共查询到20条相似文献,搜索用时 0 毫秒
1.
The potential environmental impact of air pollutants emitted from the oil sands industry in Alberta, Canada, has received considerable attention. The mining and processing of bitumen to produce synthetic crude oil, and the waste products associated with this activity, lead to significant emissions of gaseous and particle air pollutants. Deposition of pollutants occurs locally (i.e., near the sources) and also potentially at distances downwind, depending upon each pollutant’s chemical and physical properties and meteorological conditions. The Joint Oil Sands Monitoring Program (JOSM) was initiated in 2012 by the Government of Canada and the Province of Alberta to enhance or improve monitoring of pollutants and their potential impacts. In support of JOSM, Environment and Climate Change Canada (ECCC) undertook a significant research effort via three components: the Air, Water, and Wildlife components, which were implemented to better estimate baseline conditions related to levels of pollutants in the air and water, amounts of deposition, and exposures experienced by the biota. The criteria air contaminants (e.g., nitrogen oxides [NO x], sulfur dioxide [SO 2], volatile organic compounds [VOCs], particulate matter with an aerodynamic diameter <2.5 μm [PM 2.5]) and their secondary atmospheric products were of interest, as well as toxic compounds, particularly polycyclic aromatic compounds (PACs), trace metals, and mercury (Hg). This critical review discusses the challenges of assessing ecosystem impacts and summarizes the major results of these efforts through approximately 2018. Focus is on the emissions to the air and the findings from the Air Component of the ECCC research and linkages to observations of contaminant levels in the surface waters in the region, in aquatic species, as well as in terrestrial and avian species. The existing evidence of impact on these species is briefly discussed, as is the potential for some of them to serve as sentinel species for the ongoing monitoring needed to better understand potential effects, their potential causes, and to detect future changes. Quantification of the atmospheric emissions of multiple pollutants needs to be improved, as does an understanding of the processes influencing fugitive emissions and local and regional deposition patterns. The influence of multiple stressors on biota exposure and response, from natural bitumen and forest fires to climate change, complicates the current ability to attribute effects to air emissions from the industry. However, there is growing evidence of the impact of current levels of PACs on some species, pointing to the need to improve the ability to predict PAC exposures and the key emission source involved. Although this critical review attempts to integrate some of the findings across the components, in terms of ECCC activities, increased coordination or integration of air, water, and wildlife research would enhance deeper scientific understanding. Improved understanding is needed in order to guide the development of long-term monitoring strategies that could most efficiently inform a future adaptive management approach to oil sands environmental monitoring and prevention of impacts. Implications: Quantification of atmospheric emissions for multiple pollutants needs to be improved, and reporting mechanisms and standards could be adapted to facilitate such improvements, including periodic validation, particularly where uncertainties are the largest. Understanding of baseline conditions in the air, water and biota has improved significantly; ongoing enhanced monitoring, building on this progress, will help improve ecosystem protection measures in the oil sands region. Sentinel species have been identified that could be used to identify and characterize potential impacts of wildlife exposure, both locally and regionally. Polycyclic aromatic compounds are identified as having an impact on aquatic and terrestrial wildlife at current concentration levels although the significance of these impacts and attribution to emissions from oil sands development requires further assessment. Given the improvement in high resolution air quality prediction models, these should be a valuable tool to future environmental assessments and cumulative environment impact assessments. 相似文献
2.
It has been reported that ambient ozone (O 3), either alone or in concurrence with acid rain precursors, accounts for up to 90% of US crop losses resulting from exposure to all major air pollutants. Crop damage due to O 3 exposure is of particular concern as ambient O 3 concentrations remain high in many major food-producing regions. Assessing O 3 damage to crops is challenging due to the difficulties in determining the reduction in crop yield that results from exposure to surface O 3, for which monitors are limited and mostly deployed in non-rural areas. This work explores the potential benefits of using operational air quality forecast (AQF) data to estimate rural O 3 exposure. Using the results from the first nationwide AQF as a case study, we demonstrate how the O 3 data provided by AQF can be combined with concurrent crop information to assess O 3 damages to soybeans in the United States. We estimate that exposure to ambient O 3 reduces the US soybean production by 10% in 2005. 相似文献
3.
