首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Belmaker J  Ziv Y  Shashar N  Connolly SR 《Ecology》2008,89(10):2829-2840
The size of the regional species pool may influence local patterns of diversity. However, it is unclear whether certain spatial scales are less sensitive to regional influences than others. Additive partitioning was used to separate coral-dwelling fish diversity to its alpha and beta components, at multiple scales, in several regions across the Indo-Pacific. We then examined how the relative contribution of these components changes with increased regional diversity. By employing specific random-placement null models, we overcome methodological problems with local-regional regressions. We show that, although alpha and beta diversities within each region are consistently different from random-placement null models, the increase in beta diversities among regions was similar to that predicted once heterogeneity in coral habitat was accounted for. In contrast, alpha diversity within single coral heads was limited and increased less than predicted by the null models. This was correlated with increased intraspecific aggregation in more diverse regions and is consistent with ecological limitations on the number of coexisting species at the local scale. These results suggest that, apart from very small spatial scales, variation in the partitioning of fish diversity along regional species richness gradients is driven overwhelmingly by the corresponding gradients in coral assemblage structure.  相似文献   

2.
Experimental studies demonstrating that nitrogen (N) enrichment reduces plant diversity within individual plots have led to the conclusion that anthropogenic N enrichment is a threat to global biodiversity. These conclusions overlook the influence of spatial scale, however, as N enrichment may alter beta diversity (i.e., how similar plots are in their species composition), which would likely alter the degree to which N-induced changes in diversity within localities translate to changes in diversity at larger scales that are relevant to policy and management. Currently, it is unclear how N enrichment affects biodiversity at scales larger than a small plot. We synthesized data from 18 N-enrichment experiments across North America to examine the effects of N enrichment on plant species diversity at three spatial scales: small (within plots), intermediate (among plots), and large (within and among plots). We found that N enrichment reduced plant diversity within plots by an average of 25% (ranging from a reduction of 61% to an increase of 5%) and frequently enhanced beta diversity. The extent to which N enrichment altered beta diversity, however, varied substantially among sites (from a 22% increase to an 18% reduction) and was contingent on site productivity. Specifically, N enrichment enhanced beta diversity at low-productivity sites but reduced beta diversity at high-productivity sites. N-induced changes in beta diversity generally reduced the extent of species loss at larger scales to an average of 22% (ranging from a reduction of 54% to an increase of 18%). Our results demonstrate that N enrichment often reduces biodiversity at both local and regional scales, but that a focus on the effects of N enrichment on biodiversity at small spatial scales may often overestimate (and sometimes underestimate) declines in regional biodiversity by failing to recognize the effects of N on beta diversity.  相似文献   

3.
A multivariate analysis of beta diversity across organisms and environments   总被引:3,自引:0,他引:3  
Soininen J  Lennon JJ  Hillebrand H 《Ecology》2007,88(11):2830-2838
We examined variability in hierarchical beta diversity across ecosystems, geographical gradients, and organism groups using multivariate spatial mixed modeling analysis of two independent data sets. The larger data set comprised reported ratios of regional species richness (RSR) to local species richness (LSR) and the second data set consisted of RSR:LSR ratios derived from nested species-area relationships. There was a negative, albeit relatively weak, relationship between beta diversity and latitude. We found only relatively subtle differences in beta diversity among the realms, yet beta diversity was lower in marine systems than in terrestrial or freshwater realms. Beta diversity varied significantly among organisms' major characteristics such as body mass, trophic position, and dispersal type in the larger data set. Organisms that disperse via seeds had highest beta diversity, and passively dispersed organisms showed the lowest beta diversity. Furthermore, autotrophs had lower beta diversity than organisms higher up the food web; omnivores and carnivores had consistently higher beta diversity. This is evidence that beta diversity is simultaneously controlled by extrinsic factors related to geography and environment, and by intrinsic factors related to organism characteristics.  相似文献   

