首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flue gas emissions of wood and heavy fuel oil (HFO) fired district heating units of size range 4–15 MW were studied. The emission measurements included analyses of particle mass, number and size distributions, particle chemical compositions and gaseous emissions. Thermodynamic equilibrium calculations were carried out to interpret the experimental findings.In wood combustion, PM1 (fine particle emission) was mainly formed of K, S and Cl, released from the fuel. In addition PM1 contained small amounts of organic material, CO3, Na and different metals of which Zn was the most abundant. The fine particles from HFO combustion contained varying transient metals and Na that originate from the fuel, sulphuric acid, elemental carbon (soot) and organic material. The majority of particles were formed at high temperature (>800 °C) from V, Ni, Fe and Na. At the flue gas dew point (125 °C in undiluted flue gas) sulphuric acid condensed forming a liquid layer on the particles. This increases the PM1 substantially and may lead to partial dissolution of the metallic cores.Wood-fired grate boilers had 6–21-fold PM1 and 2–23-fold total suspended particle (TSP) concentrations upstream of the particle filters when compared to those of HFO-fired boilers. However, the use of single field electrostatic precipitators (ESP) in wood-fired grate boilers decreased particle emissions to same level or even lower as in HFO combustion. On the other hand, particles released from the HFO boilers were clearly smaller and higher in number concentration than those of wood boilers with ESPs. In addition, in contrast to wood combustion, HFO boilers produce notable SO2 emissions that contribute to secondary particle formation in the atmosphere. Due to vast differences in concentrations of gaseous and particle emissions and in the physical and chemical properties of the particles, HFO and wood fuel based energy production units are likely to have very different effects on health and climate.  相似文献   

2.
A small fraction of the naphtha diluent used for oil sands processing escapes with tailings and supports methane (CH(4)) biogenesis in large anaerobic settling basins such as Mildred Lake Settling Basin (MLSB) in northern Alberta, Canada. Based on the rate of naphtha metabolism in tailings incubated in laboratory microcosms, a kinetic model comprising lag phase, rate of hydrocarbon metabolism and conversion to CH(4) was developed to predict CH(4) biogenesis and flux from MLSB. Zero- and first-order kinetic models, respectively predicted generation of 5.4 and 5.1 mmol CH(4) in naphtha-amended microcosms compared to 5.3 (+/-0.2) mmol CH(4) measured in microcosms during 46 weeks of incubation. These kinetic models also predicted well the CH(4) produced by tailings amended with either naphtha-range n-alkanes or BTEX compounds at concentrations similar to those expected in MLSB. Considering 25% of MLSB's 200 million m(3) tailings volume to be methanogenic, the zero- and first-order kinetic models applied over a wide range of naphtha concentrations (0.01-1.0 wt%) predicted production of 8.9-400 million l CH(4) day(-1) from MLSB, which exceeds the estimated production of 3-43 million l CH(4) day(-1). This discrepancy may result from heterogeneity and density of the tailings, presence of nutrients in the microcosms, and/or overestimation of the readily biodegradable fraction of the naphtha in MLSB tailings.  相似文献   

3.
Methane (CH4) is the dominant greenhouse gas emitted by animal agriculture manure. Since the gas is relatively insoluble in water, it is concentrated in discrete bubbles that rise through waste lagoons and burst at the surface. This results in lagoon emissions that are inhomogeneous in both space and time. Emissions from a midwestern dairy waste lagoon were measured over 2 weeks to evaluate the spatial homogeneity of the source emissions and to compare two methods for measuring this inhomogeneous emission. Emissions were determined using an inverse dispersion model based on CH4 concentrations measured both by a single scanning tunable diode laser (TDL) aimed at a series of reflectors and by flame ionization detection (FID) gas chromatography on line-sampled air. Emissions were best estimated using scanned TDL concentrations over relatively short optical paths that collectively span the entire cross-wind width of the source, so as to provide both the best capture of discrete plumes from the bursting bubbles on the lagoon surface and the best detection of CH4 background concentrations. The lagoon emissions during the study were spatially inhomogeneous at hourly time scales. Partitioning the inhomogeneous source into two source regions reduced the estimated emissions of the overall lagoon by 57% but increased the variability. Consequently, it is important to assess the homogeneity of a source prior to measurements and final emissions calculation.