An explosive growth in natural gas production within the last decade has fueled concern over the public health impacts of air pollutant emissions from oil and gas sites in the Barnett and Eagle Ford shale regions of Texas. Commonly acknowledged sources of uncertainty are the lack of sustained monitoring of ambient concentrations of pollutants associated with gas mining, poor quantification of their emissions, and inability to correlate health symptoms with specific emission events. These uncertainties are best addressed not by conventional monitoring and modeling technology, but by increasingly available advanced techniques for real-time mobile monitoring, microscale modeling and source attribution, and real-time broadcasting of air quality and human health data over the World Wide Web. The combination of contemporary scientific and social media approaches can be used to develop a strategy to detect and quantify emission events from oil and gas facilities, alert nearby residents of these events, and collect associated human health data, all in real time or near-real time. The various technical elements of this strategy are demonstrated based on the results of past, current, and planned future monitoring studies in the Barnett and Eagle Ford shale regions. Implications: Resources should not be invested in expanding the conventional air quality monitoring network in the vicinity of oil and gas exploration and production sites. Rather, more contemporary monitoring and data analysis techniques should take the place of older methods to better protect the health of nearby residents and maintain the integrity of the surrounding environment. 相似文献
4.
Environmental impact assessments in Brazil have usually focused solely on project-related issues without considering the regional context. Although required by current environmental legislation, cumulative impact assessments have not been included in the overall environmental assessment of projects. However, in recent Strategic Environmental Assessment (SEA) studies of policies, plans, and programs undertaken on a voluntary basis in support of the decision-making process, this kind of assessment has been performed especially with respect to air quality. This paper presents the application of a methodology for the quantification of cumulative impacts on air quality under high uncertainty caused by various mining activities in a single region that is recommended for SEA studies. In this way, the methodology presented here is suitable for areas lacking detailed modeling information. The developed approach uses a relatively simplified mathematical model, lowering information gathering costs and requiring little processing time. The application of the methodology is illustrated in the case of a SEA of the Corumbá Mining and Industrial Complex Development Program. Despite the lack of data needed for a minimum characterization of conditions of the area surrounding the region modeled, the quantification of impact cumulativeness on air quality has played an important role in the context of the SEA. 相似文献
5.
In the present study, more realistic and easily adaptable input parameters have been used with a view to investigating the long-range air quality analysis for the dispersion of air pollutants emitted from an area source with a multiple box model. The model formulation has been discussed at length for the ground level sources when convective conditions prevail. The routine meteorological observations have been used for the computation of sensible surface heat flux, friction velocity and mixing depth. A radiation model provides the estimates of the sensible surface heat flux. Based on the similarity theory, an iterative procedure has been adopted for the estimation of friction velocity which provides a coupling of radiation computation and the surface layer of the planetary boundary layer through surface heat flux expression. The important parameters—wind speed and eddy diffusivity profiles—have been derived and have been used to obtain the concentration patterns as hourly averages. The procedure could be easily adopted where observed meteorological parameters may be used for studying the dispersal of pollutants from the ground level sources. 相似文献
7.
This paper examines the use of Moderate Resolution Imaging Spectroradiometer (MODIS) observed active fire data (pixel counts) to refine the National Emissions Inventory (NEI) fire emission estimates for major wildfire events. This study was motivated by the extremely limited information available for many years of the United States Environmental Protection Agency (US EPA) NEI about the specific location and timing of major fire events. The MODIS fire data provide twice-daily snapshots of the locations and breadth of fires, which can be helpful for identifying major wildfires that typically persist for a minimum of several days. A major wildfire in Mallory Swamp, FL, is used here as a case study to test a reallocation approach for temporally and spatially distributing the state-level fire emissions based on the MODIS fire data. Community Multiscale Air Quality (CMAQ) model simulations using these reallocated emissions are then compared with another simulation based on the original NEI fire emissions. We compare total carbon (TC) predictions from these CMAQ simulations against observations from the Inter-agency Monitoring of Protected Visual Environments (IMPROVE) surface network. Comparisons at three IMPROVE sites demonstrate substantial improvements in the temporal variability and overall correlation for TC predictions when the MODIS fire data is used to refine the fire emission estimates. These results suggest that if limited information is available about the spatial and temporal extent of a major wildfire fire, remotely sensed fire data can be a useful surrogate for developing the fire emissions estimates for air quality modeling purposes. 相似文献
8.
