首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 750 毫秒
1.
广西大石围天坑中多环芳烃的大气传输与分异   总被引:6,自引:4,他引:2  
孔祥胜  祁士华  孙骞  黄保健 《环境科学》2012,33(12):4212-4219
选择典型的岩溶地区广西乐业大石围天坑群为研究对象,利用聚氨酯泡沫被动采样器(PUF-PAS)采集大石围天坑口部至地下河剖面空气样品,并进行了气象参数的观测.利用气相色谱-质谱仪(GC-MS)测定16种多环芳烃(PAHs)优先控制污染物.结果表明,大石围天坑至地下河空气中ΣPAHs浓度范围为33.76~150.86 ng·d-1,平均值80.36 ng·d-1,其中绝壁、底部和地下河浓度分别为67.17、85.36和101.67 ng·d-1;空气中PAHs以2~3环的菲、蒽、萘、芴4种为主,占87.97%.PHAs的源来自于大气传输的化石燃料的燃烧.大石围天坑空气中PAHs的富集与传输过程为:地表-绝壁-底部-地下河,且浓度随深度/长度的增加有明显的增加趋势,在西峰脚、天坑底部和地下河处,低分子量的PAHs菲、蒽、芴和荧蒽发生了分异作用.温度是影响天坑中PAHs大气传输、富集的主要因子,其次为风向、风速和相对湿度;相对湿度和温度都是PAHs分异作用的主要因子,风速和风向为次要因子.总体上,天坑明显地展现了持久性有机污染物(POPs)的"冷陷阱效应"。  相似文献   

2.
广西大石围天坑群地下河水中多环芳烃的污染特征   总被引:13,自引:9,他引:4  
为了确定典型喀斯特区广西大石围天坑群地下河多环芳烃的组成、来源及污染特征,沿途采集了8个断面的表层水样品,利用GC-MS仪测试了16种优控多环芳烃(PAHs).结果表明, 地下河水中PAHs(总量PAHs)浓度为54.7~192.0 ng/L,平均值为102.3 ng/L, PAHs组成以2~3环为主,占65.1%. 地下河沿程水中的PAHs浓度变化表明,上游高于下游,是因为城镇污水的排放,同时地下河对4~6环PAHs具有吸附作用;大石围天坑断面的PAHs浓度显著增高93.8%,是由于地下河系统中环境介质的释放和大气传输;大石围支流汇合处的PAHs浓度被稀释降低了47.3%;百朗出口断面的PAHs浓度分别高于进口和大石围断面128.3%和17.8%. PAHs来源分析表明,城镇和大石围天坑区域显示以石油类及其燃烧源为主.然而,城镇的石油类源主要是人为输入,大石围天坑的则主要是天然输入;其余乡村地区显示以草木、煤燃烧源为主.与其他地区比较,大石围天坑群地下河水中PAHs污染处于较低的水平,但苯并[a]芘浓度6个断面超过国家地表水环境质量标准.  相似文献   

3.
大石围天坑群地下河沉积物中PAHs的污染特征   总被引:8,自引:0,他引:8  
为探索喀斯特地下河沉积物中多环芳烃(PAHs)的污染特征、来源,研究选择典型的广西乐业大石围天坑群地下河进行,沿途采集7个断面的沉积物样品,利用气相色谱-质谱(GC-MS)对16种优控PAHs进行定量分析.结果表明,大石围天坑群地下河上层沉积物中总PAHs浓度为37.75~1 662.72 ng/g,下层沉积物为43....  相似文献   

