首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The environmental impacts of various hydrogen production processes are evaluated and compared, considering several energy sources and using life cycle analysis. The results indicate that hydrogen produced by thermochemical water decomposition cycles are more environmentally benign options compared to conventional steam reforming of natural gas. The nuclear based four-step Cu–Cl cycle has the lowest global warming potential (0.559 kg CO2-eq per kg hydrogen production), mainly because it requires the lowest quantity of energy of the considered processes. The acidification potential results show that biomass gasification has the highest impact on environment, while wind based electrolysis has the lowest. The relation is also investigated between efficiency and environmental impacts.  相似文献   

3.
On a global scale, the Gulf Corporation Council Countries (GCCC), including Bahrain, are amongst the top countries in terms of carbon dioxide emissions per capita. Building authority in Bahrain has set a target of 40% reduction of electricity consumption and associated CO2 emissions to be achieved by using facade parameters. This work evaluates how the life cycle CO2 emissions of buildings are affected by facade parameters. The main focus is placed on direct and indirect CO2 emissions from three contributors, namely, chemical reactions during production processes (Pco2), embodied energy (Eco2) and operational energy (OPco2). By means of the life cycle assessment (LCA) methodology, it has been possible to show that the greatest environmental impact occurs during the operational phase (80–90%). However, embodied CO2 emissions are an important factor that needs to be brought into the systems used for appraisal of projects, and hence into the design decisions made in developing projects. The assessment shows that masonry blocks are responsible for 70–90% of the total CO2 emissions of facade construction, mainly due to their physical characteristics. The highest Pco2 emissions factors are those of window elements, particularly aluminium frames. However, their contribution of CO2 emissions depends largely on the number and size of windows. Each square metre of glazing is able to increase the total CO2 emissions by almost 30% when compared with the same areas of opaque walls. The use of autoclaved aerated concrete (AAC) walls reduces the total life cycle CO2 emissions by almost 5.2% when compared with ordinary walls, while the use of thermal insulation with concrete wall reduces CO2 emissions by 1.2%. The outcome of this work offers to the building industry a reliable indicator of the environmental impact of residential facade parameters.  相似文献   

4.
Nowadays an increasing attention of public and private agencies to the sustainability performance of events is observed, since it is recognized as a key issue in the context of sustainable development. Assessing the sustainability performance of events involves environmental, social and economic aspects; their impacts are complex and a quantitative assessment is often difficult. This paper presents a new quali-quantitative method developed to measure the sustainability of events, taking into account all its potential impacts. The 2014 World Orienteering Championship, held in Italy, was selected to test the proposed evaluation methodology. The total carbon footprint of the event was 165.34 tCO2eq and the avoided emissions were estimated as being 46 tCO2eq. The adopted quali-quantitative method resulted to be efficient in assessing the sustainability impacts and can be applied for the evaluation of similar events.  相似文献   

5.
2011—2021年,熟料产量呈波动上升趋势。水泥行业整体生产运行水平不断提高,熟料单条生产线平均规模由43.8万t/条提升至115.3万t/条,熟料单位产品综合能耗下降14.4%,熟料单位产品CO2排放强度下降6.3%,但CO2排放总量增加了13.8%,与氮氧化物减排趋势形成较大反差,碳污治理水平差距明显。熟料生产中石灰石分解和煤炭燃烧过程的CO2排放合计占比为92.9%~93.8%,是CO2排放的主要来源。由于熟料系数偏高、非碳酸盐原料替代不足、综合能耗仍然较高等原因,安徽等7个熟料产量大的省份的CO2排放强度高于全国。建议实行碳酸盐熟料产量总量控制,逐步降低熟料应用比例,加快建材市场熟料产品和非碳酸盐原料替代,降低高标号水泥使用比例。应大力推广水泥行业节能降耗增效技术,加快熟料落后产能淘汰。对熟料产量大、碳排放强度高的地区,应结合当地碳排放特点,实行差别化降碳策略。各大气污染防治重点区域应因地施策推进水泥行业减污降碳工作。  相似文献   

