首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of the confluence of several factors (persistent multiday inversions, petroleum production, and snow cover), the Uintah Basin of eastern Utah, USA, exhibits high concentrations of winter ozone. A regression analysis is presented that successfully predicts daily ozone concentration with a standard error of about 11 ppb. It also predicts with 90% accuracy whether any given day will exceed the National Ambient Air Quality Standard for ozone, 70 ppb. An analysis is introduced for calculating a “pseudo-lapse rate,” a determination of inversion intensity in the absence of sounding data. By combining the model with historical meteorological data, it is possible to make long-range predictions about ozone formation. The odds of observing no exceedance days in any given season are 38%. The odds of only three or fewer exceedance days in any given season are 46%.

Implications: This paper provides an improved understanding of the scientific underpinnings of the winter ozone phenomenon and an ability to make long-range predictions.  相似文献   


2.
In this study, the authors apply two different dispersion models to evaluate flux chamber measurements of emissions of 58 organic compounds, including C2–C11 hydrocarbons and methanol, ethanol, and isopropanol from oil- and gas-produced water ponds in the Uintah Basin. Field measurement campaigns using the flux chamber technique were performed at a limited number of produced water ponds in the basin throughout 2013–2016. Inverse-modeling results showed significantly higher emissions than were measured by the flux chamber. Discrepancies between the two methods vary across hydrocarbon compounds and are largest in alcohols due to their physical chemistries. This finding, in combination with findings in a related study using the WATER9 wastewater emission model, suggests that the flux chamber technique may underestimate organic compound emissions, especially alcohols, due to its limited coverage of the pond area and alteration of environmental conditions, especially wind speed. Comparisons of inverse-model estimations with flux chamber measurements varied significantly with the complexity of pond facilities and geometries. Both model results and flux chamber measurements suggest significant contributions from produced water ponds to total organic compound emission from oil and gas productions in the basin.

Implications: This research is a component of an extensive study that showed significant amount of hydrocarbon emissions from produced water ponds in the Uintah Basin, Utah. Such findings have important meanings to air quality management agencies in developing control strategies for air pollution in oil and gas fields, especially for the Uintah Basin in which ozone pollutions frequently occurred in winter seasons.  相似文献   


3.
The Northern Colorado Front Range (NCFR) has been in exceedance of the ozone National Ambient Air Quality Standard (NAAQS) since 2004, which has led to much debate over the sources of ozone precursors to the region, as this area is home to both the Denver, CO, metropolitan area and the Denver–Julesburg Basin, which has experienced rapid growth of oil and natural gas (O&NG) operations and associated emissions. Several recent studies have reported elevated levels of atmospheric volatile organic compounds (VOCs) as a result of O&NG emissions and the potential for significant ozone production from these emissions, despite implementation of stricter O&NG VOC emissions regulations in 2008. Approximately 88% of 1-hr elevated ozone events (>75 ppbv) occur during June–August, indicating that elevated ozone levels are driven by regional photochemistry. Analyses of surface ozone and wind observations from two sites, namely, South Boulder and the Boulder Atmospheric Observatory, both near Boulder, CO, show a preponderance of elevated ozone events associated with east-to-west airflow from regions with O&NG operations in the N-ESE, and a relatively minor contribution of transport from the Denver Metropolitan area to the SE-S. Transport from upwind areas associated with abundant O&NG operations accounts for on the order of 65% (mean for both sites) of 1-hr averaged elevated ozone levels, while the Denver urban corridor accounts for 9%. These correlations contribute to mounting evidence that air transport from areas with O&NG operation has a significant impact on ozone and air quality in the NCFR.