4.
谢婷  张淑娟  杨瑞强 《环境科学》2014,35(7):2680-2690
2007年8月采集了青藏高原中部与北部6个典型湖泊流域的土壤与牧草样品,分析了样品中多环芳烃和有机氯农药(包括六六六和滴滴涕)的污染水平.土壤样品中Σ16PAHs、ΣHCHs和ΣDDTs的浓度范围分别为60.6~614 ng·g-1(平均194 ng·g-1)、0.06~0.74 ng·g-1(平均0.31 ng·g-1)和N.D.~0.17 ng·g-1(平均0.07 ng·g-1).牧草样品中Σ15PAHs(不包括萘)、ΣHCHs和ΣDDTs的浓度分别为262~519 ng·g-1(平均327 ng·g-1),0.55~3.92 ng·g-1(平均2.17ng·g-1)和0.20~2.19 ng·g-1(平均0.92 ng·g-1),均远低于欧洲高山中相应介质中POPs的浓度.牧草的生物浓缩效应显著,其生物浓缩因子达到4.2~19.3.POPs的浓度分布与有机质/脂肪含量、海拔均无显著相关关系.PAHs的组成以较轻组分(2、3环PAHs)为主,占总浓度的80%以上.PAHs的特征单体比值表明生物质和化石燃料的低温燃烧是青藏高原PAHs的主要来源,同时较低的α/γ-HCH比率和较高的o,p’-DDT/p,p’-DDT比率表明,林丹以及三氯杀螨醇的使用对高原介质中有机氯农药的污染有一定的贡献.根据反向气团轨迹模型,推断冬季青藏高原中部与北部的污染主要受西风带影响,夏季高原中部位点的污染物主要源自印度次大陆,而北部位点还受到中国内陆省份的影响.  相似文献   

5.
2014年6月降雨期间在重庆南山老龙洞地下河出口处进行连续采样监测,利用GC-MS定量分析地下河溶解态中16种优控多环芳烃(PAHs)的含量,研究了降雨期间地下河溶解态PAHs变化特征及来源.结果表明,地下河溶解态PAHs对降雨反应迅速,ΣPAHs出现4个峰值,有2个出现在流量上升阶段,另外两个分别出现在流量最大值处和流量下降阶段.ΣPAHs范围为101~3 624 ng·L-1,平均值578 ng·L-1,7种致癌性PAHs变化较大,含量变化为ND~336 ng·L-1,平均值31.1 ng·L-1,PAHs的组成以低环(2、3环)为主,占水体ΣPAHs的86.17%;降雨对ΣPAHs影响较大,主要表现为雨水对大气污染物的清除及地表径流对地表污染物的冲刷.降雨期间水体中PAHs主要来源于石油类产品、煤炭等化石燃料的不完全燃烧、天然成岩过程,降雨期间老龙洞地下河水体中PAHs污染大部分为中等到重污染水平.  相似文献   

6.
深圳市表层土壤多环芳烃污染及空间分异研究   总被引:7,自引:5,他引:2  
章迪  曹善平  孙建林  曾辉 《环境科学》2014,35(2):711-718
以深圳为研究区域,选择土壤为研究对象,以多环芳烃(polycyclic aromatic hydrocarbons,PAHs)为目标物,采集表层土壤样品188个,调查样品中PAHs的赋存状态,以此为基础,分析土壤PAHs污染水平与城市化进程的关系,并初步评估深圳土壤中PAHs的生态风险.结果表明,表层土壤中的28种PAHs(Σ28PAHs)、16种美国环保署优控PAHs(Σ16PAHs)和7种致癌PAHs(Σ7CarPAHs)的含量范围分别为5~7 939 ng·g-1、2~6 745 ng·g-1和未检出~3 786 ng·g-1.8种土地利用类型中Σ16PAHs平均含量由高到低依次为:交通用地、商业用地、工业用地、农业用地、居住用地、城市绿地、果园和林地.来源分析表明,化石燃料的燃烧是建设用地和非建设用地样品Σ16PAHs的主要来源,贡献率分别为75.1%和68.2%.研究还发现高分子量PAHs浓度和城市化水平呈显著正相关关系,深圳市土壤中PAHs生态风险总体处于较低水平.  相似文献   