4.
Bryant JA  Stewart FJ  Eppley JM  DeLong EF 《Ecology》2012,93(7):1659-1673
Oxygen minimum zones (OMZs) are natural physical features of the world's oceans. They create steep physiochemical gradients in the water column, which most notably include a dramatic draw down in oxygen concentrations over small vertical distances (<100 m). Microbial communities within OMZs play central roles in ocean and global biogeochemical cycles, yet we still lack a fundamental understanding of how microbial biodiversity is distributed across OMZs. Here, we used metagenomic sequencing to investigate microbial diversity across a vertical gradient in the water column during three seasons in the Eastern Tropical South Pacific (ETSP) OMZ. Based on analysis of small subunit ribosomal RNA (SSU rRNA) gene fragments, we found that both taxonomic and phylogenetic diversity declined steeply along the transition from oxygen-rich surface water to the permanent OMZ. We observed similar declines in the diversity of protein-coding gene categories, suggesting a decrease in functional (trait) diversity with depth. Metrics of functional and trait dispersion indicated that microbial communities are phylogenetically and functionally more overdispersed in oxic waters, but clustered within the OMZ. These dispersion patterns suggest that community assembly drivers (e.g., competition, environmental filtering) vary strikingly across the oxygen gradient. To understand the generality of our findings, we compared OMZ results to two marine depth gradients in subtropical oligotrophic sites and found that the oligotrophic sites did not display similar patterns, likely reflecting unique features found in the OMZ. Finally, we discuss how our results may relate to niche theory, diversity-energy relationships and stress gradients.  相似文献   

5.
Davies KF  Harrison S  Safford HD  Viers JH 《Ecology》2007,88(8):1940-1947
At small scales, areas with high native diversity are often resistant to invasion, while at large scales, areas with more native species harbor more exotic species, suggesting that different processes control the relationship between native and exotic species diversity at different spatial scales. Although the small-scale negative relationship between native and exotic diversity has a satisfactory explanation, we lack a mechanistic explanation for the change in relationship to positive at large scales. We investigated the native-exotic diversity relationship at three scales (range: 1-4000 km2) in California serpentine, a system with a wide range in the productivity of sites from harsh to lush. Native and exotic diversity were positively correlated at all three scales; it is rarer to detect a positive relationship at the small scales within which interactions between individuals occur. However, although positively correlated on average, the small-scale relationship between native and exotic diversity was positive at low-productivity sites and negative at high-productivity sites. Thus, the change in the relationship between native and exotic diversity does not depend on spatial scale per se, but occurs whenever environmental conditions change to promote species coexistence rather than competitive exclusion. This occurred within a single spatial scale when the environment shifted from being locally unproductive to productive.  相似文献   

6.
The increasing pressure on marine biodiversity emphasizes the importance of finding benchmarks against which to assess change. This is, however, a notoriously difficult task in estuarine ecosystems, where environmental gradients are steep, and where benthic biodiversity is highly variable in space and time. Although recent emphasis on diverse, healthy benthic communities in legislative frameworks has increased the number of indices developed for assessing benthic status, there is a lack of quantitative baselines in benthic diversity that would enable comparisons across broad spatial scales, encompassing different environmental settings and bioregions. By taking advantage of long-term monitoring data, spanning hundreds of stations over the past 40 years, we provide a comprehensive analysis of benthic a, beta, and gamma diversity, encompassing the entire' salinity gradient of the open sea areas of the large, brackish-water Baltic Sea. Using a relatively simple measure, average regional diversity, we define area-specific reference conditions and acceptable deviation against which to gauge current conditions in benthic macrofaunal diversity. Results show a severely impaired condition throughout large areas of the Baltic for the assessment period 2001-2006. All ecosystems are plagued by baselines that shift in time and space, and their definition is not trivial, but average regional diversity may offer a transparent way to deal with such changes in low-diversity systems. Identifying baselines will be of increasing importance given the potential of climatic drivers to interact with local anthropogenic stressors to affect patterns of biodiversity. Our analysis provides an evaluation of the current condition in a system that has been heavily influenced by anthropogenic impact and changing oceanographic conditions, and it provides a basis for future impact assessment and ecosystem-based management.  相似文献   

7.
Marine fisheries in coastal ecosystems in many areas of the world have historically removed large-bodied individuals, potentially impairing ecosystem functioning and the long-term sustainability of fish populations. Reporting on size-based indicators that link to food-web structure can contribute to ecosystem-based management, but the application of these indicators over large (cross-ecosystem) geographical scales has been limited to either fisheries-dependent catch data or diver-based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large-bodied fished species. We obtained data on the body-size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo-video (stereo-BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No-take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal-size fishes typically declined as human impact increased. Our large-scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no-take marine reserves in protecting large-bodied fishes across a broad range of species and ecosystem configurations.  相似文献   