Implications: This article builds on several previous pieces of research that implied significant contributions from oil and natural gas emissions on ozone production in the Northern Colorado Front Range. By correlating increased ozone events with transport analyses we show that there is a high abundance of transport events with elevated ozone originating from the Denver–Julesburg oil and natural gas basin. These findings will help air quality regulators to better assess contributing sources to ozone production and in directing policies to curb ozone pollution in this region.  相似文献   


4.
Under the National Ambient Air Quality Standards (NAAQS), put in place as a result of the Clean Air Amendments of 1990, three regions in the state of Utah are in violation of the NAAQS for PM10 and PM2.5 (Salt Lake County, Ogden City, and Utah County). These regions are susceptible to strong inversions that can persist for days to weeks. This meteorology, coupled with the metropolitan nature of these regions, contributes to its violation of the NAAQS for PM during the winter. During January–February 2009, 1-hr averaged concentrations of PM10-2.5, PM2.5, NOx, NO2, NO, O3, CO, and NH3 were measured. Particulate-phase nitrate, nitrite, and sulfate and gas-phase HONO, HNO3, and SO2 were also measured on a 1-hr average basis. The results indicate that ammonium nitrate averages 40% of the total PM2.5 mass in the absence of inversions and up to 69% during strong inversions. Also, the formation of ammonium nitrate is nitric acid limited. Overall, the lower boundary layer in the Salt Lake Valley appears to be oxidant and volatile organic carbon (VOC) limited with respect to ozone formation. The most effective way to reduce ammonium nitrate secondary particle formation during the inversions period is to reduce NOx emissions. However, a decrease in NOx will increase ozone concentrations. A better definition of the complete ozone isopleths would better inform this decision.

Implications: Monitoring of air pollution constituents in Salt Lake City, UT, during periods in which PM2.5 concentrations exceeded the NAAQS, reveals that secondary aerosol formation for this region is NOx limited. Therefore, NOx emissions should be targeted in order to reduce secondary particle formation and PM2.5. Data also indicate that the highest concentrations of sulfur dioxide are associated with winds from the north-northwest, the location of several small refineries.  相似文献   


5.
Oil and gas production in the Western United States has increased considerably over the past 10 years. While many of the still limited oil and gas impact assessments have focused on potential human health impacts, the typically remote locations of production in the Intermountain West suggests that the impacts of oil and gas production on national parks and wilderness areas (Class I and II areas) could also be important. To evaluate this, we utilize the Comprehensive Air quality Model with Extensions (CAMx) with a year-long modeling episode representing the best available representation of 2011 meteorology and emissions for the Western United States. The model inputs for the 2011 episodes were generated as part of the Three State Air Quality Study (3SAQS). The study includes a detailed assessment of oil and gas (O&G) emissions in Western States. The year-long modeling episode was run both with and without emissions from O&G production. The difference between these two runs provides an estimate of the contribution of the O&G production to air quality. These data were used to assess the contribution of O&G to the 8 hour average ozone concentrations, daily and annual fine particulate concentrations, annual nitrogen deposition totals and visibility in the modeling domain. We present the results for the Class I and II areas in the Western United States. Modeling results suggest that emissions from O&G activity are having a negative impact on air quality and ecosystem health in our National Parks and Class I areas.

Implications: In this research, we use a modeling framework developed for oil and gas evaluation in the western United States to determine the modeled impacts of emissions associated with oil and gas production on air pollution metrics. We show that oil and gas production may have a significant negative impact on air quality and ecosystem health in some national parks and other Class I areas in the western United States. Our findings are of particular interest to federal land managers as well as regulators in states heavy in oil and gas production as they consider control strategies to reduce the impact of development.  相似文献   


6.
The energy supply infrastructure in the United States has been changing dramatically over the past decade. Increased production of oil and natural gas, particularly from shale resources using horizontal drilling and hydraulic fracturing, made the United States the world’s largest producer of oil and natural gas in 2014. This review examines air quality impacts, specifically, changes in greenhouse gas, criteria air pollutant, and air toxics emissions from oil and gas production activities that are a result of these changes in energy supplies and use. National emission inventories indicate that volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from oil and gas supply chains in the United States have been increasing significantly, whereas emission inventories for greenhouse gases have seen slight declines over the past decade. These emission inventories are based on counts of equipment and operational activities (activity factors), multiplied by average emission factors, and therefore are subject to uncertainties in these factors. Although uncertainties associated with activity data and missing emission source types can be significant, multiple recent measurement studies indicate that the greatest uncertainties are associated with emission factors. In many source categories, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. When super-emitters are accounted for, multiple measurement approaches, at multiple scales, produce similar results for estimated emissions. Challenges moving forward include identifying super-emitters and reducing their emission magnitudes. Work done to date suggests that both equipment malfunction and operational practices can be important. Finally, although most of this review focuses on emissions from energy supply infrastructures, the regional air quality implications of some coupled energy production and use scenarios are examined. These case studies suggest that both energy production and use should be considered in assessing air quality implications of changes in energy infrastructures, and that impacts are likely to vary among regions.