7.
岩溶地下河流域表层土壤多环芳烃污染特征及来源分析   总被引:10,自引:8,他引:2  
蓝家程  孙玉川  师阳  徐昕  袁道先  胡宁 《环境科学》2014,35(8):2937-2943
采集重庆南山老龙洞地下河流域农田土壤(0~20 cm),利用气相色谱-质谱联用仪(GC/MC)测定了土壤样品中16种优控多环芳烃(polycyclic aromatic hydrocarbons,PAHs)含量,分析其含量和组成,污染水平及污染来源.结果表明,流域内不同地点表层土壤16种PAHs总量变化范围为277~3301 ng·g-1,平均值为752.6 ng·g-1±635.5 ng·g-1,所有样品均遭受污染,其中57%为轻污染,29%为污染土壤,而14%为重污染.多环芳烃的组成以2~3环为主,占总量的28.72%~72.68%,平均值为48.20%;4环和5~6环含量分别为7.77%和34.03%.土壤PAHs含量与有机质(SOM)含量显著相关,而与pH值相关性不强.比值法和主成分分析(PCA)表明,流域内土壤主要来自交通排放与煤炭、石油及生物质燃烧的混合源以及石油源.  相似文献   

8.
舟山青浜岛不同环境介质中PAHs的分布特征   总被引:2,自引:2,他引:0  
于2013年7月在青浜岛上采集11个土壤样品、3个大气被动采样样品以及周边3个海水样品,分析了样品中16种多环芳烃(PAHs)的含量,并对其分布特征、来源、生态风险进行了讨论.结果表明,土壤、海水和大气中Σ16PAHs的含量范围分别为60.30~123.34 ng·g-1(平均值为105.49 ng·g-1)、45.96~101.08 ng·L-1(平均值为66.45 ng·L-1)和5.09~5.41ng·d-1(平均值为5.35 ng·d-1).分布特征为:潮汐带土壤中PAHs含量低于非潮汐带;3个海水样中,以靠近水文条件复杂的海域内样品中的PAHs含量最高;岛上大气中PAHs分布均匀.土壤、海水和大气中PAHs主要以2~4环的PAHs为主;通过比值法和因子分析得出,青浜岛土壤中的PAHs来源于煤、木炭等生物质燃烧以及柴油、汽油的燃烧,海水和大气中的PAHs来源于混合源.生态风险评价结果表明青浜岛土壤和周边海水中PAHs生态风险较低.  相似文献   

9.
舟山近海水体和沉积物中多环芳烃分布特征   总被引:11,自引:6,他引:5  
2012年,每两个月采集1次浙江省舟山近海水样及表层沉积物样品,检测16种多环芳烃(PAHs)含量.结果表明,舟山近海水体和沉积物中PAHs均存在显著的时空差异性,水体ΣPAHs浓度范围为382.3~816.9 ng·L-1,平均值为552.5ng·L-1;沉积物ΣPAHs含量范围为1017.9~3047.1 ng·g-1,平均值为2022.4 ng·g-1.空间分布上,水体ΣPAHs最大值和最小值分别出现在小洋山和燕窝山海域,而沉积物中分别出现在小洋山和朱家尖南沙海域.时间变化上,水体ΣPAHs最大值和最小值出现在10月和6月,而沉积物中分别出现在8月和6月.PAHs污染来源主要是油类排放和木柴、煤燃烧的共同叠加作用.结合PAHs的生物阈值,利用超标系数法评价舟山近海PAHs的生态风险,结果表明,ΣPAHs存在较低几率的潜在风险,但苊单体存在较高几率的潜在风险,二氢苊和芴可能存在生态风险.对水-沉积物界面PAHs的富集研究表明,舟山近海沉积物中富集了大量PAHs,富集系数(Kd值)岱山岛大于舟山本岛,并与沉积物的PAHs含量分布一致.  相似文献   

