首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Morgan P  Heyerdahl EK  Gibson CE 《Ecology》2008,89(3):717-728
We inferred climate drivers of 20th-century years with regionally synchronous forest fires in the U.S. northern Rockies. We derived annual fire extent from an existing fire atlas that includes 5038 fire polygons recorded from 12,070,086 ha, or 71% of the forested land in Idaho and Montana west of the Continental Divide. The 11 regional-fire years, those exceeding the 90th percentile in annual fire extent from 1900 to 2003 (>102,314 ha or approximately 1% of the fire atlas recording area), were concentrated early and late in the century (six from 1900 to 1934 and five from 1988 to 2003). During both periods, regional-fire years were ones when warm springs were followed by warm, dry summers and also when the Pacific Decadal Oscillation (PDO) was positive. Spring snowpack was likely reduced during warm springs and when PDO was positive, resulting in longer fire seasons. Regional-fire years did not vary with El Ni?o-Southern Oscillation (ENSO) or with climate in antecedent years. The long mid-20th century period lacking regional-fire years (1935-1987) had generally cool springs, generally negative PDO, and a lack of extremely dry summers; also, this was a period of active fire suppression. The climate drivers of regionally synchronous fire that we inferred are congruent with those of previous centuries in this region, suggesting a strong influence of spring and summer climate on fire activity throughout the 20th century despite major land-use change and fire suppression efforts. The relatively cool, moist climate during the mid-century gap in regional-fire years likely contributed to the success of fire suppression during that period. In every regional-fire year, fires burned across a range of vegetation types. Given our results and the projections for warmer springs and continued warm, dry summers, forests of the U.S. northern Rockies are likely to experience synchronous, large fires in the future.  相似文献   

2.
Brown PM 《Ecology》2006,87(10):2500-2510
Climate influences forest structure through effects on both species demography (recruitment and mortality) and disturbance regimes. Here, I compare multi-century chronologies of regional fire years and tree recruitment from ponderosa pine forests in the Black Hills of southwestern South Dakota and northeastern Wyoming to reconstructions of precipitation and global circulation indices. Regional fire years were affected by droughts and variations in both Pacific and Atlantic sea surface temperatures. Fires were synchronous with La Ni?as, cool phases of the Pacific Decadal Oscillation (PDO), and warm phases of the Atlantic Multidecadal Oscillation (AMO). These quasi-periodic circulation features are associated with drought conditions over much of the western United States. The opposite pattern (El Ni?o, warm PDO, cool AMO) was associated with fewer fires than expected. Regional tree recruitment largely occurred during wet periods in precipitation reconstructions, with the most abundant recruitment coeval with an extended pluvial from the late 1700s to early 1800s. Widespread even-aged cohorts likely were not the result of large crown fires causing overstory mortality, but rather were caused by optimal climate conditions that contributed to synchronous regional recruitment and longer intervals between surface fires. Synchronous recruitment driven by climate is an example of the Moran effect. The presence of abundant fire-scarred trees in multi-aged stands supports a prevailing historical model for ponderosa pine forests in which recurrent surface fires affected heterogenous forest structure, although the Black Hills apparently had a greater range of fire behavior and resulting forest structure over multi-decadal time scales than ponderosa pine forests of the Southwest that burned more often.  相似文献   

3.
Schoennagel T  Veblen TT  Kulakowski D  Holz A 《Ecology》2007,88(11):2891-2902
This study investigates the influence of climatic variability on subalpine forest fire occurrence in western Colorado during the AD 1600-2003 period. Interannual and multidecadal relationships between fire occurrence and the El Ni?o Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) were examined, in addition to the effects of phase interactions among these oscillations. Fires occurred during short-term periods of significant drought and extreme cool (negative) phases of ENSO and PDO and during positive departures from mean AMO index. At longer time scales, fires exhibited 20-year periods of synchrony with the cool phase of the PDO, and 80-year periods of synchrony with extreme warm (positive) phases of the AMO. Years of combined positive AMO and negative ENSO and PDO phases represent "triple whammies" that significantly increased the occurrence of drought-induced fires. Fires were synchronous with this phase combination over 0-30 year periods and distinctly asynchronous with the opposite phase combination. Overall, because fires are synchronous at supra-annual to multidecadal time scales with warm AMO events, particularly when combined with cool ENSO and PDO phases, this suggests that we may be entering a qualitatively different fire regime in the next few decades due to the recent shift in 1998 to a likely long-term warm AMO phase. Although uncertainty remains regarding the effects of CO2-induced warming at regional scales, given the multidecadal persistence of the AMO there is mounting evidence that the recent shift to the positive phase of the AMO will promote higher fire frequencies in the region.  相似文献   