Implications: The energy supply infrastructure in the United States has been changing dramatically over the past decade, leading to changes in emissions from oil and natural gas supply chain sources. In many source categories along these supply chains, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. Effective emission reductions will require technologies for both identifying super-emitters and reducing their emission magnitudes.  相似文献   


7.
To improve U.S. air quality, there are many regulations on-the-way (OTW) and on-the-books (OTB), including mobile source California Low Emission Vehicle third generation (LEV III) and federal Tier 3 standards. This study explores the effects of those regulations by using the U.S. Environmental Protection Agency's (EPA) Community Multiscale Air Quality (CMAQ) model for 8-hr ozone concentrations in the western and eastern United States in the years 2018 and 2030 during a month with typical high ozone concentrations, July. Alterations in pollutant emissions can be due to technological improvements, regulatory amendments, and changes in growth. In order to project emission rates for future years, the impacts of all of these factors were estimated. This study emphasizes the potential light-duty vehicle emission changes by year to predict ozone levels. The results of this study show that most areas have decreases in 8-hr ozone concentrations in the year 2030, although there are some areas with increased concentrations. Additionally, there are areas with 8-hr ozone concentrations greater than the current U.S. National Ambient Air Quality Standard level, which is 75 ppb.

Implications:

To improve U.S. air quality, many regulations are on the way and on the books, including mobile source California LEV III and federal Tier 3 standards. This study explores the effects of those regulations for 8-hr ozone concentrations in the western and eastern United States in the years 2018 and 2030. The results of this study show that most areas have decreases in 8-hr ozone concentrations in 2030, although there are some areas with increased concentrations. Additionally, there are areas with 8-hr ozone concentrations greater than the current U.S. National Ambient Air Quality Standard level.  相似文献   


8.
An explosive growth in natural gas production within the last decade has fueled concern over the public health impacts of air pollutant emissions from oil and gas sites in the Barnett and Eagle Ford shale regions of Texas. Commonly acknowledged sources of uncertainty are the lack of sustained monitoring of ambient concentrations of pollutants associated with gas mining, poor quantification of their emissions, and inability to correlate health symptoms with specific emission events. These uncertainties are best addressed not by conventional monitoring and modeling technology, but by increasingly available advanced techniques for real-time mobile monitoring, microscale modeling and source attribution, and real-time broadcasting of air quality and human health data over the World Wide Web. The combination of contemporary scientific and social media approaches can be used to develop a strategy to detect and quantify emission events from oil and gas facilities, alert nearby residents of these events, and collect associated human health data, all in real time or near-real time. The various technical elements of this strategy are demonstrated based on the results of past, current, and planned future monitoring studies in the Barnett and Eagle Ford shale regions.

Implications: Resources should not be invested in expanding the conventional air quality monitoring network in the vicinity of oil and gas exploration and production sites. Rather, more contemporary monitoring and data analysis techniques should take the place of older methods to better protect the health of nearby residents and maintain the integrity of the surrounding environment.  相似文献   


9.
Cross-border transport of ozone is one of the most contentious issues of air pollution management in the U.S. Yet, both the modeling and observational studies are lacking. Models are normally validated by comparing predicted and observed ozone concentrations. However, proper validation of cross-border transport model requires a comparison of predictions against observation-based benchmarks of cross-border ozone transport. Such benchmarks are unavailable, as published observation-based studies always deal only with a combination of local production and cross-border transport, not a cross-border transport itself. We show how to extract necessary benchmarks from observations of rural monitoring sites near state borders. On example of the western border of New York, we find that in about two-thirds of the most polluted days all the ozone came in a steady cross-border inflow after previously passing over one or more large urban areas to the west. In all the enumerated days with direct cross-border inflow, daily maximum 8-hr concentrations of ozone just upwind of the border were over 60 ppb, with an average value of 68 ppb, just short of the 70 ppb ozone regulatory threshold, information also useful to state air pollution authorities.

