首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
污泥基生物炭是广泛用于处理各种环境污染物的添加剂之一.然而,关于污泥基生物炭原位钝化修复Cr污染土壤的研究还较少.以污泥与棉杆为原料,通过共热解制备污泥基生物炭,并按不同比例施加到Cr含量为33.97 mg/kg的土壤中,研究了该生物炭对土壤中Cr吸附固定的效果和机制.当添加比例由1%增加到15%时,土壤中Cr含量由3...  相似文献   

2.
磁性生物炭的合成及对土壤重金属污染的钝化效果   总被引:2,自引:5,他引:2  
为提高生物炭对土壤重金属的钝化能力,通过温和液相还原再氧化法制备了磁性生物炭材料.利用土壤培养实验,以0%、 0.3%、 0.6%和1.0%(质量分数)的比例向重金属污染土壤中施加磁性生物炭,考察磁性生物炭对土壤重金属污染的钝化修复效果及对土壤理化特性的影响,并对修复机制进行了探讨.结果表明,添加不同比例磁性生物炭后,土壤中Cd、Cu、Ni、Pb和Zn有效态含量均呈现不同程度的下降,且随着该材料添加比例的增加土壤中重金属有效态降幅随之增加.培养24 d后,Cd、Cu、Ni、Pb和Zn的钝化效率分别达到了27.52%、 49.55%、 55.83%、 27.33%和26.01%(添加量为1%),但土壤中重金属的形态并没有发生显著变化,可能主要与重金属和生物炭之间相对较弱的结合机制有关.同时,磁性生物炭的添加改善了土壤的理化性质,其中pH值提高0.7个单位,脱氢酶活性提高6倍,过氧化氢酶活性和有机质分别提高37.06%和22.11%.  相似文献   

3.
采用静态吸附实验方法,以一步水热碳化法制备的磁性氨基功能化生物炭(Fe3O4@C-NH2)为吸附剂,重点考察了p H、共存离子对水中Cr(Ⅵ)去除性能的影响,并结合光谱学分析探究了Cr(Ⅵ)的吸附去除机制.结果表明,Cr(Ⅵ)去除率随p H值升高而降低,p H为2时Cr(Ⅵ)去除率高达95.8%;总铬去除率随p H值变化特征与Cr(Ⅵ)一致,但p H为2时总铬去除率为81.8%.Cr(Ⅵ)去除率随SO42-浓度增加而降低,总铬去除率随SO42-浓度变化趋势与Cr(Ⅵ)基本相同,但Cr(Ⅵ)去除率显著高于总铬.准二级动力学模型可以很好地描述Fe3O4@C-NH2对Cr(Ⅵ)的吸附行为.除离子交换、孔填充、氢键及静电作用外,吸附去除Cr(Ⅵ)的主要机制是配位和还原作用.  相似文献   

4.
生物炭因具有原料来源广泛、表面活性官能团含量丰富、性质稳定等特点,近年来,在环保领域作为重金属处理吸附剂受到越来越多的重视。使用松木屑在碳化温度为400℃条件下制备生物炭(简称AB400),并使用HNO3、H3PO4、NH3·H2O、Ca(OH)2对生物炭进行改性。借助SEM、FTIR、BET、Boehm滴定法和Zeta电位测定等方法对改性前后AB400表征,并进行Cr(Ⅵ)吸附实验。改性后生物炭结构呈半穿透至穿透状圆形塌陷,存在微孔。酸性改性条件下,HNO3改性生物炭(简称AB400HNO3)、H3PO4改性生物炭(简称AB400H3PO4)中酸性官能团含量均有所升高,且生物炭p H均减小,其对应p Hpzc增大,而碱改性的生物炭则反之。对于Cr(Ⅵ)的吸附,酸性改性生物炭在整体上的吸附效果优于碱性改性生物炭,其中AB400H3PO4吸附效果最佳,吸附容量从58. 4...  相似文献   