10.
多环芳烃在岩溶地下河表层沉积物-水相的分配   总被引:5,自引:3,他引:2  
蓝家程  孙玉川  肖时珍 《环境科学》2015,36(11):4081-4087
利用实测老龙洞地下河水中和沉积物中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的实际浓度,获取了溶解相-沉积物中PAHs的分配系数Kp值.研究了老龙洞地下河PAHs在水相和沉积物中的质量浓度变化及其在水相和沉积物间的分配.研究结果表明水相和沉积物中PAHs质量浓度分别为81.5~8 089 ng·L-1,平均值(1 439±2 248)ng·L-1和58.2~1 051 ng·g-1,平均值(367.9±342.6)ng·g-1;PAHs组成均以2~3环为主,但沉积物中明显富集高环PAHs.沉积物-水相Kp值分布在55.74~46 067 L·kg-1范围内,随PAHs环数的增加而增大.沉积物-水相中实测的有机碳分配系数(lg Koc)大部分高于预测值上限,PAHs强烈吸附在沉积物上.lg Koc与正辛醇-水分配系数(lg Kow)呈较好的线性自由能关系(R2=0.75),但其斜率小于1,推测地下河沉积物对PAHs化合物的吸收能力较差.  相似文献   

11.
以上海市为例,分析了城市地表灰尘、土壤和行道树叶片累积PAHs的水平差异,探讨了形成这种累积规律的原因与机制.结果发现,同一功能区内,地表灰尘和土壤中PAHs含量较高,分别为8 992~141 723 ng·g-1(均值为54 964 ng·g-1)、9 306~146 689 ng·g-1(均值为56 883 ng·g-1);而悬铃木叶片和小叶黄杨叶片内含量较低,且悬铃木叶片中的含量普遍高于小叶黄杨叶片,含量分别为2 423~32 883 ng·g-1(均值为12 983 ng·g-1)、1 498~19 418 ng·g-1(均值为7 612 ng·g-1).不同功能区之间,地表灰尘和土壤中PAHs总量存在显著差异,而悬铃木叶片和小叶黄杨叶片对PAHs的累积水平相似.灰尘和土壤中PAHs组分构成具有明显的功能区差异,且高环PAHs含量占主导地位.植物叶片中PAHs组分构成在不同功能区具有相似性,且低环组分占绝对优势,高环组分含量很少.这种累积规律与PAHs的理化性质,以及各介质累积PAHs的主要途径和方式密切相关.  相似文献   

12.
为探究岩溶槽谷区土壤中多环芳烃(PAHs)的环境行为,选取典型的竹林地、灌丛地和耕地作为研究对象,运用气相色谱-质谱联用仪定量分析土壤中的PAHs.结果表明,土壤剖面中PAHs污染水平表现为竹林地(204.13 ng·g-1)>耕地(175.47 ng·g-1)>灌丛地(106.00 ng·g-1),土壤质量总体良好.3种土地类型均表现为浅层土壤的PAHs含量显著高于深层土壤(p<0.05),表明岩溶区土壤对防止地下水污染具有重要意义;2~3环PAHs易运移至深层土壤,而4~6环PAHs受TOC含量的影响则主要积聚在浅层土壤,富集能力表现为灌丛地>耕地>竹林地;PAHs运移特征主要受控于有机质的吸附和水的溶解两种机制,PAHs和土壤的理化性质是影响PAHs运移的重要因素.结合同分异构体比值法和主成分分析法的源解析结果,得出研究区土壤中PAHs主要源于当地能源燃烧和交通污染,而大气沉降是重要污染途径.  相似文献   