6.
The construction industry is one of the greatest sources of pollution because of the high level of energy consumption during its life cycle. In addition to using energy while constructing a building, several systems also use power while the building is operating, especially the air-conditioning system. Energy consumption for this system is related, among other issues, to external air temperature and the required internal temperature of the building. The façades are elements which present the highest level of ambient heat transfer from the outside to the inside of tall buildings. Thus, the type of façade has an influence on energy consumption during the building life cycle and, consequently, contributes to buildings' CO2 emissions, because these emissions are directly connected to energy consumption. Therefore, the aim is to help develop a methodology for evaluating CO2 emissions generated during the life cycle of office building façades. The results, based on the parameters used in this study, show that façades using structural glazing and uncolored glass emit the most CO2 throughout their life cycle, followed by brick façades covered with compound aluminum panels or ACM (Aluminum Composite Material), façades using structural glazing and reflective glass and brick façades with plaster coating. On the other hand, the typology of façade that emits less CO2 is brickwork and mortar because its thermal barrier is better than structural glazing façade and materials used to produce this façade are better than brickwork and ACM. Finally, an uncertainty analysis was conducted to verify the accuracy of the results attained.  相似文献   

7.
Construction is considered as one of the most relevant sectors in terms of environmental impacts, due to the significant use of raw materials, fossil energy consumption and the consequent Greenhouse Gases emissions. The use of unconventional and environmentally-friendly materials and technologies is worldwide recognised as a key factor to enable the decrease of material and energy consumption in buildings. Between natural/sustainable materials, those using hemp products and by-products (fibres and hurds) have rapidly widened their field of application in the building industry, mainly because of their good hygrothermal and acoustic insulation properties. Moreover, the usage of these materials allows high carbon storage due to the CO2 sequestration during the agricultural phase.This study represents an energy and environmental assessment of hemp crop cultivation in France, carried out through a Life Cycle Assessment approach, showing positive and negative contribution related to the different life cycle phases. The total CF evaluated through the IPCC, 2013 GWP 100 method (IPCC, 2013) is equal to 0.975 kgCO2eq, in view of a CO2 uptake of −1.29 kgCO2eq. So, it is understood that the total CF results therefore lower than the CO2 uptake due to the biogenic carbon captured and stored during hemp growth. The total Energy Footprint, instead, was calculated in 17.945 MJ. The Upstream phase came out as the main contributor to the impacts. A sensitivity analysis was performed to explore changes in results related to main inputs assumptions and, in particular, the environmental benefits associated with the replacement of conventional fertilisers (ammonium sulphate) with organic matter were highlighted.  相似文献   

8.
The World Meteorological Organization has recently reported that greenhouse gases have reached their highest level since 3–5 million years ago. A continuing rise would cause serious consequences e.g., rising temperatures, death of living beings, or water pollution. Cement is associated with those levels since its production encompasses around 8% of global CO2 emissions. To increase the environmental performance of cementitious materials, different approaches could be followed, for instance, the reuse of waste materials such as recycled aggregate (RA) or the addition of TiO2 nanoparticles due to its proactive effect during service life. However, no research has been found that examined the effect of nano-TiO2 addition on recycled mortars in terms of environmental impact. Consequently, the main objective of this research is to evaluate the sustainability of TiO2 nanoparticles in mortars made with either natural or recycled aggregate. Twelve mixtures with different percentages of nano-TiO2 substitution (0%, 0.5%, 1%, 2% by the weight of cement) and RA replacement (0%, 50%, 100%) were studied. A life cycle assessment focused on material production (cradle-to-gate) was performed. The functional unit (FU) used was 1 m3 of mortar with a given compressive strength. The mix design was modified to meet the fixed strength defined in the FU. In terms of global warming potential, mortars with RA reduced the environmental impact when 0.5% of nano-TiO2 was added. Considering waste generation and depletion of natural resources play a crucial role in the sustainability assessment of mortars with RA. Furthermore, when the compressive strength factor was considered in the FU, RA increased the total CO2 emissions due to the higher amount of cement needed. Finally, despite the apparent harmful effect of nano-TiO2 using a cradle-to-gate approach, these nanoparticles could highly enhance environmental performance due to their effects during service life.  相似文献   

9.
Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD +) has moved to the central stage of the climate change debate by being promoted as a significant, cheap, and quick win–win strategy to reduce greenhouse gas emissions and thereby mitigate climate change. In order to be successful in reducing emissions while providing the projected social and environmental co-benefits, REDD + needs to overcome key challenges of insecure forest tenure and inequity in the distribution of benefits. Such challenges threaten to affect the livelihoods and well-being in the local communities and in turn the effectiveness of REDD+. While REDD + programs will affect the participating communities, there is limited knowledge as to what social impacts these projects may bring to the local population. Similarly, assessment of these social dimensions has received little attention until recently, and is consequently out of sync with the realities of REDD + projects.The present paper aims to shed light on the methodological and contextual challenges in the assessment of the social dimensions of REDD+. Some of the main social concerns of REDD + are outlined with an emphasis on the uniqueness and complexity of REDD + interventions. Recently proposed approaches to assess social impacts in REDD + are critically assessed in terms of the diversity of frameworks proposed, choice of social indicators, and data collection requirements. Specifically, these methodological implications are further discussed in the light of the social dimensions and the prescribed regulations of REDD + in a Cambodian context.  相似文献   