4.
Sherriff RL  Berg EE  Miller AE 《Ecology》2011,92(7):1459-1470
We used tree ring data (AD 1601-2007) to examine the occurrence of and climatic influences on spruce beetle (Dendroctonus rufipennis) outbreaks in south-central and southwest Alaska and found evidence of regional-scale outbreaks dating from the mid-1700s, related to climate variability at multiple temporal scales. Over interannual time scales (approximately 1-3 years), El Ni?o years, combined with severe late-summer drought, appeared to contribute significantly to spruce beetle outbreaks in the study area. Over multidecadal time scales (up to approximately 40 years), cool-phase Pacific Decadal Oscillation (PDO) conditions tended to precede beetle outbreaks, regardless of the phase of El Ni?o-Southern Oscillation (ENSO). All sites showed low-severity disturbances attributed to spruce beetle damage, most notably during the 1810s. During other major periods of disturbance (i.e., 1870s, 1910s, 1970s), the effects of spruce beetle outbreaks were of moderate or higher severity. The highly synchronized timing of spruce beetle outbreaks at interannual to multidecadal scales, and particularly the association between cool-phase PDO conditions and beetle disturbance, suggests that climate (i.e., temperature, precipitation) is a primary driver of outbreaks in the study area. Our disturbance chronologies (mid-1700s to present) suggest that recent irruptions (1990s to present) in south-central and southwest Alaska are within the historical geographic range, but that outbreaks since the 1990s show greater spatiotemporal synchrony (i.e., more sites record high-severity infestations) than at any other time in the past approximatly 250 years.  相似文献   

5.
Temporal variability of forest fires in eastern Amazonia   总被引:1,自引:0,他引:1  
Widespread occurrence of fires in Amazonian forests is known to be associated with extreme droughts, but historical data on the location and extent of forest fires are fundamental to determining the degree to which climate conditions and droughts have affected fire occurrence in the region. We used remote sensing to derive a 23-year time series of annual landscape-level burn scars in a fragmented forest of the eastern Amazon. Our burn scar data set is based on a new routine developed for the Carnegie Landsat Analysis System (CLAS), called CLAS-BURN, to calculate a physically based burn scar index (BSI) with an overall accuracy of 93% (Kappa coefficient 0.84). This index uses sub-pixel cover fractions of photosynthetic vegetation, non-photosynthetic vegetation, and shade/burn scar spectral end members. From 23 consecutive Landsat images processed with the CLAS-BURN algorithm, we quantified fire frequencies, the variation in fire return intervals, and rates of conversion of burned forest to other land uses in a 32 400 km2 area. From 1983 to 2007, 15% of the forest burned; 38% of these burned forests were subsequently deforested, representing 19% of the area cleared during the period of observation. While 72% of the fire-affected forest burned only once during the 23-year study period, 20% burned twice, 6% burned three times, and 2% burned four or more times, with the maximum of seven times. These frequencies suggest that the current fire return interval is 5-11 times more frequent than the estimated natural fire regime. Our results also quantify the substantial influence of climate and extreme droughts caused by a strong El Ni?o Southern Oscillation (ENSO) on the extent and likelihood of returning forest fires mainly in fragmented landscapes. These results are an important indication of the role of future warmer climate and deforestation in enhancing emissions from more frequently burned forests in the Amazon.  相似文献   