Implications: The purpose of the cross-border ozone pollution models is to predict cross-border transport of ozone, so the ability of the model to accurately represent observed ozone concentrations is necessary but not sufficient for model validation. The accuracy of predicted ozone concentrations is not necessarily the same as the accuracy of the predictions of ozone transport. Proper model validation requires comparisons against observation-based benchmarks of cross-border transport. Such observations, so far absent, can be obtained from rural monitoring sites near state borders, as illustrated by the example of western New York.  相似文献   


10.
Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland is volcanic sandy deserts. Not only do natural emissions from these sources influenced by strong winds affect regional air quality in Iceland (“Reykjavik haze”), but dust particles are transported over the Atlantic ocean and Arctic Ocean >1000 km at times. The aim of this paper is to place Icelandic dust production area into international perspective, present long-term frequency of dust storm events in northeast Iceland, and estimate dust aerosol concentrations during reported dust events.

Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in northeast Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the northeastern erosion area, indicating extreme dust plume activity and erosion within the northeastern deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and Aeolian transport during dust/volcanic ash storms in Iceland, which give some of the most intense wind erosion events ever measured.

Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust may contribute to the Arctic air pollution.

Implications: Long-term records of meteorological dust observations from Northeast Iceland indicate the frequency of dust events from Icelandic deserts. The research involves a 60-year period and provides a unique perspective of the dust aerosol production from natural sources in the sub-Arctic Iceland. The amounts are staggering, and with this paper, it is clear that Icelandic dust sources need to be considered among major global dust sources. This paper presents the dust events directly affecting the air quality in the Arctic region.  相似文献   


11.
Passive samplers are used in air quality monitoring for many years to compete in terms of being economical with continuous measurement systems. In this study, different amounts of single-wall carbon nanotubes (SWCNTs) were added in the impregnation solution of the filters of passive samplers and the effect on the absorption of ozone studied. The results of the measurement of ozone with varying amounts of SWCNTs added to the impregnation solution of the filters of the passive samplers were compared with the results of the continuous ozone measurement system (CS). Measurements were performed for 7 days and 14 days at two different exposure times. The increase of the amount of SWCNTs on the filters of the passive samplers, however, did not have an effect on the measurement of ozone. The measurement results of the passive samplers of the 14-day exposure periods, alternating with the 7-day exposure periods, were lower considerably than the results of the 7-day exposure.

Implications: The accuracy and the use of passive samplers in SWCNTs are expected to provide high measurement results. Observing the effect of the change in the amount of diffusion of pollutants held in the SWCNT is also one of the expected implications.  相似文献   


12.
Freight transportation activities are responsible for a large share of air pollution and greenhouse gas emissions in the United States. Various freight transportation modes have significantly different impacts on air quality and environmental sustainability, and this highlights the need for a better understanding of interregional freight shipment mode choices. This paper develops a binomial logit market share model to predict interregional freight modal share between truck and rail as a function of freight and shipment characteristics. This model can be used to estimate the impacts of various factors, such as oil price, on shippers’ mode choice decisions. A set of multiyear freight and geographical information databases was integrated to construct regression models for typical freight commodities. The atmospheric impact levels incurred by different freight modal choice decisions are analyzed to provide insights on the relationship among freight modal split, oil price change, and air quality.

Implications:

Freight transportation has become a major source of energy consumption and air pollution, and emissions rates vary significantly across different modes. Understanding freight shipment mode choice under various economic and engineering factors will help assess the environmental impacts of freight shipment systems at the national level. This paper develops a binomial logit model for two dominating modes (truck and rail) and shows how this model is incorporated into an environmental impact analysis. The framework will be useful to policy makers to assess the impacts of freight movements on air quality and public health and to mitigate those adverse impacts.  相似文献   