8.
Detecting habitat selection depends on the spatial scale of analysis, but multi-scale studies have been limited by the use of a few, spatially variable, hierarchical levels. We developed spatially explicit approaches to quantify selection along a continuum of scales using spatial (coarse-graining) and geostatistical (variogram) pattern analyses at multiple levels of habitat use (seasonal range, travel routes, feeding areas, and microsites). We illustrate these continuum-based approaches by applying them to winter habitat selection by woodland caribou (Rangifer tarandus caribou) using two key habitat components, Cladina lichens and snow depth. We quantified selection as the reduction in variance in used relative to available sites, thus avoiding reliance on correlations between organism and habitat, for which interpretation can be impeded by cross-scale correlations. By consistently selecting favorable habitat features, caribou experienced reduced variance in these features. The degree to which selection was accounted for by the travel route, feeding area, or microsite levels varied across the scale continuum. Caribou selected for Cladina within a 13-km scale domain and selected shallower snow at all scales. Caribou responded most strongly at the dominant scales of patchiness, implicating habitat heterogeneity as an underlying cause of multi-scale habitat selection. These novel approaches enable a spatial understanding of resource selection behavior.  相似文献   

9.
10.
Freestone AL  Inouye BD 《Ecology》2006,87(10):2425-2432
Understanding the large-scale distribution of species diversity requires distinguishing two of the primary factors that cause compositional differences: dispersal limitation and environmental variation. In a community with a naturally discontinuous spatial structure, we asked (1) at what scale(s) nonrandom variation in species composition occurs and (2) at what scale(s) such variation is associated with spatial separation, indicative of dispersal limitation, and at what scale(s) variation is associated with environmental heterogeneity? We sampled 50 seeps (small wetlands) on five serpentine outcrops. Using a randomization model, we showed that additive beta diversity (a measure of community dissimilarity) was lower than random within seeps and higher than random among both seeps and outcrops. Using Mantel tests, we showed that plant community dissimilarity, in both the full seep assemblage as well as in a subset of seep endemics, at the two larger scales was associated with different forms of environmental heterogeneity and, at the largest scale, was also associated with geographic distance. We conclude that diversity in this system is shaped by multiple scales of heterogeneity and by dispersal limitation at the largest scale.  相似文献   

11.
To estimate species turnover rates on scales of several tens of km in deep-sea benthic animals, we analyzed spatial and inter-annual changes in species diversity and composition of cerviniids, a typical group of deep-sea harpacticoids, at stations in and around Sagami Bay, central Japan. Associations with environmental factors were also investigated. Generally, bathymetrical patterns in diversity of benthos are unimodal and peak at depths of 2,000–3,000 m. In Sagami Bay, cerviniid diversity did not follow this trend; both species richness and evenness were negatively correlated with water depth. Multivariate analyses [detrended correspondence analysis (DCA) and non-metric multi-dimensional scaling] suggested that temporal changes in species composition of cerviniids are smaller than spatial changes that occur on horizontal scales of several tens of km. Community structure does not change completely on these scales in the bathyal zone around Sagami Bay. DCA also showed that bathymetrical changes in species composition can be regulated by certain factors associated with water depth.  相似文献   

12.
滨海盐沼及其植物群落的分布与多样性   总被引:1,自引:0,他引:1  
贺强  安渊  崔保山 《生态环境》2010,19(3):657-664
滨海盐沼是广泛存在于世界中、高纬度地区的一种湿地生态系统,具有抵御风暴潮灾害、净化污染物和为珍稀濒危生物提供适宜生境等重要的生态和经济价值。滨海盐沼因随高程变化而急剧变化的环境梯度和植物带状分布现象而为生态学者阐释自然界物种的分布机制提供了理想系统。主要概述了滨海盐沼的定义、特点、类型、全球分布以及潮汐作用、土壤盐度等环境因子特征;阐述了不同尺度下滨海盐沼的植物群落分布和多样性特征。在滨海盐沼植物群落的分布特征上,重点阐述了中尺度下的植物带状分布,即植物群落往往在白海向陆渐高的不同高程梯度上表现出显著的分带分布,不同植物各自占据该梯度上的一定区域。通常认为,带状分布是植物竞争和物理性胁迫共同调控的结果,但其在不同地理区域的普适性仍存争议。滨海植物群落多样性往往较低,在中、小尺度上盐沼植物多样性受控于盐度、潮汐等物理性胁迫、植物间相互作用等因子的作用;在大尺度上盐沼植物多样性可能随纬度增大而增加。系统深入地认识滨海盐沼植物群落生态格局和过程,将为气候变化、生物入侵等人类影响下的滨海盐沼生态系统的管理和恢复提供有益经验。  相似文献   