5.
镉(Cd)和铬(Cr)是在土壤中普遍存在的重金属污染物,固化稳定化作为一种处理土壤中金属污染的方法,具有快速、经济、有效等特点.该试验以稻壳生物炭(BC)为原材料,利用β-环糊精壳聚糖(β-CC)对其进行改性,制备得到一种环保廉价且能有效固化稳定化土壤中重金属离子的有机复合吸附材料β-环糊精壳聚糖生物炭(β-CC BC),其与硅酸盐水泥复配后可以固化稳定化土壤中的Cd、Cr.利用控制单因素变量对改性生物炭的处理效果进行探究,结果表明:(1)以β-CC BC添加量为变量时,添加量为10 g/(0.1 kg)左右时,Cr浸出浓度最低,为1.92 mg/L,添加量为12.5 g/(0.1 kg)时,Cd的浸出浓度最低,为0.61 mg/L;以养护时间为变量时,养护时间为28 d时,Cr浸出浓度最低,为2.13 mg/L,养护时间为21 d时,Cd浸出浓度最低,为0.55 mg/L.(2)通过对5种材料进行浸出试验,并对处理后土壤中Cd、Cr的浸出浓度进行测定,发现与磷酸钾(K3PO4)、碳酸钙(CaCO3)、硅酸钠(Na  相似文献   

6.
本研究通过引入沼生植物香蒲构建植物微生物燃料电池系统(P-MFC)修复Cr(VI)污染湿地土壤,考察了植物、不同初始Cr(VI)浓度对系统产电及去除效率的影响.结果显示,香蒲种植能显著提高P-MFC运行性能,系统最大功率密度与Cr(VI)去除率分别提高至23.83 mW·m~(-2)、33.01%,随着Cr(VI)暴露浓度的升高,系统运行性能降低.利用P-MFC修复Cr(VI)污染土壤过程中,电化学还原作用是Cr(VI)去除的主要机制,近90%的Cr(VI)通过电化学还原去除,系统中0.3%~1.86%的Cr(VI)被香蒲吸收富集,3.5%~9.5%的Cr(VI)被微生物与还原性有机物直接还原.通过高通量测序技术分析发现,香蒲种植与低浓度Cr(VI)暴露下阳极微生物群落多样性较大,优势门类Proteobacteria相对丰度最高为63.9%,较未种植香蒲与高浓度Cr(VI)暴露条件下提高了3.4%~19.0%,电化学活性微生物Geobacter相对丰度最高为12.4%,较未种植香蒲与高浓度Cr(VI)暴露条件下提高了4.4%~6.8%.系统中对Cr(VI)具有较强耐受性与还原能力的Acinetobacter、Bacillus占有较大比例,且相对丰度随暴露浓度升高而增大,最高分别为19.0%、14.4%,进一步说明微生物群落在Cr(VI)去除上发挥了一定作用.上述结果表明,P-MFC在去除湿地土壤Cr(VI)污染方面具有良好的潜力.  相似文献   

7.
污泥农用是三氯生(TCS)进入土壤的一个主要途径,TCS进入土壤后会通过食物链危及人体健康.基于此,本实验将含有TCS的污泥施入土壤后,分别添加不同比例(1%、2%和5%)在300℃和600℃下制备的生物炭(BC300和BC600),进行了为期90 d种植黄瓜的盆栽实验,研究了生物炭对土壤中TCS生物有效性和微生物群落结构的影响.结果表明,生物炭的添加显著降低了黄瓜根系对TCS的富集(p0.05),且生物炭添加量越多,根系富集的TCS量越少.添加1%和2%BC600处理的黄瓜根系富集的TCS量都显著低于添加相应比例BC300处理的黄瓜根系富集量.只添加生物炭并不能显著降低土壤中TCS的含量,添加生物炭并种植黄瓜能够显著降低土壤中TCS含量(去除率为31.57%~50.31%),且生物炭添加量越多,土壤中TCS去除率越高,但相同添加量下BC300和BC600对土壤中TCS的去除无显著性差异(p0.05).添加不同比例的生物炭对土壤中微生物群落结构有明显的影响,特别是添加不同比例的BC600,但种植黄瓜能够降低生物炭对土壤微生物群落结构改变的影响.  相似文献   