13.
An ozone abatement strategy for the South Coast Air Basin (SoCAB) has been proposed by the South Coast Air Quality Management District (SCAQMD) and the California Air Resources Board (ARB). The proposed emissions reduction strategy is focused on the reduction of nitrogen oxide (NOx) emissions by the year 2030. Two high PM2.5 concentration episodes with high ammonium nitrate compositions occurring during September and November 2008 were simulated with the Community Multi-scale Air Quality model (CMAQ). All simulations were made with same meteorological files provided by the SCAQMD to allow them to be more directly compared with their previous modeling studies. Although there was an overall under-prediction bias, the CMAQ simulations were within an overall normalized mean error of 50%; a range that is considered acceptable performance for PM modeling. A range of simulations of these episodes were made to evaluate sensitivity to NOx and ammonia emissions inputs for the future year 2030. It was found that the current ozone control strategy will reduce daily average PM2.5 concentrations. However, the targeted NOx reductions for ozone were not found to be optimal for reducing PM2.5 concentrations. Ammonia emission reductions reduced PM2.5 and this might be considered as part of a PM2.5 control strategy.

Implications: The SCAQMD and the ARB have proposed an ozone abatement strategy for the SoCAB that focuses on NOx emission reductions. Their strategy will affect both ozone and PM2.5. Two episodes that occurred during September and November 2008 with high PM2.5 concentrations and high ammonium nitrate composition were selected for simulation with different levels of nitrogen oxide and ammonia emissions for the future year 2030. It was found that the ozone control strategy will reduce maximum daily average PM2.5 concentrations but its effect on PM2.5 concentrations is not optimal.  相似文献   


14.
Ozone pollution appears as a major air quality issue, e.g. for the protection of human health and vegetation. Formation of ground level ozone is a complex photochemical phenomenon and involves numerous intricate factors most of which are interrelated with each other. Machine learning techniques can be adopted to predict the ground level ozone. The main objective of the present study is to develop the state-of-the-art ensemble bagging approach to model the summer time ground level ozone in an industrial area comprising a hazardous waste management facility. In this study, the feasibility of using ensemble model with seven meteorological parameters as input variables to predict the surface level O3 concentration. Multilayer perceptron, RTree, REPTree, and Random forest were employed as the base learners. The error measures used for checking the performance of each model includes IoAd, R2, and PEP. The model results were validated against an independent test data set. Bagged random forest predicted the ground level ozone better with higher Nash-Sutcliffe coefficient 0.93. This study scaffolded the current research gap in big data analysis identified with air pollutant prediction.

Implications: The main focus of this paper is to model the summer time ground level O3 concentration in an Industrial area comprising of hazardous waste management facility. Comparison study was made between the base classifiers and the ensemble classifiers. Most of the conventional models can well predict the average concentrations. In this case the peak concentrations are of importance as it has serious effect on human health and environment. The models developed should also be homoscedastic.  相似文献   


15.
Nitrous oxide (N2O) has gained considerable attention as a contributor to global warming and depilation of stratospheric ozone layer. Landfill is one of the high emitters of greenhouse gas such as methane and N2O during the biodegradation of solid waste. Landfill aeration has been attracted increasing attention worldwide for fast, controlled and sustainable conversion of landfills into a biological stabilized condition, however landfill aeration impel N2O emission with ammonia removal. N2O originates from the biodegradation, or the combustion of nitrogen-containing solid waste during the microbial process of nitrification and denitrification. During these two processes, formation of N2O as a by-product from nitrification, or as an intermediate product of denitrification. In this study, air was injected into a closed landfill site and investigated the major N2O production factors and correlations established between them. The in-situ aeration experiment was carried out by three sets of gas collection pipes along with temperature probes were installed at three different distances of one, two and three meter away from the aeration point; named points A-C, respectively. Each set of pipes consisted of three different pipes at three different depths of 0.0, 0.75 and 1.5 m from the bottom of the cover soil. Landfill gases composition was monitored weekly and gas samples were collected for analysis of nitrous oxide concentrations. It was evaluated that temperatures within the range of 30–40°C with high oxygen content led to higher generation of nitrous oxide with high aeration rate. Lower O2 content can infuse N2O production during nitrification and high O2 inhibit denitrification which would affect N2O production. The findings provide insights concerning the production potentials of N2O in an aerated landfill that may help to minimize with appropriate control of the operational parameters and biological reactions of N turnover.