Implications: Plans for measuring methane emissions from waste lagoons must take into account the spatial inhomogeneity of the source strength. The assumption of emission source homogeneity for a low-solubility gas such as CH4 emitted from an animal waste lagoon can result in significant emission overestimates. The entire breadth and length of the area source must be measured, preferably with multiple optical paths, for the detection of discrete plumes from the different emitting regions and for determining the background concentration. Other gases with similarly poor solubility in water may also require partitioning of the lagoon source area.  相似文献   

4.
Recent studies have shown that geological emissions of methane are an important greenhouse-gas source. Remarkable amounts of methane, estimated in the order of 40–60 Tg yr?1, are naturally released into the atmosphere from the Earth's crust through faults and fractured rocks. The main source is natural gas, both microbial and thermogenic, produced in hydrocarbon-prone sedimentary basins and injected into the atmosphere through macro-seeps (onshore and offshore mud volcanoes and other seeps) and microseepage, an invisible but pervasive flux from the soil. This source is now evaluated for Europe on the basis of a literature survey, new field measurements and derived emission factors. The up-scaling criteria recommended by the EMEP/CORINAIR guidelines are applied to the local point and area source data.In Europe, 25 countries host oil and/or natural gas reservoirs and potentially, or actually, emit geological methane. Flux data, however, are available only from 10 countries: the onshore or offshore petroliferous sectors of Denmark, Italy, Greece, Romania, Spain, Switzerland, United Kingdom and Black Sea countries (Bulgaria, Ukraine, Georgia). Azerbaijan, whose emissions due to mud volcanism are known to be relevant, is included in the estimate.The sum of emissions, regional estimates and local measurements, related to macro-seeps leads to a conservative total value of about 2.2 Tg yr?1. Together with the potential microseepage fluxes from the petroliferous basins, estimated on the basis of the Total Petroleum System concept (around 0.8 Tg yr?1), the total European seepage is projected to 3 Tg yr?1. This preliminary figure would represent, in terms of magnitude, the second natural methane source for Europe after wetlands. The estimate will have to be refined by increasing the number of seepage measurements both on lands, where there is high potential for microseepage (e.g., Germany, Hungary, Romania, Ukraine, Belarus, Russia, Georgia) and in coastal marine areas (the North Sea, the Black Sea, offshore Greece and Italy) where emission factors and the extent of the underwater seeping area are not completely known.  相似文献   

5.
GOAL, SCOPE AND BACKGROUND: Malodorous volatiles derived from the decomposition of biowaste within the process of composting might pose a risk to human health. Different techniques of process engineering have been developed to minimise the burden of malodorous compounds in air possibly affecting compost workers and residents in the vicinity. METHODS: In the present study, three different composting facilities were examined for the emission of volatiles to estimate the impact of process engineering on the dispersal of odorous compounds and to discuss its relevance for human health. RESULTS AND DISCUSSION: Concentrations of single compounds belonging to alcohols, ketones, furanes, sulfur-containing compounds and especially terpenes ranged from 10(2) up to nearly 10(6) ng/m3 depending on the sampling sites and the process engineering. The ratio of MVOC and total VOC measured changed throughout the process of biodegradation. A certain combination of volatile compounds coincided with the occurrence of typical compost odour. CONCLUSION: The type of process engineering seemed to have a major impact on the emission of volatiles, as amounts of (microbial) volatiles emitted were characteristic for the different techniques used. Thus, the MVOC emission basically depends on the degree of biodegradation. It is likely that the concentrations workers are exposed to can have an impact on human health. RECOMMENDATIONS AND OUTLOOK: It is obvious that less sophisticated types of process engineering give rise to greater amounts of bioaerosols and volatiles and, therefore, technical devices have to be improved and controlled regularly to minimise adverse health effects on workers.  相似文献   

