mechanisms of N2O emission were also studied. Long-term experiments were operated to evaluate the effect of three different carbon sources (i.e., glucose, sodium acetate, and soluble starch) on N2O emission characteristics. And batch experiments, in the presence or absence of specific inhibitors, were carried out to identify the sources of N2O emission. The ammonia-oxidizing bacteria (AOB) and denitrifiers community compositions under different circumstances were also analyzed based on which the underlying mechanisms of N2O emission were elucidated. The conversion ratios of N2O in reactors with glucose, sodium acetate, and soluble starch were 5.3 %, 8.8 %, and 2.8 %, respectively. The primary process responsible for N2O emission was nitrifier denitrification by Nitrosomonas-like AOB, while denitrification by heterotrophic denitrifiers acted as the sink. Reactor with sodium acetate showed the highest N2O emission, together with the highest nitrogen and phosphate removal ratios. Carbon source has a significant impact on N2O emission quantity and relatively minor effect on its production mechanism.  相似文献   

14.
利用氮素计量关系和批式实验研究了SBR系统中基于短程硝化的单级自养脱氮特性和脱氮途径。结果表明,SBR系统获得良好脱氮效果,TN最高去除负荷和去除速率分别达0.49 kg N/(m3.d)和0.20 kg N/(kg VSS.d);系统中82%的氨氮转化成气体脱除,10%的氨氮转化成硝酸盐氮。批式实验结果表明,SBR系统中的污泥同时具有厌氧氨氧化、亚硝酸盐氧化和自养反硝化活性,三者的反应速率分别为0.12 kg NH4+-N/(kg VSS.d)、0.04 kg NO2--N/(kg VSS.d)和0.03 kg NO2--N/(kg VSS.d)。综上,SBR系统中氮的脱除是短程硝化、厌氧氨氧化和反硝化共同作用的结果,产生的硝酸盐是厌氧氨氧化和硝化作用所致。  相似文献   

15.
以天然矿物质沸石、细砂及煤渣取代传统滤料构建复合基质生态床,表面种植景观植物,采用下向流-上向流运行方式修复北方景观水体。分别进行静态实验及不同循环速率下的动态实验,考察对水体污染物去除过程。结果表明,2种运行方式下对水体NH+4-N去除率都在85%以上,其中以1 h为循环周期的运行方式去除率达97%,较静态提高12.8%;TN去除率最高为84%;TP去除不稳定,过程缓慢。煤渣层对NH+4-N的去除效果差,硝化作用不彻底与反硝化作用的加强使下层出水NH+4-N 、NO-2-N及NO-3-N浓度均高于上层。提高循环速率有利于对氮的去除。  相似文献   

16.
污水生物脱氮硝化阶段是温室气体一氧化二氮(N2O)的重要释放源。采用连续流反应器在2种进水氨氮(NH4-N,低氮反应器60 mg/L和高氮反应器180 mg/L)浓度条件下驯化硝化菌,并研究了不同初始NH4-N浓度和不同初始亚硝酸盐(NO2-N)浓度条件下所驯化硝化菌释放N2O的特征。结果表明在反应器运行过程中2个反应器释放N2O较少,均小于去除NH4-N浓度的0.01%;N2O的释放均随着初始NH4-N浓度或初始NO2-N浓度的升高而增加;不同初始NH4-N浓度条件下,低氮反应器驯化硝化菌的N2O释放率在0.51%~1.40%之间,高氮反应器驯化硝化菌在0.29%~1.27%之间;不同初始NO2-N浓度条件下,低氮反应器驯化硝化菌的N2O释放率在1.38%~3.78%之间,高氮反应器驯化硝化菌在1.16-5.81%之间。  相似文献   

17.
Despite the many benefits of denitrifying phosphorus removal process, the significant generation of nitrous oxide (N2O), a potent greenhouse gas, remains a problem for this innovative and promising process. To better understand and more effectively control N2O generation in denitrifying phosphorus removal process, batch experiments were carried out to investigate the main causes of N2O generation, based on which the control measures were subsequently proposed. The results showed that N2O generation accounted for 0.41 % of the total nitrogen removal in denitrifying phosphorus removal process, whereas, in contrast, almost no N2O was generated in conventional denitrification process. It was further demonstrated that the weak competition of N2O reductase for electrons and the high nitrite accumulation were the two main causes for N2O generation, evidenced by N2O production and reduction rates under different conditions. Accordingly, the reduction of N2O generation was successfully achieved via two control measures: (1) the use of continuous nitrate addition reducing N2O generation by around 91.4 % and (2) the use of propionate as the carbon source reducing N2O generation by around 69.8 %.  相似文献   

18.
Nitrogen removal processing in different constructed wetlands treating different kinds of wastewater often varies, and the contribution to nitrogen removal by various pathways remains unclear. In this study, the seasonal nitrogen removal and transformations as well as nitrogen balance in wetland microcosms treating slightly polluted river water was investigated. The results showed that the average total nitrogen removal rates varied in different seasons. According to the mass balance approach, plant uptake removed 8.4–34.3 % of the total nitrogen input, while sediment storage and N2O emission contributed 20.5–34.4 % and 0.6–1.9 % of nitrogen removal, respectively. However, the percentage of other nitrogen loss such as N2 emission due to nitrification and denitrification was estimated to be 2.0–23.5 %. The results indicated that plant uptake and sediment storage were the key factors limiting nitrogen removal besides microbial processes in surface constructed wetland for treating slightly polluted river water.  相似文献   

19.
ABSTRACT

Gaseous NH3 removal was studied in laboratory-scale biofilters (14-L reactor volume) containing perlite inoculated with a nitrifying enrichment culture. These biofilters received 6 L/min of airflow with inlet NH3 concentrations of 20 or 50 ppm, and removed more than 99.99% of the NH3 for the period of operation (101, 102 days). Comparison between an active reactor and an autoclaved control indicated that NH3 removal resulted from nitrification directly, as well as from enhanced absorption resulting from acidity produced by nitrification. Spatial distribution studies (20 ppm only) after 8 days of operation showed that nearly 95% of the NH3 could be accounted for in the lower 25% of the biofilter matrix, proximate to the port of entry. Periodic analysis of the biofilter material (20 and 50 ppm) showed accumulation of the nitrification product NO3 - early in the operation, but later both NO2 - and NO3 - accumulated. Additionally, the N-mass balance accountability dropped from near 100% early in the experiments to ~95 and 75% for the 20- and 50-ppm biofilters, respectively. A partial contributing factor to this drop in mass balance accountability was the production of NO and N2O, which were detected in the biofilter exhaust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号