Implications: Investigation of nitrous oxide production potential during in situ aeration in an old landfill site revealed that increased temperatures and oxygen content inside the landfill site are potential factors for nitrous oxide production. Temperatures within the range of optimum nitrification process (30–40°C) induce nitrous oxide formation with high oxygen concentration as a by-product of nitrogen turnover. Decrease of oxygen content during nitrification leads increase of nitrous oxide production, while temperatures above 40°C with moderate and/or low oxygen content inhibit nitrous oxide generation.  相似文献   


16.
Electrical generation units (EGUs) are important sources of nitrogen oxides (NOx) that contribute to ozone air pollution. A dynamic management system can anticipate high ozone and dispatch EGU generation on a daily basis to attempt to avoid violations, temporarily scaling back or shutting down EGUs that most influence the high ozone while compensating for that generation elsewhere. Here we investigate the contributions of NOx from individual EGUs to high daily ozone, with the goal of informing the design of a dynamic management system. In particular, we illustrate the use of three sensitivity techniques in air quality models—brute force, decoupled direct method (DDM), and higher-order DDM—to quantify the sensitivity of high ozone to NOx emissions from 80 individual EGUs. We model two episodes with high ozone in the region around Pittsburgh, PA, on August 4 and 13, 2005, showing that the contribution of 80 EGUs to 8-hr daily maximum ozone ranges from 1 to >5 ppb at particular locations. At these locations and on the two high ozone days, shutting down power plants roughly 1.5 days before the 8-hr ozone violation causes greater ozone reductions than 1 full day before; however, the benefits of shutting down roughly 2 days before the high ozone are modest compared with 1.5 days. Using DDM, we find that six EGUs are responsible for >65% of the total EGU ozone contribution at locations of interest; in some locations, a single EGU is responsible for most of the contribution. Considering ozone sensitivities for all 80 EGUs, DDM performs well compared with a brute-force simulation with a small normalized mean bias (–0.20), while this bias is reduced when using the higher-order DDM (–0.10).

Implications: Dynamic management of electrical generation has the potential to meet daily ozone air quality standards at low cost. We show that dynamic management can be effective at reducing ozone, as EGU contributions are important and as the number of EGUs that contribute to high ozone in a given location is small (<6). For two high ozone days and seven geographic regions, EGUs would best be shut down or their production scaled back roughly 1.5 days before the forecasted exceedance. Including online sensitivity techniques in an air quality forecasting model can provide timely and useful information on which EGUs would be most beneficial to shut down or scale back temporarily.  相似文献   


17.
The relationship between emission reductions and changes in ozone can be studied using photochemical grid models. These models are updated with new information as it becomes available. The primary objective of this study was to update the previous Collet et al. studies by using the most up-to-date (at the time the study was done) modeling emission tools, inventories, and meteorology available to conduct ozone source attribution and sensitivity studies. Results show future-year, 2030, design values for 8-hr ozone concentrations were lower than base-year values, 2011. The ozone source attribution results for selected cities showed that boundary conditions were the dominant contributors to ozone concentrations at the western U.S. locations, and were important for many of the eastern U.S. locations. Point sources were generally more important in the eastern United States than in the western United States. The contributions of on-road mobile emissions were less than 5 ppb at a majority of the cities selected for analysis. The higher-order decoupled direct method (HDDM) results showed that in most of the locations selected for analysis, NOx emission reductions were more effective than VOC emission reductions in reducing ozone levels. The source attribution results from this study provide useful information on the important source categories and provide some initial guidance on future emission reduction strategies.