6.
Abstract: The ability of reserves to maintain natural ecosystem processes such as fire disturbance regimes is central to long-term conservation. Fire-scarred tree samples were used to reconstruct fire regimes at five study sites totaling approximately 230 ha in pine (   Pinus spp.) and oak ( Quercus spp.) forests of La Michilía Biosphere Reserve on the dry east slope of the Sierra Madre Occidental, Durango, Mexico. Study sites covered a 20-km environmental gradient of elevation, topography, and human land uses. Plant communities ranged from oak-pine to mixed conifer forests. Fires were frequent at all sites prior to 1930, when large-scale grazing of domestic livestock was initiated. Widespread fires have been excluded from four of the five sites since 1945, with an essentially uninterrupted regime of frequent fires continuing only in the reserve core. Xeric sites had many, smaller fires, whereas mesic sites had fewer but larger fires. On a reserve-wide scale, a fire burned on at least one site nearly every year, usually in the dry spring or early summer season, but fire years were rarely synchronous among the sites. Fire occurrence was weakly related to the Southern Oscillation climate pattern; major reserve-wide fire years almost never coincided with wet Southern Oscillation extremes but only occasionally matched dry extremes. Maintenance of the long-term frequent-fire regime in the reserve core is one indicator that the biosphere reserve model has been successful in conserving natural processes, but the protected area is small ( 7000 ha). Because of the key role of frequent-fire regimes in regulating ecosystem structure and function, restoration of the ecological role of fire disturbance is a desirable conservation strategy.  相似文献   

7.
Abstract: The Amazon basin is experiencing rapid forest loss and fragmentation. Fragmented forests are more prone than intact forests to periodic damage from El Niño–Southern Oscillation ( ENSO) droughts, which cause elevated tree mortality, increased litterfall, shifts in plant phenology, and other ecological changes, especially near forest edges. Moreover, positive feedbacks among forest loss, fragmentation, fire, and regional climate change appear increasingly likely. Deforestation reduces plant evapotranspiration, which in turn constrains regional rainfall, increasing the vulnerability of forests to fire. Forest fragments are especially vulnerable because they have dry, fire-prone edges, are logged frequently, and often are adjoined by cattle pastures, which are burned regularly. The net result is that there may be a critical "deforestation threshold" above which Amazonian rainforests can no longer be sustained, particularly in relatively seasonal areas of the basin. Global warming could exacerbate this problem if it promotes drier climates or stronger ENSO droughts. Synergisms among many simultaneous environmental changes are posing unprecedented threats to Amazonian forests.  相似文献   

8.
DeLuca TH  Sala A 《Ecology》2006,87(10):2511-2522
Recurrent, low-severity fire in ponderosa pine (Pinus ponderosa)/interior Douglas-fir (Pseudotsuga menziesii var. glauca) forests is thought to have directly influenced nitrogen (N) cycling and availability. However, no studies to date have investigated the influence of natural fire intervals on soil processes in undisturbed forests, thereby limiting our ability to understand ecological processes and successional dynamics in this important ecosystem of the Rocky Mountain West. Here, we tested the standing hypothesis that recurrent fire in ponderosa pine/Douglas-fir forests of the Inland Northwest decreases total soil N, but increases N turnover and nutrient availability. We compared soils in stands unburned over the past 69-130 years vs. stands exposed to two or more fires over the last 130 years at seven distinct locations in two wilderness areas. Mineral soil samples were collected from each of the seven sites in June and July of 2003 and analyzed for pH, total C and N, potentially mineralizable N (PMN), and extractable NH4+, NO3-, PO4(-3), Ca+2, Mg+2, and K+. Nitrogen transformations were assessed at five sites by installing ionic resin capsules in the mineral soil in August of 2003 and by conducting laboratory assays of nitrification potential and net nitrification in aerobic incubations. Total N and PMN decreased in stands subjected to multiple fires. This loss of total N and labile N was not reflected in concentrations of extractable NH4+ and NO3-. Rather, multiple fires caused an increase in NO3 sorbed on ionic resins, nitrification potential, and net nitrification in spite of the burned stands not having been exposed to fire for at least 12-17 years. Charcoal collected from a recent fire site and added to unburned soils increased nitrification potential, suggesting that the decrease of charcoal in the absence of fire may play an important role in N transformations in fire-dependent ecosystems in the long term. Interestingly, we found no consistent effect of fire frequency on extractable P or alkaline metal concentrations. Our results corroborate the largely untested hypothesis that frequent fire in ponderosa pine forests increases inorganic N availability in the long term and emphasize the need to study natural, unmanaged sites in far greater detail.  相似文献   