13.
Cornell HV  Karlson RH  Hughes TP 《Ecology》2007,88(7):1707-1715
Community similarity is the proportion of species richness in a region that is shared on average among communities within that region. The slope of local richness (alpha diversity) regressed on regional richness (gamma diversity) can serve as an index of community similarity across regions with different regional richness. We examined community similarity in corals at three spatial scales (among transects at a site, sites on an island, and islands within an island group) across a 10 000-km longitudinal diversity gradient in the west-central Pacific Ocean. When alpha diversity was regressed on gamma diversity, the slopes, and thus community similarity, increased with scale (0.085, 0.261, and 0.407, respectively) because a greater proportion of gamma diversity was subsumed within alpha diversity as scale increased. Using standard randomization methods, we also examined how community similarity differed between observed and randomized assemblages and how this difference was affected by spatial separation of species within habitat types and specialization of species to three habitat types (reef flats, crests, and slopes). If spatial separation within habitat types and/or habitat specialization (i.e., underdispersion) occurs, fewer species are shared among assemblages than the random expectation. When the locations of individual coral colonies were randomized within and among habitat types, community similarity was 46-47% higher than that for observed assemblages at all three scales. We predicted that spatial separation of coral species within habitat types should increase with scale due to dispersal/extinction dynamics in this insular system, but that specialization of species to different habitat types should not change because habitat differences do not change with scale. However, neither habitat specialization nor spatial separation within habitat types differed among scales. At the two larger scales, each accounted for 22-24% of the difference in community similarity between observed and randomized assemblages. At the smallest scale (transect-site), neither spatial separation within habitat types nor habitat specialization had significant effects on community similarity, probably due to the small size of transect samples. The results suggest that coral species can disperse among islands in an island group as easily as they can among sites on an island over time scales that are relevant to their establishment and persistence on reefs.  相似文献   

14.
When changes in the frequency and extent of disturbance outstrip the recovery potential of resident communities, the selective removal of species contributes to habitat loss and fragmentation across landscapes. The degree to which habitat change is likely to influence community resilience will depend on metacommunity structure and connectivity. Thus ecological connectivity is central to understanding the potential for cumulative effects to impact upon diversity. The importance of these issues to coastal marine communities, where the prevailing concept of open communities composed of highly dispersive species is being challenged, indicates that these systems may be more sensitive to cumulative impacts than previously thought. We conducted a disturbance-recovery experiment across gradients of community type and environmental conditions to assess the roles of ecological connectivity and regional variations in community structure on the recovery of species richness, total abundance, and community composition in Mahurangi Harbour, New Zealand. After 394 days, significant differences in recovery between sites were apparent. Statistical models explaining a high proportion of the variability (R2 > 0.92) suggested that community recovery rates were controlled by a combination of physical and ecological features operating across spatial scales, affecting successional processes. The dynamic and complex interplay of ecological and environmental processes we observed driving patch recovery across the estuarine landscape are integral to recovery from disturbances in heterogeneous environments. This link between succession/recovery, disturbance, and heterogeneity confirms the utility of disturbance-recovery experiments as assays for cumulative change due to fragmentation and habitat change in estuaries.  相似文献   