8.
氨基改性生物炭负载纳米零价铁去除水中Cr(VI)   总被引:4,自引:3,他引:4  
以聚乙烯亚胺(PEI)为功能单体,玉米秸秆生物炭为载体,制备了氨基改性生物炭负载型纳米零价铁(nZVI@PEI-HBC),并利用扫描电镜(SEM)、红外光谱(FTIR)和X射线光电子能谱(XPS)等手段对材料进行了表征,分析了溶液pH、温度、材料投加量等因素对其去除Cr(VI)的影响及其去除机理.结果表明:在投加量为0.5 g·L-1,温度为20℃,pH值为5,Cr(VI)初始浓度为20 mg·L-1条件下,各材料对Cr(VI)的去除率大小为nZVI@PEI-HBC > nZVI > PEI-HBC > HBC.SEM显示nZVI颗粒较均匀地分散在生物炭表面,FTIR分析表明PEI改性后材料表面增加了氨基等重金属配位基团,这可能是nZVI@PEI-HBC去除Cr(VI)效果更好的原因.影响因素研究表明,材料具有较好稳定性,老化28 d后其Cr(VI)去除性能变化不大;酸性环境、升温、增大材料投加量均有利于nZVI@PEI-HBC对Cr(VI)的去除.机理研究发现,水中溶解氧加速了nZVI的腐蚀和Fe(II)的释放,促进Cr(VI)还原为Cr(III),然后通过共沉淀作用和氨基等基团的吸附作用被去除.  相似文献   

9.
陈林  平巍  闫彬  吴彦  付川  黄炼旗  刘露  印茂云 《环境工程》2020,38(8):119-124
以城市剩余污泥为原料,于300,400,500,600℃温度条件下制备生物炭,通过单因素静态吸附实验探讨制备温度对生物炭吸附Cr(Ⅵ)的影响。结果表明:在500℃以内随着温度上升制备的生物炭对Cr(Ⅵ)的吸附量增加,制备温度高于500℃后变化不明显;扫描电镜(SEM)、比表面积(BET)、傅里叶红外光谱(FTIR)表征结果显示,热解温度对生物炭表面形貌和官能团组成有显著影响;等温模型及动力学拟合结果表明,生物炭吸附Cr(Ⅵ)为单分子层吸附、物理-化学复合吸附。热解温度对污泥制备生物炭吸附Cr(Ⅵ)的性能有显著影响,最佳制备温度为500℃,在此条件制备的生物炭对Cr(Ⅵ)的理论吸附量可达7. 93 mg/g。  相似文献   

10.
以当地农业废弃物荞麦壳为原料,用硝酸改性后负载磁性Fe3O4,得到一种易于分离的吸附剂荞麦壳磁性炭。在空气为载气的氛围中,用SHMADZU DTG-60差热-热重分析仪得到荞麦壳的最佳热解温度为589℃,XRD分析结果表明磁性荞麦壳炭晶体构成主要由半晶体涡轮层碳和一些矿物质组成,并检测到了Fe3O4的特征峰,通过傅里叶红外光谱分析(FTIR)表明磁性荞麦壳炭表面在3 426 cm-1较宽的吸收峰为磁性物质与荞麦壳炭缔合形成的—OH。探究了在不同影响因素下荞麦壳磁性炭对水中Cr(Ⅵ)的吸附效果,结果表明,当pH值为5、Cr(Ⅵ)浓度150 mg/L、吸附时间为150 min、荞麦壳磁性炭对Cr(Ⅵ)的去除率达到98.3%。用Langmuir和Freundlich吸附模型对该吸附过程进行拟合,发现磁性荞麦壳炭对Cr(Ⅵ)的吸附更符合Langmuir吸附模型。  相似文献   