13.
广西乐业大石围天坑群多环芳烃的干湿沉降   总被引:10,自引:7,他引:3  
为研究大气多环芳烃(PAHs)的沉降对广西乐业大石围天坑群喀斯特生态环境的影响,选择典型的大石围天坑,采用大气干湿采样器分季节进行了为期1 a(2007-03~2008-03)的大气干湿沉降样品采集,利用气相色谱-质谱联用仪(GC-MS)测定了16种PAHs优先控制污染物.结果表明,大气干湿沉降中PAHs的干湿沉降通量为132.36~1 655.27 ng.(m2.d)-1,平均值为855.00 ng.(m2.d)-1,大石围天坑的PAHs沉降量为51.98 g.a-1;PAHs的组成以苯并[b]荧蒽、、苯并[a]芘、苯并[k]荧蒽、蒽、菲、萘7种为主,占总量PAHs的78.5%;大气PAHs沉降通量的空间分布为东垭口>南垭口>西峰>北垭口;不同季节的沉降通量为春季>夏季>秋季>冬季,春、夏季PAHs沉降通量高于秋、冬季4.6倍,春、夏季以4~6环PAHs为主,而秋、冬季以2~3环PAHs为主;研究区大气PAHs沉降通量与降雨量、风向、风速、温度气象因子及污染源的方位密切相关;大石围天坑群大气PAHs沉降通量在春季、夏季呈季节性增高可能来源于高气温、低海拔的广西工业发达地区.  相似文献   

14.
辽河水系沉积物中PAHs的分布特征及风险评估   总被引:4,自引:2,他引:2  
武江越  刘征涛  周俊丽  高富 《环境科学》2012,33(12):4244-4250
采用GC-MS方法测定了辽河流域19个采样点位枯水期以及丰水期表层沉积物中多环芳烃(PAHs)的含量,共检出15种PAHs.枯水期ΣPAHs为123.5~21 233.4 ng·g-1,平均含量为3 208.1 ng·g-1;丰水期ΣPAHs为37.9~9 014.0ng·g-1,平均含量为1 612.0 ng·g-1.利用特征化合物指数法对PAHs进行源分析,主要来源是燃料燃烧.运用平均沉积物质量基准商(mSQG-Q)对辽河流域PAHs进行风险评价,芴和芘存在中低度生态效应;丰水期抚顺段L3-1有较强的负面效应,枯水期沈阳段L1-1点位、抚顺段L3-1和L3-2有较强的负面效应.  相似文献   

15.
闽江福州段沉积物中多环芳烃的分布、来源及其生态风险   总被引:3,自引:1,他引:2  
对闽江福州段37个沉积物样品中的15种多环芳烃(PAHs)进行了研究.结果表明,15种PAHs的总量在241.5~1310.8ng·g-1之间,均值为630.9ng·g-1,且从上游到下游整体上呈下降的趋势,但在福州市区附近有突增的现象.沉积物中有机质含量(SOM)与PAHs总量呈显著正相关(r=0.58,p<0.01).同时,应用因子分析和多元线性回归方法对PAHs进行了源解析.结果表明,煤燃烧来源占31.7%,汽油燃烧占25.2%,柴油燃烧占28.7%,石油泄漏源占14.5%,石油燃烧是闽江福州段沉积物中PAHs的主要来源.用效应区间中值ERM(the effects range median)和效应区间低值ERL(the effects range low)及其商值平均方法对闽江福州段沉积物中PAHs的生态风险进行了评价.结果表明,有4个样品芴的含量超过ERL指导值(19ng·g-1),具有一定的生态风险,其余PAH单体和PAHs总量都不超标.  相似文献   

16.
孙少艾  李洋  周轶  王海蛟  孙英 《环境科学》2012,33(11):4018-4024
垃圾焚烧是大气PAHs污染的重要来源,为监测垃圾焚烧过程产生的PAHs,利用被动采样技术对垃圾焚烧厂及周边大气中的多环芳烃(PAHs)进行了定量分析.结果表明,PAHs总量为146.29~396.30 ng·d-1,其中气相中PAHs为128.03~377.05 ng·d-1,颗粒相中PAHs为10.698~19.251 ng·d-1.气相中PAHs组成以菲、荧蒽、芴等低环化合物为主,菲的含量高达55.1%.选定松针作为被动植物样品,测得松针中PAHs的浓度为651.88~1 044.43 ng·g-1;考察土壤中PAHs的分布特征,测得土壤中PAHs浓度为35.04~998.89 ng·g-1.被动采样和松针、土壤中所含的PAHs分布特征相似,说明被动采样能反映PAHs在环境中的真实积累情况.此外,通过比较主动采样与被动采样结果,表明两者对大气中PAHs的富集能达到基本一致的效果.  相似文献   