6.
7.
Emissions from flares typical of those found at oil-field battery sites in Alberta, Canada, were investigated to determine the degree to which the flared gases were burned and to characterize the products of combustion in the emissions. The study consisted of laboratory, pilot-scale, and field-scale investigations. Combustion of all hydrocarbon fuels in both laboratory and pilot-scale tests produced a complex variety of hydrocarbon products within the flame, primarily by pyrolytic reactions. Acetylene, ethylene, benzene, styrene, ethynyl benzene, and naphthalene were some of the major constituents produced by conversion of more than 10% of the methane within the flames. The majority of the hydrocarbons produced within the flames of pure gas fuels were effectively destroyed in the outer combustion zone, resulting in combustion efficiencies greater than 98% as measured in the emissions. The addition of liquid hydrocarbon fuels or condensates to pure gas streams had the largest effect on impairing the ability of the resulting flame to destroy the pyrolytically produced hydrocarbons, as well as the original hydrocarbon fuels directed to the flare. Crosswinds were also found to reduce the combustion efficiency (CE) of the co-flowing gas/condensate flames by causing more unburned fuel and the pyrolytically produced hydrocarbons to escape into the emissions. Flaring of solution gas at oil-field battery sites was found to burn with an efficiency of 62-82%, depending on either how much fuel was directed to flare or how much liquid hydrocarbon was in the knockout drum. Benzene, styrene, ethynyl benzene, ethynyl-methyl benzenes, toluene, xylenes, acenaphthalene, biphenyl, and fluorene were, in most cases, the most abundant compounds found in any of the emissions examined in the field flare testing. The emissions from sour solution gas flaring also contained reduced sulfur compounds and thiophenes.  相似文献   

8.
Ding W  Cai Z  Tsuruta H  Li X 《Chemosphere》2003,51(3):167-173
To understand the mechanism for spatial variation of CH(4) emissions from marshes grown with different type of plants in a region and plots within a certain marsh grown with one type of plants, we measured CH(4) emissions from a region in which eutrophic freshwater marshes were divided into three types: Carex lasiocarpa, Carex meyeruana and Deyeuxia angustifolia according to plant type as well as CH(4) concentration in porewater, aboveground plant biomass and stem density in situ in Sanjiang Plain of Northeast China in August 2001. Spatial variation of CH(4) emissions from both different marshes in a region and different plots within a certain marsh was high. The flux rates of CH(4) emissions from three marshes ranged from 17.2 to 66.5 mg CH(4) m(-2)h(-1) with 34.76% of variation coefficient, whereas the values in Carex lasiocarpa, Carex meyeriana and Deyeuxia angustifolia marshes varied from 21.6 to 66.5 (39.61%), from 17.2 to 45.0 (29.26%) and from 19.1 to 33.0 mg CH(4) m(-2)h(-1) (17.51%), respectively. Both the flux rates and spatial variation of CH(4) emissions strongly increased as standing water depth increased significantly. Standing water depth greatly governed the spatial variation of CH(4) emissions from different marshes in a region by changing the amount of plant litters inundated in standing water, which provided labile organic C for methanogens and controlled CH(4) concentrations in porewater. Moreover, the aboveground plant biomass determined spatial variation of CH(4) emissions from plots within a certain marsh by controlling the pathways (stem density) of CH(4) emissions from the marsh into the atmosphere.  相似文献   

9.
In this paper, methane emissions from municipal wastewater treatment plants and municipal solid waste (MSW) landfills in Jordan for 1994 have been estimated using the methodology developed by the Intergovernmental Panel on Climate Change (IPCC). For this purpose, the 14 domestic wastewater treatment plants in the country were surveyed. Generation rates and characterization of MSW components as well as dumping and landfilling practices were surveyed in order to estimate 1994 CH4 emissions from these sites. Locally available waste statistics were used in cases where those of the IPCC guidelines were not representative of Jordan's statistics. Methane emissions from domestic wastewater in Jordan were estimated at 4.66 gigagrams (Gg). Total 1994 CH4 emissions from MSW management facilities in Jordan are estimated at 371.76 Gg--351.12 Gg (94.45%) from sanitary landfills, 19.83 Gg (5.33%) from MSW open dumps, and 0.81 Gg (0.22%) from raw sewage-water dumping ponds. Uncertainties associated with these estimations are presented.  相似文献   