10.
Previous studies have found that the relationship between wildlife road mortality and traffic volume follows a threshold effect on low traffic volume roads. We aimed at evaluating the response of several species to increasing traffic intensity on highways over a large geographic area and temporal period. We used data of four terrestrial vertebrate species with different biological and ecological features known by their high road-kill rates: the barn owl (Tyto alba), hedgehog (Erinaceus europaeus), red fox (Vulpes vulpes) and European rabbit (Oryctolagus cuniculus). Additionally, we checked whether road-kill likelihood varies when traffic patterns depart from the average. We used annual average daily traffic (AADT) and road-kill records observed along 1000 km of highways in Portugal over seven consecutive years (2003–2009). We fitted candidate models using Generalized Linear Models with a binomial distribution through a sample unit of 1 km segments to describe the effect of traffic on the probability of finding at least one victim in each segment during the study. We also assigned for each road-kill record the traffic of that day and the AADT on that year to test for differences using Paired Student's t-test. Mortality risk declined significantly with traffic volume but varied among species: the probability of finding road-killed red foxes and rabbits occurs up to moderate traffic volumes (< 20,000 AADT) whereas barn owls and hedgehogs occurred up to higher traffic volumes (40,000 AADT). Perception of risk may explain differences in responses towards high traffic highway segments. Road-kill rates did not vary significantly when traffic intensity departed from the average. In summary, we did not find evidence of traffic thresholds for the analysed species and traffic intensities. We suggest mitigation measures to reduce mortality be applied in particular on low traffic roads (< 5000 AADT) while additional measures to reduce barrier effects should take into account species-specific behavioural traits.  相似文献   

11.
Hydrological processes and crop growth were simulated for the state of Brandenburg (Germany) using the hydrological/vegetation/water quality model SWIM, which can be applied for mesoscale river basins or regions. Hydrological validation was carried out for three mesoscale river basins in the area. The crop growth module was validated regionally for winter wheat, winter barley and maize. After that the analysis of climate change impacts on hydrology and crop growth was performed, using a transient 1.5 K scenario of climate change for Brandenburg and restricting the crop spectrum to the three above mentioned crops. According to the scenario, precipitation is expected to increase. The impact study was done comparing simulation results for two scenario periods 2022–2030 and 2042–2050 with those for a reference period 1981–1992. The atmospheric CO2 concentrations for the reference period and two scenario periods were set to 346, 406 and 436 ppm, respectively. Two different methods – an empirical one and a semi-mechanistic one – were used for adjustment of net photosynthesis to altered CO2. With warming, the model simulates an increase of evapotranspiration (+9.5%, +15.4%) and runoff (+7.0%, +17.2%). The crop yield was only slightly altered under the climate change only scenario (no CO2 fertilization effect) for barley and maize, and it was reduced for wheat (–6.2%, –10.3%). The impact of higher atmospheric CO2 compensated for climate-related wheat yield losses, and resulted in an increased yield both for barley and maize compared to the reference scenario. The simulated combined effect of climate change and elevated CO2 on crop yield was about 7% higher for the C3 crops when the CO2 and temperature interaction was ignored. The assumption that stomatal control of transpiration is taking place at the regional scale led to further increase in crop yield, which was larger for maize than for wheat and barley. The regional water balance was practically not affected by the partial stimulation of net photosynthesis due to higher CO2, while the introduction of stomatal control of regional transpiration reduced evapotranspiration and enlarged notably runoff and ground water recharge.  相似文献   