11.
通过大田示范试验,研究了钙基改性生物炭对弱碱性Cd污染土壤的钝化修复效应及对土壤理化性质、团聚体结构、土壤酶活性和玉米体内Cd累积特征的影响.结果表明,向弱碱性土壤中添加改性生物炭提高了土壤pH值、有效态阳离子交换量和有机质含量.与对照相比,添加钙基改性生物炭后土壤有效态Cd(DTPA-Cd)含量的降幅达到12.0%~30.2%,且Cd赋存形态由活性较高的可交换态和可还原态向更稳定的残渣态转变.改性生物炭的施加明显降低了Cd在植物体内富集的风险,玉米根、茎、叶和籽粒中Cd含量明显受到抑制,3种玉米品种籽粒中Cd含量较对照分别下降了52.65%~72.56%(郑单958)、37.54%~50.80%(蠡玉16)和23.60%~51.20%(三北218).添加改性生物炭在一定程度上改善了土壤环境质量,土壤过氧化氢酶、脲酶和碱性磷酸酶活性随着改性生物炭施加量的增加呈逐渐升高的趋势.改性生物炭处理下,5~8 mm和2~5 mm粒级团聚体所占比例增加,而≤ 0.25 mm粒级团聚体占比有所下降,团聚体平均几何直径(GMD)和平均质量直径(MWD)分别增加了10.35%~29.34%和13.20%~27.03%,显示土壤团聚体稳定性增加.玉米籽粒中(郑单958)Cd含量与土壤有效态Cd含量呈显著负相关关系(p<0.01).研究表明,钙基改性生物炭在钝化修复弱碱性Cd污染土壤和改善土壤环境质量方面具有一定的研究前景和可行性.  相似文献   

12.
为了解生物炭对水中Cr(Ⅵ)的吸附效果,本文选用蔬菜废物豆角秸秆为原材料,采用限氧升温法在400℃和700℃温度下制备了两种生物炭。并研究了投加量、初始浓度、pH值、吸附时间、温度等因素对生物炭吸附Cr(Ⅵ)的影响。研究结果表明,2种豆角秸秆生物炭对水中Cr(Ⅵ)均有较好的吸附率,吸附最佳条件略有不同;D400对水中Cr(Ⅵ)的最佳吸附条件为投加量8g/L,初始浓度小于40mg·L^-1,pH值2—3;D700对水中Cr(Ⅵ)的最佳吸附条件为投加量8g/L,初始浓度小于60mg·L^-1,pH值2—4;基本达到吸附平衡的时间均为60min;温度对生物炭吸附Cr(Ⅵ)的影响很小。  相似文献   

13.
为进一步提高多级土壤渗滤(MSL)系统对污染物的去除性能,通过对比不同形状土壤模块(方形结构和U形结构)的MSL系统,典型污染物去除率及微生物群落结构,探究生物炭对MSL系统污染物去除机理的影响.实验结果表明,在不同水力负荷下,生物炭可显著提高MSL系统对污染物的平均去除率(P<0.05),并表现出快速启动与抗冲击负荷能力,对CODCr、TP、NH3-N、TN的平均去除率为87.74%、96.23%、97.65%、89.38%;U形结构可提高MSL系统对CODCr、TP、NH3-N、TN的平均去除率,但与方形结构无显著性差异(P>0.05)(TP除外);生物炭提高了MSL系统中氨氧化细菌以及反硝化菌属的相对丰度,强化了系统对氨氮的去除;U形结构提高了亚硝酸盐氧化细菌的相对丰度,使脱氮过程更加顺利.因此,生物炭通过调节MSL系统的微生物群落结构特征、改善系统水分运动状态,增强了系统对典型污染物的去除能力与抗冲击负荷的能力.  相似文献   