10.
Satellite cartography of atmospheric methane concentrations during 2003–2004 is applied to a systematic top-down methodology to quantify large scale sources and sinks of this important greenhouse gas. Patterns of methane anomalies over South America below latitude 22 S and an assessment of the emissions from the Buenos Aires Province of Argentina are reported. The latter contains the main cattle livestock of the country together with a variety of surface conditions, both natural and man-modified, influencing methane emissions. It was found that anomalies in methane concentrations may be correlated to emission rates by a simple box accumulation-sweeping model validated by recurrent weather conditions. The model shows that the methane emission rates of the Buenos Aires Province are positively correlated with the cattle livestock corresponding to values of (190 ± 40) g d?1 per cattle head.  相似文献   

11.
Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (<C6). Although measured ambient VOC concentrations were well below health-based safe exposure levels, the existence of urban-level mean concentrations of benzene and other mobile source air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production
ImplicationsRapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production.  相似文献   

12.
One of the important cultural practices that affect methane and nitrous oxide emissions from tropical rice plantations is the water drainage system. While drainage can reduce methane emissions, it can also increase nitrous oxide emissions, as well as reduce yields. In this experiment, four different water drainage systems were compared in a rice field in central Thailand including: (1) continuous flooding, (2) mid-season drainage, (3) multiple drainage and (4) a local method (drainage was done according to local cultural practice) in order to find a system of drainage that would optimize yields while simultaneously limiting methane and nitrous oxide emissions. Methane and nitrous oxide emission were observed and compared with rice yield and physical changes of rice plants. It was found that drainage during the flowering period could reduce methane emission. Interestingly, nitrous oxide emission was related to number of drain days rather than the frequency of draining. Fewer drain days can help reduce nitrous oxide emission. The mid-season drainage and the multiple drainage, with 6.9% and 11.4% reduction in rice yield, respectively, had an average methane emission per crop 27% and 35% lower when compared to the local method. Draining with fewer drain days during the flowering period was recommended as a compromise between emissions and yield. The field drainage can be used as an option to reduce methane and nitrous oxide emissions from rice fields with acceptable yield reduction. Mid-season drainage during the rice flowering period, with a shortened drainage period (3 days), is suggested as a compromise between the need to reduce global warming and current socio-economic realities.  相似文献   

13.
Petrochemical Industries Company (PIC) in Kuwait has mitigated the pollution problem of ammonia and urea dust by replacing the melting and prilling units of finished-product urea prills with an environmentally friendly granulation process. PIC has financed a research project conducted by the Coastal and Air Pollution Program’s research staff at the Kuwait Institute for Scientific Research to assess the impact of pollution control strategies implemented to maintain a healthy productive environment in and around the manufacturing premises. The project was completed in three phases: the first phase included the pollution monitoring of the melting and prilling units in full operation, the second phase covered the complete shutdown period where production was halted completely and granulation units were installed, and the last phase encompassed the current modified status with granulation units in full operation. There was substantial decrease in ammonia emissions, about 72%, and a 52.7% decrease in urea emissions with the present upgrading of old melting and prilling units to a state-of-the-art technology “granulation process” for a final finished product. The other pollutants, sulfur dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds (VOCs), have not shown any significant change, as the present modification has not affected the sources of these pollutants.