15.
Barnett A  Beisner BE 《Ecology》2007,88(7):1675-1686
While empirical studies linking biodiversity to local environmental gradients have emphasized the importance of lake trophic status (related to primary productivity), theoretical studies have implicated resource spatial heterogeneity and resource relative ratios as mechanisms behind these biodiversity patterns. To test the feasibility of these mechanisms in natural aquatic systems, the biodiversity of crustacean zooplankton communities along gradients of total phosphorus (TP) as well as the vertical heterogeneity and relative abundance of their phytoplankton resources were assessed in 18 lakes in Quebec, Canada. Zooplankton community richness was regressed against TP, the spatial distribution of phytoplankton spectral groups, and the relative biomass of spectral groups. Since species richness does not adequately capture ecological function and life history of different taxa, features which are important for mechanistic theories, relationships between zooplankton functional diversity (FD) and resource conditions were examined. Zooplankton species richness showed the previously established tendency to a unimodal relationship with TP, but functional diversity declined linearly over the same gradient. Changes in zooplankton functional diversity could be attributed to changes in both the spatial distribution and type of phytoplankton resource. In the studied lakes, spatial heterogeneity of phytoplankton groups declined with TP, even while biomass of all groups increased. Zooplankton functional diversity was positively related to increased heterogeneity in cyanobacteria spatial distribution. However, a smaller amount of variation in functional diversity was also positively related to the ratio of biomass in diatoms/chrysophytes to cyanobacteria. In all observed relationships, a greater variation of functional diversity than species richness measures was explained by measured factors, suggesting that functional measures of zooplankton communities will benefit ecological research attempting to identify mechanisms behind environmental gradients affecting diversity.  相似文献   

16.
Kerswell AP 《Ecology》2006,87(10):2479-2488
Species richness patterns are remarkably similar across many marine taxa, yet explanations of how such patterns are generated and maintained are conflicting. I use published occurrence data to identify previously masked latitudinal and longitudinal diversity gradients for all genera of benthic marine macroalgae and for species in the Order Bryopsidales. I also quantify the size, location, and overlap of macroalgal geographic ranges to determine how the observed richness patterns are generated. Algal genera exhibit an inverse latitudinal gradient, with biodiversity hotspots in temperate regions, while bryopsidalean species reach peak diversity in the tropics. The geographic distribution of range locations results in distinct clusters of range mid-points. In particular, widespread taxa are centered within tight latitudinal and longitudinal bands in the middle of the Indo-Pacific and Atlantic Oceans while small-ranged taxa are clustered in peripheral locations, suggesting that variation in speciation and extinction are important drivers of algal diversity patterns. Hypotheses about factors that regulate diversity contain underlying assumptions about the size and location of geographic ranges, in addition to predictions as to why species numbers will differ among regions. Yet these assumptions are rarely considered in assessing the validity of the prevailing hypotheses. I assess a suite of hypotheses, suggested to explain patterns of marine diversity, by comparing algal-richness patterns in combination with the size and location of algal geographic ranges, to the richness and range locations predicted by these hypotheses. In particular, the results implicate habitat areas and ocean currents as the most plausible drivers of observed diversity patterns.  相似文献   

17.
Navarrete SA  Broitman BR  Menge BA 《Ecology》2008,89(5):1308-1322
Recruitment variation can be a major source of fluctuation in populations and communities, making it difficult to generalize results. Determining the scales of variation and whether spatial patterns in the supply of individuals are persistent over time can provide insight into spatial generality and the application of conservation and metacommunity models. We examined these issues using eight-year-long data sets of monthly recruitment of intertidal mussels (Mytilus spp., Perumytilus purpuratus, Semimytilus algosus, Brachidontes granulata) and barnacles (Balanus glandula, Chthamalus dalli, Jehlius cirratus, Notochthamalus scabrosus) at sites spanning > 900 km along the coasts of Oregon-northern California (OR-NCA, 45.47-39.43 degrees N) and central Chile (CC, 29.5-34.65 degrees S). We evaluated four general "null" hypotheses: that despite different phylogenies and great spatial separation of these taxa, their similar life history strategies and environmental settings lead to similar patterns of recruitment (1) between hemispheres, (2) in time, (3) in space, and (4) at larger and smaller spatial scales. Hypothesis 1 was rejected: along the OR-NCA coast, rates of recruitment were between two and three orders of magnitude higher, and patterns of seasonality were generally stronger and more coherent across space and time than along CC. Surprisingly, however, further analysis revealed regularities in both time and space for all species, supporting hypotheses 2 and 3. Temporal decorrelation scales were 1-3 months, and characteristic spatial scales of recruitment were approximately 250 km. Contrary to hypothesis 4, for the ecologically dominant species in both hemispheres, recruitment was remarkably persistent at larger mesoscales (kilometers) but was highly stochastic at smaller microscales (meters). Across species, increased recruitment variation at large scales was positively associated with increased persistence. Our results have several implications. Although the two regions span distinct latitudinal ranges, potential forcing processes behind these patterns include similar large-scale climates and topographically locked hydrographic features, such as upwelling. Further, spatial persistence of the recruitment patterns of most species at the mesoscale supports the view that marine protected areas can be powerful conservation and management tools. Finally, persistent and yet contrasting spatial patterns of recruitment among competing species suggest that recent metacommunity models might provide useful representations of the mechanisms involved in species coexistence.  相似文献   