14.
近年来,纳米零价铁颗粒(nZVI)应用于Cr(Ⅵ)污染修复治理技术研究备受关注。生物炭负载型纳米零价铁(nZVI@BC)作为纳米零价铁改性技术之一,具有低成本、易制备和修复效果优越等优点,但此技术应用于Cr(Ⅵ)污染土壤修复方面研究尚不多。生物炭(BC)主要通过植物秸秆热解生成,生物炭负载纳米零价铁(nZVI@BC)则通过生物炭与纳米零价铁在热解-液相还原法或一步热解法合成。制备的nZVI@BC能够有效解决纳米零价铁团聚和钝化等缺点,显著提高纳米零价铁(nZVI)利用率。综述了生物炭负载纳米零价铁(nZVI@BC)应用于修复Cr(Ⅵ)污染土壤反应机理和研究进展,总结出提升该材料性能的途径有:通过调整BC热解条件和改性BC以提升BC性能;适当的质量比(BC/nZVI);使用聚乙二醇(PEG)、羧甲基纤维素(CMC)、污泥衍生的BC和茶多酚(TP)提高nZVI稳定性。nZVI@BC材料能够提高土壤中有机质含量,在Cr(Ⅵ)修复治理方面极具应用前景。  相似文献   

15.
为使浒苔得到资源化利用,本研究采用慢速热解技术于不同温度下制备浒苔生物炭,并对其理化性质进行表征.结果表明,400℃时,浒苔裂解已达较高程度.浒苔生物炭产率及灰分含量与热解温度呈负相关,碳含量与热解温度呈正相关,其表面呈蜂窝状多孔结构,比表面积为44.54~317.82 m~2·g~(-1),表面含有丰富的羟基(—OH)和羧基(—COOH)等含氧官能团.吸附实验显示,浒苔生物炭对Cr(Ⅵ)的吸附符合准二级动力学方程和Langmuir等温吸附模型.表明浒苔生物炭对Cr(Ⅵ)的吸附为单分子层化学吸附,主要受快速反应过程控制.浒苔生物炭吸附Cr(Ⅵ)的最适p H为2,吸附容量表现为BC400BC700BC600BC500BC300,其中BC400的吸附量为4.79 mg·g~(-1).浒苔生物炭对Cr(Ⅵ)的吸附机制主要包括生物炭与HCr O-4和Cr2O_2-7等阴离子之间的静电作用,以及生物炭表面—OH和—COOH等含氧官能团的络合作用.  相似文献   

16.
在邻苯二甲酸二丁酯(DBP)污染的不同类型土壤(有机质含量低的新垦红壤、有机质含量高的熟化红壤)中添加不同种类(稻草炭、毛竹炭)以及不同用量(0%、0.5%和2%)的生物质炭,温室种植上海青并在56 d后采集土样,采用磷脂脂肪酸法(PLFA)考察了土壤类型、生物质炭种类以及用量对土壤微生物群落结构多样性的影响.结果表明:对细菌、真菌及微生物总PLFA这三者的含量而言,熟化红壤显著(p0.05)高于新垦红壤,熟化红壤中添加2%稻草炭使其显著(p0.05)增加,新垦红壤中添加毛竹炭使其显著(p0.05)降低.新垦红壤中添加2%稻草炭对革兰氏阴性菌/革兰氏阳性菌比值的增加效果最显著(p0.05),添加2%毛竹炭对土壤微生物群落Shannon指数的降低效果最显著(p0.05).添加2%稻草炭对DBP污染土壤中微生物压力指数降低效果最显著(p0.05).生物质炭对熟化红壤中真菌/细菌、革兰氏阴性菌/革兰氏阳性菌及微生物群落Shannon指数均无显著影响.PCA分析表明,土壤有机质含量以及生物质炭的种类和用量均会对土壤微生物群落结构产生一定影响,且生物质炭的影响与土壤有机质含量密切相关.  相似文献   