Implications: Petrochemical Industries Company (PIC) in Kuwait has ammonia urea industries, and there were complaints about ammonia and urea dust pollution. PIC has resolved this problem by replacing “melting and prilling unit” of final product urea prills by more environmentally friendly “granulation unit.” Environmental Pollution and Climate Program has been assigned the duty of assessing the outcome of this change and how that influenced ammonia and urea dust emissions from the urea manufacturing plant.  相似文献   


14.
A laboratory bench procedure was developed to efficiently extract naphthenic acids from bulk volumes of Athabasca oil sands tailings pond water (TPW) for use in mammalian oral toxicity testing. This solvent-based procedure involved low solvent losses and a good extraction yield with low levels of impurities. Importantly, labour-intensive centrifugation of source water to remove solids was avoided, allowing processing of much larger volumes of water compared with previous protocols. Naphthenic acids, present at an estimated concentration of 81 mg/l, were procured from 515.5 l of TPW at an overall extraction efficiency of approximately 85%. By using distillation to recover and recycle solvent, a high solvent:water ratio was maintained while actual solvent consumption was limited to 70 ml per liter of water processed. Electrospray ionization mass spectrometry suggested a highly heterogeneous naphthenic acid mixture that exhibited nearly identical proportions of monocyclic, polycyclic, and acyclic acids with molecular weights primarily between 220 and 360. Biphenyls, naphthalenes, and phenanthrene/anthracene were the most prominent impurities detected, but their levels were low (< or = 13 microg/l) even in a concentrated solution of the naphthenic acids (8549 mg/l). Naphthenic acids stored at 4 degrees C at this concentration were stable, exhibiting no significant change in concentration over a 10-month period. This bulk isolation procedure should be useful to others needing to process large volumes of tailings or other source water for the purpose of procuring moderate amounts of naphthenic acids.  相似文献   

15.
To investigate the impacts of major factors on carbon loss via gaseous emissions, carbon dioxide (CO2) and methane (CH4) emissions from the ground of open dairy lots were tested by a scale model experiment at various air temperatures (15, 25, and 35 °C), surface velocities (0.4, 0.7, 1.0, and 1.2 m sec?1), and floor types (unpaved soil floor and brick-paved floor) in controlled laboratory conditions using the wind tunnel method. Generally, CO2 and CH4 emissions were significantly enhanced with the increase of air temperature and velocity (P < 0.05). Floor type had different effects on the CO2 and CH4 emissions, which were also affected by air temperature and soil characteristics of the floor. Although different patterns were observed on CH4 emission from the soil and brick floors at different air temperature-velocity combinations, statistical analysis showed no significant difference in CH4 emissions from different floors (P > 0.05). For CO2, similar emissions were found from the soil and brick floors at 15 and 25 °C, whereas higher rates were detected from the brick floor at 35 °C (P < 0.05). Results showed that CH4 emission from the scale model was exponentially related to CO2 flux, which might be helpful in CH4 emission estimation from manure management.

Implications: Gaseous emissions from the open lots are largely dependent on outdoor climate, floor systems, and management practices, which are quite different from those indoors. This study assessed the effects of floor types and air velocities on CO2 and CH4 emissions from the open dairy lots at various temperatures by a wind tunnel. It provided some valuable information for decision-making and further studies on gaseous emissions from open lots.  相似文献   

16.
Past efforts to estimate methane emissions from underground mines, surface mines, and other coal mine operations have been hampered, to different degrees, by a lack of direct emissions data. Direct measurements have been completely unavailable for several important coal mining operations. A primary goal of this study was to collect new methane emissions measurements and other data for the most poorly characterized mining operations and use these data to develop an improved methane emission inventory for the U.S. coal mining industry. This required the development and verification of measurement methods for surface mines, coal handling operations, and abandoned underground mines and the use of these methods at about 30 mining sites across the United States. Although the study's focus was on surface mines, abandoned underground mines, and coal handling operations, evaluations were also conducted to improve our understanding of underground mine emission trends and to develop improved national data sets of coal properties. Total U.S. methane emissions are estimated to be 4.669 million tons, and as expected, emissions from underground mine ventilation and methane drainage systems dominate (74% of the total emissions). On the other hand, emissions from coal handling, abandoned underground mines, and surface mines are significant, and collectively they represent approximately 26% of the total emissions.  相似文献   