9.
Forests experiencing moderate- or mixed-severity fire regimes are presumed to be widespread across the western United States, but few studies have characterized these complex disturbance regimes and their effects on contemporary forest structure. Restoration of pre-fire-suppression open-forest structure to reduce the risk of uncharacteristic stand-replacing fires is a guiding principle in forest management policy, but identifying which forests are clear candidates for restoration remains a challenge. We conducted dendroecological reconstructions of fire history and stand structure at 40 sites in the upper montane zone of the Colorado Front Range (2400-2800 m), sampled in proportion to the distribution of forest types in that zone (50% dominated by ponderosa pine, 28% by lodgepole pine, 12% by aspen, 10% by Douglas-fir). We characterized past fire severity based on remnant criteria at each site in order to assess the effect of fire history on tree establishment patterns, and we also evaluated the influence of fire suppression and climate. We found that 62% of the sites experienced predominantly moderate-severity fire, 38% burned at high severity, and no sites burned exclusively at low severity. The proportion of total tree and sapling establishment was significantly different among equal time periods based on a chi-square test, with highest tree and sapling establishment during the pre-fire-suppression period (1835-1919). Superposed epoch analysis revealed that fires burned during years of extreme drought (95% CI). The major pulse of tree establishment in the upper montane zone occurred during a multidecadal period of extreme drought conditions in the Colorado Front Range (1850-1889), during which 53% of the fires from the 1750-1989 period burned. In the upper montane zone of the Colorado Front Range, historical evidence suggests that these forests are resilient to prolonged periods of severe drought and associated severe fires.  相似文献   

10.
Charrette NA  Cleary DF  Mooers AO 《Ecology》2006,87(9):2330-2337
The forest fires induced by the El Ni?o Southern Oscillation (ENSO) in 1997-1998 resulted in the temporary extirpation of more than 100 lowland butterfly species at a forest site in Borneo. Species with more restricted ranges were less likely to recover over the following four years. Matched-pair analyses revealed that species with lower initial abundances, restricted geographic ranges, and more specialized larvae were less likely to return. Specialization differed predictably between the (more generalist) wide-range and (more specialized) restricted-range species in our data set, and both geographic range and level of specialization were important in multivariate models. These are the first observations directly linking extent of occurrence, ecological specialization, and observed recovery following local extirpation. If recovery time exceeds the frequency of disturbance, local extirpation can lead to local extinction. Given that ENSO-induced disturbances are increasing in frequency, in severity, and in geographic scale, these results suggest that specialist species with restricted geographic ranges could be at particularly high risk of global extinction.  相似文献   

11.
This article demonstrates the applicability of vector autoregression (VAR) modeling in probing the causality relationships among wildfire, El Niño/Southern Oscillation (ENSO), timber harvest, and urban sprawl in the U.S. The VAR approach allows for the multi-directional, multi-faceted interactions among the variables concerned and enables us to portray the temporal impacts of ENSO, the volume of timber harvested, and urban sprawl on wildfire. The empirical analysis, though intended mainly for illustration, reveals that an individual factor may not affect wildfire activity (number of fires and area burned) when acting alone, but can significantly influence fire activity when coupled with other factors, and that wildfire activity has feedback effects on other variables. The impact of a change in ENSO, the volume of timber harvested, and urban population density on wildfire activity could last two decades with the most noticeable impact occurring in the initial 5–10 years. Though ENSO, timber harvest, and urban sprawl all Granger-cause wildfire activity, the impulse response functions show that wildfire activity is more responsive to urban population density than to the volume of timber harvested or ENSO. Thus, controlling urban sprawl represents another option for wildfire mitigation; and integrative wildfire management is essential.  相似文献   