17.
为了探讨生物炭固定化硫酸盐还原菌对镉(Cd2+)污染土壤的钝化修复效果,以制备的小麦秸秆生物炭为载体固定硫酸盐还原菌,研究不同修复剂生物炭(XM700)、硫酸盐还原菌(SRB15-3-2)和生物炭固定化硫酸盐还原菌(IBXM700)对Cd2+污染土壤的钝化修复效果.结果表明,与XM700组和SRB15-3-2组相比,IBXM700组的修复效果最好(p<0.05),不同Cd2+浓度污染土壤修复45 d后,与CK组对比,IBXM700组Cd可交换态含量显著降低了31.26%,残渣态含量提高了91.20%;同时,IBXM700组土壤pH值提升0.37,速效磷、速效钾含量分别提升了37.86%、57.29%,土壤蔗糖酶、脲酶、碱性磷酸酶和过氧化氢酶活性分别提升了50.22%、52.45%、11.61%和28.03%.研究表明,IBXM700能够有效钝化修复Cd污染土壤,提升土壤肥力,在土壤修复领域具有很大潜力.  相似文献   

18.
生物炭对土壤酶活和细菌群落的影响及其作用机制   总被引:6,自引:13,他引:6  
生物炭因其独特的理化性质能够提高土壤碳氮矿化速率及改善土壤微生态环境,因此探索生物炭调控土壤微生态环境与土壤酶活及其作用机制对改善土壤质量具有重要意义.采用大田试验方式研究不同生物炭施用水平0(CK2)、0.6(T1)、0.9(T2)、1.2(T3)和1.5(T4)t·hm-2以及完全空白对照(CK1:不施任何肥料和生...  相似文献   

19.
改性生物炭是良好的重金属钝化剂。但针对不同生物炭,联合多种方法进行改性后生物炭的吸附性能尚待深入研究,其对土壤理化性质和重金属铅(Pb)、镉(Cd)长期钝化效果的影响也有待研究。选取水稻秸秆、木屑和椰壳为生物炭材,经硝酸-高锰酸钾联合改性后进行表征,明确改性前后生物炭理化性质。开展室内培养实验,将改性生物炭按质量比为2.5%、5%和10%加入受试土壤,培养6个月后,测定土壤理化性质、Pb、Cd形态分布及钝化效率,探讨改性生物炭钝化土壤Pb、Cd的作用机制。结果表明:改性后,不同生物炭的比表面积、孔隙结构和含氧官能团数量均得到不同程度的改善,重金属吸附性能有效增强,以改性椰壳炭最为显著。添加改性生物炭能提高土壤pH并改善土壤结构,当其用量>5%时,土壤阳离子交换量和有机质含量分别提高了15.89 g/kg和5.28 cmol/kg,土壤自身对养分及重金属的固定能力得到了显著提升。改性生物炭-土壤体系主要通过离子交换、络合反应和共沉淀反应等促使土壤有效态Pb、Cd向其潜在活化形态和残渣态转化,转化程度与钝化培养时间和改性生物炭用量呈正相关。受元素特性和竞争吸附作用的影响,土壤Pb  相似文献   

20.
在不同热解温度及原料配比条件下,采用水解共沉淀方法制备针铁矿改性生物炭材料(GMB),借助SEM-EDS、XRD、FTIR、XPS进行表征,并进行Cr (Ⅵ)吸附实验,探究吸附性能和机理。结果表明:1)经改性后生物炭表面生成了羟基氧化铁(FeOOH),吸附能力有大幅提升;2)热解温度为600℃,生物炭与Fe (NO33·9H2O的质量比为1:12时制备的GMB600-12表现出最佳吸附性能,最大吸附容量为20.67 mg/g;3)准二级动力学揭示Cr (Ⅵ)的吸附以化学吸附为主,Langmuir和Freundlich模型都能很好地描述GMB对Cr (Ⅵ)的吸附特征;4) XPS的结果进一步表明GMB去除水溶液中Cr (Ⅵ)是氧化还原和表面吸附协同作用的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号