Implications: The relationship between emission reductions and changes in ozone can be studied using photochemical grid models, which are updated with new available information. This study was to update the previous Collet et al. studies by using the most current, at the time the study was done, models and inventory to conduct ozone source attribution and sensitivity studies. The source attribution results from this study provide useful information on the important source categories and provide some initial guidance on future emission reduction strategies.  相似文献   


18.
A wealth of literature exists regarding the pulmonary effects of ozone, a photochemical pollutant produced by the reaction of nitrogen oxide and volatile organic precursors in the presence of sunlight. This paper focuses on epidemiological panel studies and human clinical studies of ozone exposure, and discusses issues specific to this pollutant that may influence study design and interpretation as well as other, broader considerations relevant to ozone-health research. The issues are discussed using examples drawn from the wider literature. The recent panel and clinical literature is also reviewed. Health outcomes considered include lung function, symptoms, and pulmonary inflammation. Issues discussed include adversity, reversibility, adaptation, variability in ozone exposure metric used and health outcomes evaluated, co-pollutants in panel studies, influence of temperature in panel studies, and multiple comparisons. Improvements in and standardization of panel study approaches are recommended to facilitate comparisons between studies as well as meta-analyses. Additional clinical studies at or near the current National Ambient Air Quality Standard (NAAQS) of 70 ppb are recommended, as are clinical studies in sensitive subpopulations such as asthmatics.

Implications: The pulmonary health impacts of ozone exposure have been well documented using both epidemiological and chamber study designs. However, there are a number of specific methodological and related issues that should be considered when interpreting the results of these studies and planning additional research, including the standardization of exposure and health metrics to facilitate comparisons among studies.  相似文献   


19.
In this study, emissions of ozone precursors from oil and gas operations in Utah’s Uinta Basin are predicted (with uncertainty estimates) from 2015–2019 using a Monte-Carlo model of (a) drilling and production activity, and (b) emission factors. Cross-validation tests against actual drilling and production data from 2010–2014 show that the model can accurately predict both types of activities, returning median results that are within 5% of actual values for drilling, 0.1% for oil production, and 4% for gas production. A variety of one-time (drilling) and ongoing (oil and gas production) emission factors for greenhouse gases, methane, and volatile organic compounds (VOCs) are applied to the predicted oil and gas operations. Based on the range of emission factor values reported in the literature, emissions from well completions are the most significant source of emissions, followed by gas transmission and production. We estimate that the annual average VOC emissions rate for the oil and gas industry over the 2010–2015 time period was 44.2E+06 (mean) ± 12.8E+06 (standard deviation) kg VOCs per year (with all applicable emissions reductions). On the same basis, over the 2015–2019 period annual average VOC emissions from oil and gas operations are expected to drop 45% to 24.2E+06 ± 3.43E+06 kg VOCs per year, due to decreases in drilling activity and tighter emission standards.

Implications: This study improves upon previous methods for estimating emissions of ozone precursors from oil and gas operations in Utah’s Uinta Basin by tracking one-time and ongoing emission events on a well-by-well basis. The proposed method has proven highly accurate at predicting drilling and production activity and includes uncertainty estimates to describe the range of potential emissions inventory outcomes. If similar input data are available in other oil and gas producing regions, then the method developed here could be applied to those regions as well.  相似文献   

20.
Oil and gas activities have occurred in the Bakken region of North Dakota and nearby states and provinces since the 1950s but began increasing rapidly around 2008 due to new extraction methods. Three receptor-based techniques were used to examine the potential impacts of oil and gas extraction activities on airborne particulate concentrations in Class I areas in and around the Bakken. This work was based on long-term measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network. Spatial and temporal patterns in measured concentrations were examined before and after 2008 to better characterize the influence of these activities. A multisite back-trajectory analysis and a receptor-based source apportionment model were used to estimate impacts. Findings suggest that recent Bakken oil and gas activities have led to an increase in regional fine (PM2.5—particles with aerodynamic diameters <2.5 µm) soil and elemental carbon (EC) concentrations, as well as coarse mass (CM = PM10–PM2.5). Influences on sulfate and nitrate concentrations were harder to discern due to the concurrent decline in regional emissions of precursors to these species from coal-fired electric generating stations. Impacts were largest at sites in North Dakota and Montana that are closest to the most recent drilling activity.

Implications: The increase in oil and gas activities in the Bakken region of North Dakota and surrounding areas has had a discernible impact on airborne particulate concentrations that impact visibility at protected sites in the region. However, the impact has been at least partially offset by a concurrent reduction in emissions from coal-fired electric generating stations. Continuing the recent reductions in flaring would likely be beneficial for the regional visual air quality.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号