The recent upsurge in residential wood combustion has raised questions about potential adverse effects on ambient air quality and public health. Before policymakers can make informed and rational decisions about the need for government intervention, more information is needed concerning the nature and extent of the problem. This paper presents findings from the 1982 Harvard Wood-Burning Study in Waterbury, Vermont. Waterbury, a rural community of about 2000 people, was an ideal location for this investigation because: (1) half of the private residences are heated with wood fuel; (2) frequent winter temperature inversions promote pollution buildup in the valley; (3) there are no major industrial sources and (4) the Vermont Agency of Environmental Conservation has compiled a detailed wood-burning inventory. The ambient air monitoring study, from January to March 1982, emphasized measurements of total, inhalable and respirable particulate matter. Results indicate that 60–70% of the Waterbury aerosol was composed of particles less than 2.5 μm. A combination of indirect evidence suggests that wood burning was the major source of airborne particles in residential sections of the town. Dramatic diurnal variations in particulate concentrations were observed, with peak values at night exceeding afternoon levels by 5- to 10-fold. Both meteorology and emission patterns contributed to observed fluctuations. 相似文献
9.
Oil sands mining in the Athabasca region of northern Alberta results in the production of large volumes of oil sands process-affected water (OSPW). We have evaluated the effects of OSPW, the acid extractable organic (AEO) fraction of OSPW, and individual naphthenic acids (NAs) on the germination and development of the model plant, Arabidopsis thaliana (Arabidopsis). The surrogate NAs that were selected for this study were petroleum NAs that have been used in previous toxicology studies and may not represent OSPW NAs. A tricyclic diamondoid NA that was recently identified as a component of OSPW served as a model NA in this study. Germination of Arabidopsis seeds was not inhibited when grown on medium containing up to 75% OSPW or by 50 mg L −1 AEO. However, simultaneous exposure to three simple, single-ringed surrogate NAs or a double-ringed surrogate NA had an inhibitory effect on germination at a concentration of 10 mg L −1, whereas inhibition of germination by the diamondoid model NA was observed only at 50 mg L −1. Seedling root growth was impaired by treatment with low concentrations of OSPW, and exposure to higher concentrations of OSPW resulted in increased growth inhibition of roots and primary leaves, and caused bleaching of cotyledons. Treatment with single- or double-ringed surrogate NAs at 10 mg L −1 severely impaired seedling growth. AEO or diamondoid NA treatment was less toxic, but resulted in severely impaired growth at 50 mg L −1. At low NA concentrations there was occasionally a stimulatory effect on root and shoot growth, possibly owing to the broad structural similarity of some NAs to known plant growth regulators such as auxins. This report provides a foundation for future studies aimed at using Arabidopsis as a biosensor for toxicity and to identify genes with possible roles in NA phytoremediation. 相似文献
10.
An indoor/outdoor monitoring study was conducted during January–March 1982 in Waterbury, Vermont. Respirable particle measurements were made inside and outside 24 homes (all occupants were nonsmokers), 19 with wood-burning appliances and 5 without. Data were also obtained on seasonal air-exchange rate, heating fuel consumption, and relevant home characteristics. Findings indicate that indoor particle levels are consistently higher than outdoor values regardless of heating-fuel type. No statistical difference was observed between 24-h average respirable particle levels in wood- and nonwood-burning homes. A linear regression model, incorporating information on air-exchange rate, house volume, fuel use, and outdoor levels, accounted for about 20% of the variance in indoor particle concentrations. 相似文献
11.