12.
Changes in global near-surface temperature and sea level are calculated from 2000 to 2100 for the Post-SRES (Special Report on Emissions Scenarios) scenarios that stabilize the CO2 concentration early in the 22nd century. Seven stabilization scenarios are examined together with their corresponding SRES marker scenarios – A1, A1/S450, A1/S550, A1/S650, A2, A2/S550, A2/S750, B1, B1/S450, B2, and B2/S550 – where the number following the S indicates the stabilized CO2 concentration in parts per million by volume (ppmv). The calculations are performed using an energy-balance-climate/upwelling-diffusion-ocean model for three values of the climate sensitivity, ΔT 2x =1.5, 2.5 and 4.5°C. The resulting reductions in global warming and sea-level rise for the stabilization scenarios relative to their corresponding marker scenario increases with ΔT 2x and are greater the lower the stabilized CO2 concentration. For the S550 stabilization scenarios, the reductions in global warming and sea-level rise in 2100 range from 0.29°C and 3.31 cm for B2/S550 with ΔT 2x =1.5°C, to 1.23°C and 11.81 cm for A2/S550 with ΔT 2x =4.5°C. The percent reductions for the global warming and sea-level rise for each stabilization scenario are almost independent of ΔT 2x and range respectively from about 16% and 12% for the A1/S650 scenario to about 39% and 30% for the A1/S450 scenario. The geographical distributions of near-surface temperature change are constructed using a method to superpose the patterns simulated by our atmospheric general-circulation/mixed-layer-ocean model, individually for doubled CO2 concentration and decupled SO4 burden. Results are illustrated for the B2 and B2/S550 scenarios for ΔT 2x =2.5°C. The near-surface temperature changes of the B2/S550 scenario in 2100 are everywhere smaller than those for the B2 scenario, with values ranging from about 0.3°C in the tropics to 0.5°C over Antarctica and 0.7°C in the Arctic. The global results of this study are available on the web at: http://crga.atmos.uiuc.edu/research/post-sres.html. We would be pleased to collaborate with other researchers in using these results in impact and integrated-assessment studies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Geological CO2 capture and storage (CCS) is among the main near-term contenders for addressing the problem of global climate change. Even in a baseline scenario, with no comprehensive international climate policy, a moderate level of CCS technology is expected to be deployed, given the economic benefits associated with enhanced oil and gas recovery. With stringent climate change control, CCS technologies will probably be installed on an industrial scale. Geologically stored CO2, however, may leak back to the atmosphere, which could render CCS ineffective as climate change reduction option. This article presents a long-term energy scenario study for Europe, in which we assess the significance for climate policy making of leakage of CO2 artificially stored in underground geological formations. A detailed sensitivity analysis is performed for the CO2 leakage rate with the bottom-up energy systems model MARKAL, enriched for this purpose with a large set of CO2 capture technologies (in the power sector, industry, and for the production of hydrogen) and storage options (among which enhanced oil and gas recovery, enhanced coal bed methane recovery, depleted fossil fuel fields, and aquifers). Through a series of model runs, we confirm that a leakage rate of 0.1%/year seems acceptable for CCS to constitute a meaningful climate change mitigation option, whereas one of 1%/year is not. CCS is essentially no option to achieve CO2 emission reductions when the leakage rate is as high as 1%/year, so more reductions need to be achieved through the use of renewables or nuclear power, or in sectors like industry and transport. We calculate that under strict climate control policy, the cumulative captured and geologically stored CO2 by 2100 in the electricity sector, when the leakage rate is 0.1%/year, amounts to about 45,000 MtCO2. Only a little over 10,000 MtCO2 cumulative power-generation-related emissions are captured and stored underground by the end of the century when the leakage rate is 1%/year. Overall marginal CO2 abatement costs increase from a few €/tCO2 today to well over 150 €/tCO2 in 2100, under an atmospheric CO2 concentration constraint of 550 ppmv. Carbon costs in 2100 turn out to be about 40 €/tCO2 higher when the annual leakage rate is 1%/year in comparison to when there is no CO2 leakage. Irrespective of whether CCS deployment is affected by gradual CO2 seepage, the annual welfare loss in Europe induced by the implementation of policies preventing “dangerous anthropogenic interference with the climate system” (under our assumption, implying a climate stabilisation target of 550 ppmv CO2 concentration) remains below 0.5% of GDP during the entire century.
Koen SmekensEmail:
  相似文献   