12.
Abstract:  Livestock grazing has been implicated as a cause of the unhealthy condition of ponderosa pine forest stands in the western United States. An evaluation of livestock grazing impacts on natural resources requires an understanding of the context in which grazing occurred. Context should include timing of grazing, duration of grazing, intensity of grazing, and species of grazing animal. Historical context, when and under what circumstances grazing occurred, is also an important consideration. Many of the dense ponderosa pine forests and less-than-desirable forest health conditions of today originated in the early 1900s. Contributing to that condition was a convergence of fire, climate, and grazing factors that were unique to that time. During that time period, substantially fewer low-intensity ground fires (those that thinned dense stands of younger trees) were the result of reduced fine fuels (grazing), a substantial reduction in fires initiated by Native Americans, and effective fire-suppression programs. Especially favorable climate years for tree reproduction occurred during the early 1900s. Exceptionally heavy, unregulated, unmanaged grazing by very large numbers of horses, cattle, and sheep during the late nineteenth and early twentieth centuries occurred in most of the U.S. West and beginning earlier in portions of the Southwest. Today, livestock numbers on public lands are substantially lower than they were during this time and grazing is generally managed. Grazing then and grazing now are not the same.  相似文献   

13.
Research in the last several years has indicated that fire size and frequency are on the rise in western U.S. forests. Although fire size and frequency are important, they do not necessarily scale with ecosystem effects of fire, as different ecosystems have different ecological and evolutionary relationships with fire. Our study assessed trends and patterns in fire size and frequency from 1910 to 2008 (all fires > 40 ha), and the percentage of high-severity in fires from 1987 to 2008 (all fires > 400 ha) on the four national forests of northwestern California. During 1910-2008, mean and maximum fire size and total annual area burned increased, but we found no temporal trend in the percentage of high-severity fire during 1987-2008. The time series of severity data was strongly influenced by four years with region-wide lightning events that burned huge areas at primarily low-moderate severity. Regional fire rotation reached a high of 974 years in 1984 and fell to 95 years by 2008. The percentage of high-severity fire in conifer-dominated forests was generally higher in areas dominated by smaller-diameter trees than in areas with larger-diameter trees. For Douglas-fir forests, the percentage of high-severity fire did not differ significantly between areas that re-burned and areas that only burned once (10% vs. 9%) when re-burned within 30 years. Percentage of high-severity fire decreased to 5% when intervals between first and second fires were > 30 years. In contrast, in both mixed-conifer and fir/high-elevation conifer forests, the percentage of high-severity fire was less when re-burned within 30 years compared to first-time burned (12% vs. 16% for mixed conifer; 11% vs. 19% for fir/high-elevation conifer). Additionally, the percentage of high-severity fire did not differ whether the re-burn interval was less than or greater than 30 years. Years with larger fires and greatest area burned were produced by region-wide lightning events, and characterized by less winter and spring precipitation than years dominated by smaller human-ignited fires. Overall percentage of high-severity fire was generally less in years characterized by these region-wide lightning events. Our results suggest that, under certain conditions, wildfires could be more extensively used to achieve ecological and management objectives in northwestern California.  相似文献   

14.
We investigated spatial patterns of synchrony among coral reef fish populations and environmental variables over an eight-year period on the Great Barrier Reef, Australia. Our aims were to determine the spatial scale of intra- and interspecific synchrony of fluctuations in abundance of nine damselfish species (genus Pomacentrus) and assess whether environmental factors could have influenced population synchrony. All species showed intraspecific synchrony among populations on reefs separated by < or =100 km, and interspecific synchrony was also common at this scale. At greater spatial scales, only four species showed intraspecific synchrony, over distances ranging from 100-300 km to 500-800 km, and no cases of interspecific synchrony were recorded. The two mechanisms most likely to cause population synchrony are dispersal and environmental forcing through regionally correlated climate (the Moran effect). Dispersal may have influenced population synchrony over distances up to 100 km as this is the expected spatial range for ecologically significant reef fish dispersal. Environmental factors are also likely to have synchronized population fluctuations via the Moran effect for three reasons: (1) dispersal could not have caused interspecific synchrony that was common over distances < or =100 km because dispersal cannot link populations of different species, (2) variations in both sea surface temperature and wind speed were synchronized over greater spatial scales (>800 km) than fluctuations in damselfish abundance (< or =800 km) and were correlated with an index of global climate variability, the El Ni?o-Southern Oscillation (ENSO), and (3) synchronous population fluctuations of most damselfish species were correlated with ENSO; large population increases often followed ENSO events. We recorded regional variations in the strength of population synchrony that we suspect are due to spatial differences in geophysical, oceanographic, and population characteristics, which act to dilute or enhance the effects of synchronizing mechanisms. We conclude that synchrony is common among Pomacentrus populations separated by tens of kilometers but less prevalent at greater spatial scales, and that environmental variation linked to global climate is likely to be a driving force behind damselfish population synchrony at all spatial scales on the Great Barrier Reef.  相似文献   