Dispersants are important tools in oil spill response. Taking advantage of the energy in even small waves, they disperse floating oil slicks into tiny droplets (<70 μm) that entrain in the water column and drift apart so that they do not re-agglomerate to re-form a floating slick. The dramatically increased surface area allows microbial access to much more of the oil, and diffusion and dilution lead to oil concentrations where natural background levels of biologically available oxygen, nitrogen, and phosphorus are sufficient for microbial growth and oil consumption. Dispersants are only used on substantial spills in relatively deep water (usually >10 m), conditions that are impossible to replicate in the laboratory. To date, laboratory experiments aimed at following the biodegradation of dispersed oil usually show only minimal stimulation of the rate of biodegradation, but principally because the oil in these experiments disperses fairly effectively without dispersant. What is needed is a test protocol that allows comparison between an untreated slick that remains on the water surface during the entire biodegradation study and dispersant-treated oil that remains in the water column as small dispersed oil droplets. We show here that when this is accomplished, the rate of biodegradation is dramatically stimulated by an effective dispersant, Corexit 9500®. Further development of this approach might result in a useful tool for comparing the full benefits of different dispersants. 相似文献
12.
结合某公司100万t/a延迟焦化项目的具体实例,探究石油炼化项目环境风险评价中的问题.利用故障树分析模型和ALOFT-FT模型,对延迟焦化项目生产装置和储存装置可能存在的环境风险进行半定量评价.结果表明,焦化装置中的焦化分馏炉和脱硫装置中的干气脱硫塔物料发生爆炸时,对人产生伤害的半径分别为157、199 m;液化石油气储存罐泄漏引发火灾,在下风向120 m,距地面60 m的范围内,黑色烟雾(VOC)日均值超过了0.3 mg/m3限值, 1 h平均值为1.35 mg/m3;而CO浓度相对较小. 相似文献
13.
Environmental Science and Pollution Research - Coal-fired power plants are one of the major sources of coal consumption in China; they discharge various air pollutants and cause serious human... 相似文献
14.
A growing number of epidemiological studies conducted worldwide suggest an increase in the occurrence of adverse health effects in populations living, working, or going to school near major roadways. A study was designed to assess traffic emissions impacts on air quality and particle toxicity near a heavily traveled highway. In an attempt to describe the complex mixture of pollutants and atmospheric transport mechanisms affecting pollutant dispersion in this near-highway environment, several real-time and time-integrated sampling devices measured air quality concentrations at multiple distances and heights from the road. Pollutants analyzed included U.S. Environmental Protection Agency (EPA)-regulated gases, particulate matter (coarse, fine, and ultrafine), and air toxics. Pollutant measurements were synchronized with real-time traffic and meteorological monitoring devices to provide continuous and integrated assessments of the variation of near-road air pollutant concentrations and particle toxicity with changing traffic and environmental conditions, as well as distance from the road. Measurement results demonstrated the temporal and spatial impact of traffic emissions on near-road air quality. The distribution of mobile source emitted gas and particulate pollutants under all wind and traffic conditions indicated a higher proportion of elevated concentrations near the road, suggesting elevated exposures for populations spending significant amounts of time in this microenvironment. Diurnal variations in pollutant concentrations also demonstrated the impact of traffic activity and meteorology on near-road air quality. Time-resolved measurements of multiple pollutants demonstrated that traffic emissions produced a complex mixture of criteria and air toxic pollutants in this microenvironment. These results provide a foundation for future assessments of these data to identify the relationship of traffic activity and meteorology on air quality concentrations and population exposures. 相似文献
15.
Peroxyacyl nitrates (PANs) were measured using gas chromatography with electron capture detection (GC/ECD) in north central Mexico City during February–March of 1997. Peroxyacetyl nitrate (PAN) was observed to exceed 30 ppb during five days of the study, with peroxypropionyl nitrate (PPN) and peroxybutryl nitrate (PBN) reaching 6 and 1 ppb maximum, respectively. Levels of total PANs typically exceeded 10 ppb during the period of measurement and showed a very strong diurnal variation with PANs maximum during the early afternoon and falling to less than 0.1 ppb during the evening hours. These levels of PANs are the highest reported values in North America (and the world) for an urban center, since levels of approximately 30 ppb were reported during the late 1970s in the Los Angeles area (South Coast Air Basin, Tuazon et al., 1978). Hydrocarbon measurements indicate that the levels of olefins, specifically butenes are significant in Mexico City. A time series taken of source indicator hydrocarbons taken before and during a Mexican National Holiday with reduced automobile traffic clearly show that mobile sources of butenes are as important as liquefied petroleum gas. Observations of 10–40 ppb C methyl- t-butyl ether (MTBE) are consistent with MTBE/gasoline fuel usage as a source of isobutene and formaldehyde. Both these reactive species can lead to increased oxidant and PAN formation. The strong diurnal profiles of PANs are consistent with regional clearing of the Mexico City air basin on a daily basis. Estimates are given using a simple box model calculation for a number of key primary and secondary pollutant emissions from this megacity on an annual basis. These calculations indicate that megacities can be important sources of both primary and secondary pollutants, and that PANs produced in megacity environments are likely to contribute strongly to regional scale ozone and aerosol productions during long range transport. 相似文献
16.