14.
Roads may act as barriers, negatively influencing the movement of animals, thereby causing disruption in landscapes. Roads cause habitat loss and fragmentation not only through their physical occupation, but also through traffic noise. The aim of this study is to provide a method to quantify the habitat degradation including habitat loss and fragmentation due to road traffic noise and to compare it with those of road land-take. Two types of fragmentation effects are determined: structural fragmentation (based on road land-take only), and functional fragmentation (noise effect zone fragmentation, buffer using a threshold of 40 dB). Noise propagation for roads with a traffic volume of more than 1000 vehicles per day was simulated by Calculation of Road Traffic Noise (CRTN) model. Habitat loss and fragmentation through land-take and noise effect zone were calculated and compared in Zagros Mountains in western Iran. The study area is characterized by three main habitat types (oak forest, scattered woodland and temperate grassland) which host endangered and protected wildlife species. Due to topographic conditions, land cover type, and the traffic volume in the region, the noise effect zone ranged from 50 to 2000 m which covers 18.3% (i.e. 516,929.95 ha) of the total study area. The results showed that the habitat loss due to noise effect zone is dramatically higher than that due to road land-take only (35% versus 1.04% of the total area). Temperate grasslands lost the highest proportion of the original area by both land-take and noise effect zone, but most area was lost in scattered woodland as compared to the other two habitat types. The results showed that considering the noise effect zone for habitat fragmentation resulted in an increase of 25.8% of the area affected (316,810 ha) as compared to using the land-take only (555,874 ha vs. 239,064 ha, respectively). The results revealed that the degree of habitat fragmentation is increasing by considering the noise effect zone. We conclude that, although the roads are breaking apart the patches by land-take, road noise not only dissects habitat patches but takes much larger proportions of or even functionally eliminates entire patches.  相似文献   

15.
In this study, environmental impact on air quality was evaluated for a typical Cement Industry in Nigeria. The air pollutants in the atmosphere around the cement plant and neighbouring settlements were determined using appropriate sampling techniques. Atmospheric dust and CO2 were prevalent pollutants during the sampling period; their concentrations were recorded to be in the range of 249–3,745 mg/m3 and 2,440–2,600 mg/m3, respectively. Besides atmospheric dust and CO2, the air pollutants such as NO x , SO x and CO were in trace concentrations, below the safe limits approved by FEPA that are 0.0062–0.093 mg/m3 NO x , 0.026 mg/m3 SO x and 114.3 mg/m3 CO, respectively. Some cost-effective mitigating measures were recommended that include the utilisation of readily available and low-cost pozzolans material to produce blended cement, not only could energy efficiency be improved, but carbon dioxide emission could also be minimised during clinker production; and the installation of an advance high-pressure grinding rolls (clinker–roller-press process) to maximise energy efficiency to above what is obtainable from the traditional ball mills and to minimise CO2 emission from the power plant.  相似文献   

16.
This paper unprecedentedly benchmarks the environmental and economic impacts of notable High-speed rail (HSR) networks. The goals are to (i) point out the environmental impacts from the HSR networks and (ii) evaluate the whole life cycle cost of HSR systems. The emphasis of this study is placed on five HSR networks from five countries to depict the effectiveness of sustainable transport policies in each particular country. Both life cycle assessment (LCA) and life cycle cost (LCC) models are adopted for a new critical framework capable of benchmarking the lifecycle sustainability of HSR networks. The new findings exhibit that CRC's system is the leader in energy-saving, who consumes only 67.55 GJ/km yearly, and emits lowest CO2 at an amount of 77,532.32 tCO2/km annually. These impressive results are stemmed from key enabling policies related to eco-friendly rolling stock design, sustainable construction, and green energy grids. With respect to the LCC analysis, the SCNF network takes advantage in the economy of scale and unleashes the lowest cost among other networks. It estimates that the SNCF network spends approximately 1,990,599.51 £/km annually at a % discount rate. The implications of these finding are discussed that the initial project has a high chance to be successful on economic than the late project due to an influence of the time value of money.  相似文献   

17.
Recent decades have witnessed increased public awareness of refrigerants, due to their significant global warming potential (GWP) and ozone depletion potential (ODP). Using the life cycle assessment (LCA) method, this study estimates and predicts the potential GWP and ODP of refrigerants over the entire life cycle of household air conditioners during 1998–2035 in Macau. The results show that the total environmental impacts of refrigerants were 2.19 ± 0.63 t CFC-11 eq. and 111.62 ± 17.44 Kt CO2 eq. in 2018, respectively. If uncontrolled, cumulative emissions of ODP and GWP will rise to approximately 15.54 ± 2.63 t CFC-11 eq. and 1.31 ± 0.21 Mt. CO2 eq. between 2019 and 2035. Specifically, ODP effects experienced a historical peak of 3.24 ± 0.54 t CFC-11 eq. in 2013, and GWP effects peaked at 128.05 ± 20.83 Kt CO2 eq. in 2014. Furthermore, the GWP contribution in the use stage decreased from 88% in 2002 to 11% in 2028, while the end-of-life stage will gradually become the dominant stage of GWP effects. Under the most optimistic scenario (S4), the reduction rates of ODP and GWP will be 44% ± 12% and 38% ± 14%, respectively, compared to the business-as-usual (BAU) scenario in 2035, and will realize zero ODP emissions by 2032 (2 years earlier than the BAU). In the future, the management and disposal of large-scale electronic waste need to be further improved for the effective control of refrigerants in Macau.  相似文献   