15.
•Strong ENSO influence on AOD is found in southern China region. •Low AOD occurs in El Niño but high AOD occurs in La Niña events in southern China. •Angstrom exponent anomalies reveals the circulation pattern during each ENSO phase. •ENSO exerts large influence (70.5%) on annual variations of AOD during 2002–2020. •Change of anthropogenic emissions is the dominant driver for AOD trend (2002–2020). Previous studies demonstrated that the El Niño–Southern Oscillation (ENSO) could modulate regional climate thus influencing air quality in the low-middle latitude regions like southern China. However, such influence has not been well evaluated at a long-term historical scale. To filling the gap, this study investigated two-decade (2002 to 2020) aerosol concentration and particle size in southern China during the whole dynamic development of ENSO phases. Results suggest strong positive correlations between aerosol optical depth (AOD) and ENSO phases, as low AOD occurred during El Niño while high AOD occurred during La Niña event. Such correlations are mainly attributed to the variation of atmospheric circulation and precipitation during corresponding ENSO phase. Analysis of the angstrom exponent (AE) anomalies further confirmed the circulation pattern, as negative AE anomalies is pronounced in El Niño indicating the enhanced transport of sea salt aerosols from the South China Sea, while the La Niña event exhibits positive AE anomalies which can be attributed to the enhanced import of northern fine anthropogenic aerosols. This study further quantified the AOD variation attributed to changes in ENSO phases and anthropogenic emissions. Results suggest that the long-term AOD variation from 2002 to 2020 in southern China is mostly driven (by 64.2%) by the change of anthropogenic emissions from 2002 to 2020. However, the ENSO presents dominant influence (70.5%) on year-to-year variations of AOD during 2002–2020, implying the importance of ENSO on varying aerosol concentration in a short-term period.  相似文献   

16.
Coale TH  Deveny AJ  Fox LR 《Ecology》2011,92(5):1020-1026
Separate effects of abiotic and biotic factors on the structure and dynamics of ecological communities may be recorded in growth rings of woody plants. We used Ceanothus cuneatus rigidus and Arctostaphylos pumila to tease apart the roles of fire, rain, and herbivores on the histories and community structure of four areas in a coastal mediterranean-type climate in central California with mild winters and mild summers. Ring widths of both species were related to rainfall in two of the areas; heavy deer browsing on Ceanothus overwhelmed the climate signal in the others. Ceanothus germination was more closely related to heavy rainfall, especially during ENSO years, than to fire events. In a related greenhouse experiment that evaluated these observations, the same proportions of new Ceanothus seeds germinated after burning and after receiving regular water for several months, but germination of old seeds responded primarily to the fire treatment. In areas where heavy browsing by mammals reduces recruitment and growth of Ceanothus and increases mortality, the continuance of the Ceanothus population must rely heavily on germination from the persistent seed bank during unusually wet years or after occasional fires. Because Arctostaphylos can produce new stems from underground roots, individual plants may survive and produce seeds until another fire.  相似文献   

17.
Correlations and cross-correlations between forest fires in the province of British Columbia, Canada, and sea surface temperatures in the Pacific Ocean were evaluated. British Columbia has a long Pacific Ocean coastline; given that there may be teleconnections between the province's forest fires and climate variability over the ocean, significant correlations may exist between forest fires and the sea surface temperature of the Pacific Ocean. Fire occurrences and areas burned through lightning-caused and human-caused fires were analyzed against individual 1° × 1° grid cells of anomalies in the sea surface temperature to determine correlations for the period 1950-2006. Significant correlations (p < 0.05) for vast areas of the ocean were found between occurrences of lightning-caused fires and sea surface temperature anomalies for time lags of 1 and 2 years, whereas significant correlations between occurrences of human-caused fires and sea surface temperature anomalies occurred extensively for many time lags. To support the results of this approach, correlations between fire data and the Niño 3.4, Pacific Decadal Oscillation, and Arctic Oscillation indices were tested for the same period. Significant correlations were found between fire occurrences and these indices at certain time lags. Overall, fire occurrence appeared to be more extensively correlated with sea surface temperature anomalies than was area burned. These results support the hypothesis that teleconnections exist between fire activity in British Columbia and sea surface temperatures in the Pacific Ocean, and the correlations suggest that linear regression models or other regression techniques may be appropriate for predicting fire severity from the sea surface temperatures of one or more previous years.  相似文献   