17.
An experimental investigation on sulfur dioxide removal in a pilot-scale spray dryer from the flue gas generated by combustion of low-sulfur (S) heavy oil is reported. A limewater slurry was sprayed through an ultrasonic two-fluid atomizer in the spray-dry chamber, and the spent sorbent was collected downstream in a pulse-jet baghouse together with fly ash. Flue gas was sampled at different points to measure the desulfurization efficiency after both the spray-dry chamber and the baghouse. Parametric tests were performed to study the effect of the following variables: gas inlet temperature, difference between gas outlet temperature and adiabatic saturation temperature, lime-to-S ratio, and average size of lime particles in the slurry. Results indicated that spray drying is an effective technology for the desulfurization of low-S fuel oil flue gas, provided operating conditions are chosen carefully. In particular, the lowest gas inlet and outlet temperatures compatible with baghouse operation should be selected, as should a sufficiently high lime-to-S ratio. The attainment of a small lime particle size in the slurry is critical for obtaining a high desulfurization efficiency. A previously presented spray-dry flue gas desulfurization model was used to simulate the pilot-scale desulfurization tests, to check the ability of the model to predict the S capture data and its usefulness as a design tool, minimizing the need for pilot-scale experimentation. Comparison between model and experimental results was fairly good for the whole range of calcium/S ratios considered.  相似文献   

18.
The reclamation of freshly produced composite or consolidated tailings (CT) is a challenge for the Oil Sands Industry in the boreal forest of Western Canada. CT tailings materials are characterized by a relatively high salinity (dominated by sodium, sulphate and chloride) and a high pH (8-9). A greenhouse study was conducted to determine the germination, survival, injury and early plant growth of two grass species recommended for land reclamation, altai wildrye (Elymus angustus Trin) and slender wheatgrass (Agropyron trachycaulum Link Malte), growing in two different oil sand CT tailings (alum-CT and gypsum-CT), with and without peat amendment. Ion accumulation in the resulting plant tissues was determined. Our results showed that slender wheatgrass was most affected by the tailings at the germination stage, while for altai wildrye, the early growth stage was the most sensitive stage. Alum-CT had similar or less negative impact on plants than gypsum-CT. Amendment of CT with peat limited the reduction in germination and growth that was recorded in plants growing directly in CT. Based on these results, recommendations were made to improve reclamation strategies.  相似文献   

19.
To understand the effect of water level on CH4 emissions from an invasive Spartina alterniflora coastal brackish marsh, we measured CH4 emissions from intermittently and permanently (5 cm water depth) inundated mesocosms with or without N fertilizer added at a rate of 2.7 g N m?2. Dissolved CH4 concentrations in porewater and vertically-profiled sediment redox potential were measured, as were aboveground biomass and stem density of S. alterniflora. Mean CH4 fluxes during the growing season in permanently inundated mesocosms without and with N fertilizer were 1.03 and 1.73 mg CH4 m?2 h?1, respectively, which were significantly higher than in the intermittently inundated mesocosms. This response indicates that prolonged submergence of sediment, up to a water depth of 5 cm, stimulated CH4 release. Inundation did not greatly affect aboveground biomass and stem density, but did significantly reduce redox potential in sediment, which in turn stimulated CH4 production and increased the CH4 concentration of porewater, resulting in higher CH4 emission in the mesocosm. Our data showed that the stimulatory effect of shallow, permanent inundation on CH4 emission in S. alterniflora marsh sediment was due primarily to an improved methanogenic environment rather than an increase in plant-derived substrates and/or the number of gas emission pathways through the plant’s aerenchymal system.  相似文献   

20.
The animal husbandry industry is a major emitter of ammonia (NH3), which is a precursor of fine particulate matter (PM2.5)--arguably, the number-one environment-related public health threat facing the nation. The industry is also a major emitter of methane (CH4), which is an important greenhouse gas (GHG). We present an integrated process model of the engineering economics of technologies to reduce NH3 and CH4 emissions at dairy operations in California. Three policy options are explored: PM offset credits for NH3 control, GHG offset credits for CH4 control, and expanded net metering policies to provide revenue for the sale of electricity generated from captured methane (CH4) gas. Individually these policies vary substantially in the economic incentives they provide for farm operators to reduce emissions. We report on initial steps to fully develop the integrated process model that will provide guidance for policy-makers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号