18.
Preserving biodiversity over time is a pressing challenge for conservation science. A key goal of marine protected areas (MPAs) is to maintain stability in species composition, via reduced turnover, to support ecosystem function. Yet, this stability is rarely measured directly under different levels of protection. Rather, evaluations of MPA efficacy generally consist of static measures of abundance, species richness, and biomass, and rare measures of turnover are limited to short-term studies involving pairwise (beta diversity) comparisons. Zeta diversity is a recently developed metric of turnover that allows for measurement of compositional similarity across multiple assemblages and thus provides more comprehensive estimates of turnover. We evaluated the effectiveness of MPAs at preserving fish zeta diversity across a network of marine reserves over 10 years in Batemans Marine Park, Australia. Snorkel transect surveys were conducted across multiple replicated and spatially interspersed sites to record fish species occurrence through time. Protection provided by MPAs conferred greater stability in fish species turnover. Marine protected areas had significantly shallower decline in zeta diversity compared with partially protected and unprotected areas. The retention of harvested species was four to six times greater in MPAs compared with partially protected and unprotected areas, and the stabilizing effects of protection were observable within 4 years of park implementation. Conversely, partial protection offered little to no improvement in stability, compared with unprotected areas. These findings support the efficacy of MPAs for preserving temporal fish diversity stability. The implementation of MPAs helps stabilize fish diversity and may, therefore, support biodiversity resilience under ongoing environmental change.  相似文献   

19.
The design of marine reserves is complex and fraught with uncertainty. However, protection of critical habitat is of paramount importance for reserve design. We present a case study as an example of a reserve design based on fine-scale habitats, the affinities of exploited species to these habitats, adult mobility, and the physical forcing affecting the dynamics of the habitats. These factors and their interaction are integrated in an algorithm that determines the optimal size and location of a marine reserve for a set of 20 exploited species within five different habitats inside a large kelp forest in southern California. The result is a reserve that encompasses approximately 42% of the kelp forest. Our approach differs fundamentally from many other marine reserve siting methods in which goals of area, diversity, or biomass are targeted a priori. Rather, our method was developed to determine how large a reserve must be within a specific area to protect a self-sustaining assemblage of exploited species. The algorithm is applicable across different ecosystems, spatial scales, and for any number of species. The result is a reserve in which habitat value is optimized for a predetermined set of exploited species against the area left open to exploitation. The importance of fine-scale habitat definitions for the exploited species off La Jolla is exemplified by the spatial pattern of habitats and the stability of these habitats within the kelp forest, both of which appear to be determined by ocean microclimate.  相似文献   

20.
Conservation and management of marine biodiversity depends on biomonitoring of marine habitats, but current approaches are resource-intensive and require different approaches for different organisms. Environmental DNA (eDNA) extracted from water samples is an efficient and versatile approach to detecting aquatic animals. In the ocean, eDNA composition reflects local fauna at fine spatial scales, but little is known about the effectiveness of eDNA-based monitoring of marine communities at larger scales. We investigated the potential of eDNA to characterize and distinguish marine communities at large spatial scales by comparing vertebrate species composition among marine habitats in Qatar, the Arabian Gulf (also known as the Persian Gulf), based on eDNA metabarcoding of seawater samples. We conducted species accumulation analyses to estimate how much of the vertebrate diversity we detected. We obtained eDNA sequences from a diverse assemblage of marine vertebrates, spanning 191 taxa in 73 families. These included rare and endangered species and covered 36% of the bony fish genera previously recorded in the Gulf. Sites of similar habitat type were also similar in eDNA composition. The species accumulation analyses showed that the number of sample replicates was insufficient for some sampling sites but suggested that a few hundred eDNA samples could potentially capture >90% of the marine vertebrate diversity in the study area. Our results confirm that seawater samples contain habitat-characteristic molecular signatures and that eDNA monitoring can efficiently cover vertebrate diversity at scales relevant to national and regional conservation and management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号