18.
Heating, ventilation and air conditioning (HVAC) systems are a major source of energy consumption in buildings, directly and indirectly contributing to greenhouse gas (GHG) emissions. In the urban environment, and depending on local climatic conditions, air conditioning units attribute to these high energy demands. This study analyzes the use of residential air conditioning units and their associated global warming potential (GWP) between 2005 and 2030 for the city of Shenzhen, a fast-growing megacity located in Southern China. A life cycle assessment approach was adopted to quantify the GWP impacts which arise from both direct (refrigerant release) and indirect (energy consumption) sources, in combination with a materials flow analysis approach. The results show that the total GWP (expressed as carbon dioxide equivalents, CO2 eq.) from residential air conditioning systems increased from 2.2 ± 0.2 to 5.1 ± 0.4 million tonnes (Mt) CO2 eq. between 2005 and 2017, with energy consumption and refrigerant release contributing to 72.5% and 27.5% of the total demands, respectively. Immediate measures are required to restrict refrigerant release and reduce the energy consumption of air conditioning units, to help mitigate the predicted additional total emissions of 36.4 Mt. CO2 eq. potentially released between 2018 and 2030. This amount equals to approximately New Zealand's national CO2 emissions in 2017. The findings proposed in this study targets air conditioning units to reduce the GWP emissions in cities, and provide useful data references and insights for local authorities to incentivise measures for improving building energy efficiency management and performance.  相似文献   

19.
This article proposes a new method to assess the health impact of populations exposed to fine particles (PM2.5) during their whole lifetime, which is suitable for comparative analysis of energy scenarios. The method takes into account the variation of particle concentrations over time as well as the evolution of population cohorts. Its capabilities are demonstrated for two pathways of European energy system development up to 2050: the Baseline (BL) and the Low Carbon, Maximum Renewable Power (LC-MRP). These pathways were combined with three sets of assumptions about emission control measures: Current Legislation (CLE), Fixed Emission Factors (FEFs), and the Maximum Technically Feasible Reductions (MTFRs). Analysis was carried out for 45 European countries. Average PM2.5 concentration over Europe in the LC-MRP/CLE scenario is reduced by 58% compared with the BL/FEF case. Health impacts (expressed in days of loss of life expectancy) decrease by 21%. For the LC-MRP/MTFR scenario the average PM2.5 concentration is reduced by 85% and the health impact by 34%. The methodology was developed within the framework of the EU's FP7 EnerGEO project and was implemented in the Platform of Integrated Assessment (PIA). The Platform enables performing health impact assessments for various energy scenarios.  相似文献   

20.
BackgroundDespite the continued growth of Health Impact Assessment (HIA) in the US, there is little research on HIA capacity-building. A comprehensive study of longer-term training outcomes may reveal opportunities for improving capacity building activities and HIA practice.MethodsWe conducted in-depth interviews with HIA trainees in the United States to assess their outcomes and needs. Using a training evaluation framework, we measured outcomes across a spectrum of reaction, learning, behavior and results.ResultsFrom 2006 to 2012, four organizations trained over 2200 people in at least 75 in-person HIA trainings in 29 states. We interviewed 48 trainees, selected both randomly and purposefully. The mean duration between training and interview was 3.4 years. Trainees reported that their training objectives were met, especially when relevant case-studies were used. They established new collaborations at the trainings and maintained them. Training appeared to catalyze more holistic thinking and practice, including a range of HIA-related activities. Many trainees disseminated what they learned and engaged in components of HIA, even without dedicated funding. Going forward, trainees need assistance with quantitative methods, project management, community engagement, framing recommendations, and evaluation.ConclusionsThe research revealed opportunities for a range of HIA stakeholders to refine and coordinate training resources, apply a competency framework and leverage complimentary workforce development efforts, and sensitize and build the capacity of communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号