In this paper, we show the implementation of a modified version of MM5-CMAQ for carrying out an air quality impact analysis for installing an incinerator in the Basque Country model domain (Spain). The modified CMAQ model (EPA USA, 2004) includes Poly-Chlorinated Dibenzop-Dioxins and Dibenzo-Furans (dioxins and furans). This model represents their congeners as divided between gaseous and aerosol forms that exchange mass based on theoretical coefficients for gas to particle portioning. The emission model EMIMO – developed by UPM – has been adapted to incorporate the three metals and the benzo(a)pyrene according to the EMEP annual emission inventory. In addition, the PCDD/F EMEP emission inventory has been incorporated into the EMIMO model to produce proper 1 hr and 1 km × 1 km emission PCDD/F estimation. The emissions of the projected incinerator are incorporated by using the chimney technical parameters and the limit emission values (worst-case scenario) prescribed in the Directive/2000/76/CE. 相似文献
17.
Peri-urban agriculture is vital for the urban populations of many developing countries. Increases in both industrialization and urbanization, and associated air pollution threaten urban food production and its quality. Six hour mean concentrations were monitored for SO(2), NO(2) and O(3) and plant responses were measured in terms of physiological characteristics, pigment, biomass and yield. Parameter reductions in mung bean (Vigna radiata), palak (Beta vulgaris), wheat (Triticum aestivum) and mustard (Brassica compestris) grown within the urban fringes of Varanasi, India correlated directly with the gaseous pollutants levels. The magnitude of response involved all three gaseous pollutants at peri-urban sites; O(3) had more influence at a rural site. The study concluded that air pollution in Varanasi could negatively influence crop yield. 相似文献
18.
A biennial integrated survey, based on the use of vascular plants for the bioindication of the effects of tropospheric ozone together with the use of automatic analysers of ozone, as well as the mapping of lichen biodiversity was performed in the area of Castelfiorentino (Tuscany, central Italy). Photochemically produced ozone proved to be a fundamental presence during the warm season, with maximum hourly means reaching 114 ppb, exceeding the information threshold as fixed by EU: the use of supersensitive tobacco Bel-W3 confirmed the opportunity of carrying out detailed cost-effective monitoring surveys. The potential for didactical and educational implications of this methodology are appealing. Critical levels set up for the protection of vegetation have exceeded considerably. The comparison of biomass productivity in sensitive and resistant individuals (NC-S and NC-R white clover clones, in the framework of an European network) provided evidence that ambient ozone levels are associated with relevant reduction (up to 30%) in the performance of sensitive material; effects on flowering were also pronounced. The economic assessment of such an impact deserves attention. Mapping of epiphytic lichen biodiversity – which has been used to monitor air quality worldwide – was not related to ozone geographical distribution as depicted by tobacco response. 相似文献
19.
Numerical simulations were conducted to investigate the effects of building height ratio (i.e., HR, the height ratio of the upstream building to the downstream building) on the air quality in buildings beside street canyons, and both regular and staggered canyons were considered for the simulations. The results show that the building height ratio affects not only the ventilation fluxes of the rooms in the downstream building but also the pollutant concentrations around the building. The parameter, outdoor effective source intensity of a room, is then proposed to calculate the amount of vehicular pollutants that enters into building rooms. Smaller value of this parameter indicates less pollutant enters the room. The numerical results reveal that HRs from 2/7 to 7/2 are the favorable height ratios for the regular canyons, as they obtain smaller values than the other cases. While HR values of 5/7, 7/7, and 7/5 are appropriate for staggered canyons. In addition, in terms of improving indoor air quality by natural ventilation, the staggered canyons with favorable HR are better than those of the regular canyons. 相似文献
20.
This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill. 相似文献
|