17.
对珠江三角洲佛山市顺德区容桂镇电器工业区河涌沉积物多溴联苯醚(PBDEs)的含量进行了空间和垂直分布研究.选择该镇中心城区内河涌作为研究河道,根据河涌水流情况选取8个采样点采集沉积物样品.所有样品中均检出PBDEs.各监测点的PBDEs总含量变化范围为62~349 ng.g-1(平均为178 ng.g-1),各采样点的浓度差异较大.其中,十溴联苯醚含量为56~337 ng.g-1(平均为171 ng.g-1),占PBDEs总含量的90%~99%(平均95%).所检测到的部分同系物(如BDE-196、197和203)可能是BDE-209的降解产物.PBDEs的垂直分布模式显示,0~10 cm层面样品的PBDEs浓度为147 ng.g-1,30~40 cm层面样品的PBDEs浓度为260 ng.g-1,PBDEs在沉积物中的丰度随垂直深度的增加而增加.12种同系物在采自各个深度层样品中的比例基本相同,由十溴工业品来源的BDE-209、208、207和206占总PBDEs的94%,而五溴和八溴所占比例较低.由此可见,该地区普遍存在PBDEs污染,其中十溴联苯醚是最主要污染物,这可能与十溴工业品是电器工业主要使用的阻燃材料相关.  相似文献   

18.
上海市崇明岛农田土壤中多环芳烃分布和生态风险评价   总被引:12,自引:7,他引:5  
为研究崇明岛农田土壤中PAHs浓度分布和生态风险,于2008年采集崇明岛农田表层土壤33个.使用加速溶剂萃取仪(ASE300)进行萃取,经净化后,使用气相色谱-质谱联用仪(GC-MS)测定.结果表明,在采集的土壤样品中,PAHs的含量范围为24.92~1 014.61 ng·g-1(干重),均值为192.83 ng·g-1(干重).16种美国EPA优控的多环芳烃,只有茚并(1,2,3-cd)芘(IcdP)和二苯并(a,h)蒽(DahA)未全部检出.PAHs主要以2~4环为主,其中2环和3环多环芳烃所占比例为42.6%;4环多环芳烃的比例为42.2%;5~6环多环芳烃的比例为15.7%.使用浓度比值法判定,主要来源为石油源以及煤和木材的燃烧;崇明岛生活燃烧和汽车等尾气排放可能是农田土壤中PAHs的重要来源之一.生态效应区间法评价显示,崇明岛农田土壤中PAHs生态风险较小.  相似文献   

19.
松花江流域冰封期水体中多环芳烃的污染特征研究   总被引:7,自引:4,他引:3  
在松花江流域的3个主要江段:嫩江、第二松花江和松花江干流,于2010年冰封期采集了21个水体样品,分析了多环芳烃的污染特征.结果表明,15种PAHs的浓度范围为23.4~85.1 ng·L-1,平均浓度为(50.3±17)ng·L-1,与我国其它地区地表水中PAHs的污染程度相当.松花江流域水体中PAHs具有明显的空间分布特征,城市下游浓度高于上游,说明沿岸城市的污水排放可能是松花江水体中PAHs的主要污染源,主成分分析表明,PAHs的主要来源是化石燃料的燃烧源.商值法生态风险评价结果显示,相对分子质量高的PAHs造成的生态风险可以忽略,相对分子质量低的PAHs对松花江水体会造成一定的危害.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号