18.
The emergent behaviors of nature are not only the sum of interactions among ecosystem parts but also depend on the organization of these interactions. Fire, climate and vegetation patterns produce non-linear fire propagation across the landscape. Environmental heterogeneity, like outcrop presence and hare density, increases landscape patchiness and makes possible the occupation of fire refuges by plants, like Fabiana imbricata shrubs. We monitored shrub recruitment and cover during nine postfire years in northwestern Patagonia grasslands and we studied the long-term population dynamics under different environmental conditions through a matrix model, exploring different fire frequencies and spring precipitation regimes. Both, the field monitoring and the model seem to confirm the relationships between shrub invasion and fire. The climate change forecast predicts an increase in the frequency of El Niño Southern Oscillation phenomena that could causes more coupled fires—rainy springs in northwestern Patagonia, and consequently, more recruitment windows for shrubs, like F. imbricata. The matrix model also indicates that this scenario would be the most favourable for shrub invasion. Our results contribute to the knowledge of the ecosystem properties and processes, providing useful information to improve the grasslands sustainable use.  相似文献   

19.
Directional changes in the species composition of a tropical forest   总被引:1,自引:0,他引:1  
Long-term studies have revealed that the structure and dynamics of many tropical forests are changing, but the causes and consequences of these changes remain debated. To learn more about the forces driving changes within tropical forests, we investigated shifts in tree species composition over the past 25 years within the 50-ha Forest Dynamics Plot on Barro Colorado Island (BCI), Panama, and examined how observed patterns relate to predictions of (1) random population fluctuations, (2) carbon fertilization, (3) succession from past disturbance, (4) recovery from an extreme El Ni?o drought at the start of the study period, and (5) long-term climate change. We found that there have been consistent and directional changes in the tree species composition. These shifts have led to increased relative representations of drought-tolerant species as determined by the species' occurrence both across a gradient of soil moisture within BCI and across a wider precipitation gradient from a dry forest near the Pacific coast of Panama to a wet forest near its Caribbean coast. These nonrandom changes cannot be explained by stochastic fluctuations or carbon fertilization. They may be the legacy of the El Ni?o drought, or alternatively, potentially reflect increased aridity due to long-term climate change. By investigating compositional changes, we increased not only our understanding of the ecology of tropical forests and their responses to large-scale disturbances, but also our ability to predict how future global change will impact some of the critical services provided by these important ecosystems.  相似文献   

20.
There has been a lengthy debate on whether the abundance of adult reef fishes depends on prerecruitment or postrecruitment processes; however, we still do not have the ability to predict the magnitude of local fish recruitment. Here we show that the success of the leopard grouper (Mycteroperca rosacea) recruitment in the Gulf of California, Mexico, is determined by the availability of nursery habitat, which in turn is strongly correlated to climate conditions. Observational and experimental studies showed that leopard grouper larvae recruit preferentially on shallow rocky bottoms with brown algal (Sargassum spp.) beds, and that abundance of recruits is determined by the availability of Sargassum. The biomass of Sargassum decreases linearly with an increase in the Multivariate El Ni?o Southern Oscillation (ENSO) Index (MEI; an index positively correlated with water temperature and negatively correlated with nutrient availability). We analyzed the relationship between the interannual variation of MEI and the recruitment of the leopard grouper using field estimates of abundance of juvenile groupers. Our results show that there is a nonlinear relationship between recruitment and the oceanographic climate, in that the density of recruits decreases exponentially with increasing MEI. The predictability of leopard grouper recruitment has important implications for fisheries management, since it could allow adaptive management without expensive stock assessment programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号