首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A literature review on the safety assessment of genetically modified plants   总被引:3,自引:0,他引:3  
In recent years, there has been a notable concern on the safety of genetically modified (GM) foods/plants, an important and complex area of research, which demands rigorous standards. Diverse groups including consumers and environmental Non Governmental Organizations (NGO) have suggested that all GM foods/plants should be subjected to long-term animal feeding studies before approval for human consumption. In 2000 and 2006, we reviewed the information published in international scientific journals, noting that the number of references concerning human and animal toxicological/health risks studies on GM foods/plants was very limited. The main goal of the present review was to assess the current state-of-the-art regarding the potential adverse effects/safety assessment of GM plants for human consumption. The number of citations found in databases (PubMed and Scopus) has dramatically increased since 2006. However, new information on products such as potatoes, cucumber, peas or tomatoes, among others was not available. Corn/maize, rice, and soybeans were included in the present review. An equilibrium in the number research groups suggesting, on the basis of their studies, that a number of varieties of GM products (mainly maize and soybeans) are as safe and nutritious as the respective conventional non-GM plant, and those raising still serious concerns, was currently observed. Nevertheless, it should be noted that most of these studies have been conducted by biotechnology companies responsible of commercializing these GM plants. These findings suggest a notable advance in comparison with the lack of studies published in recent years in scientific journals by those companies. All this recent information is herein critically reviewed.  相似文献   

2.
In the mixed crop–livestock systems, while general relation among feed quality, productivity and soil nutrient management have been reported, information on the effects of extractable soil nutrients on crop residue (CR) feed quality traits is scarce (e.g. in semiarid regions of Karnataka, India). In view of the increasingly important role of CR as feed components, in these farming systems, generating such information is a relevant research issue for sustainable development. Here, we report the occurrence and strength of relationships among extractable nutrients in soils and CR feed quality traits, and the effects of improved nutrients input on feed availability and feed quality of CR. Soil samples were collected from farmers’ fields in the semiarid zone of Karnataka and analyzed for available phosphorus (P), potassium (K), sulphur (S), zinc (Zn) and boron (B) using standard laboratory methods. Soil test results were clustered as low, medium or high based on the level of nutrient concentration. Four major farming systems involving nine crops and 419 farms were selected for on-farm trials. Under every sample farm, a plot with farmer’s practice (control) and improved fertilizer inputs (combined application of nutrients found deficient by soil testing) were laid. Performance of crops was recorded. Samples were collected for CR feed quality trait analysis using Near Infrared Reflectance Spectroscopy. The result showed that for cereal and oil crops, extractable soil S was significantly negatively associated with anti-feed quality traits such as neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL) (P < 0.01), but significantly positively related to metabolizable energy (ME) and in vitro digestibility (P < 0.01). Extractable B and K levels were associated positively and significantly with NDF, ADF and ADL for oil crops and cereals. Crop level associations, for most crops, showed similar trend. Improved fertilizer inputs affected CR yield much more than it did the quality. It increased ME productivity (ME ha?1) and thereof the potential milk yield ha?1 by as high as 40 % over the control. Therefore, balanced nutrient inputs on crop land positively impact productivity of the livestock compartment of mixed crop–livestock farming system, and this knowledge can build on the currently perceived need and benefits of balanced nutrient replenishment in crop–livestock system.  相似文献   

3.
This study examined the influencing factors of the self-reported behavioral intentions toward genetically modified (GM) crops using a multi-stakeholder approach in the Khuzestan Province in Southwest Iran. The study focused on three different groups, including: “agricultural students,” “agricultural private firms’ managers” and “rich-resource farmers.” Data were collected using a researcher-made questionnaire and was analyzed by SPSS (V20) and AMOS (V20). Results indicated that the respondents perceive more benefits than risks for GM crops and that the perception of benefits and risks, respectively, had positive and negative impacts on the self-reported behavioral intention of the respondents. The knowledge of the respondents regarding these crops had positive impacts on perception of benefits. The results showed that both managers and students worried about the food safety and impact of GM crops on human health while farmers worried about the environmental risks of GM crops. The results also revealed that those who are the most conscious about GM crops are more trusted. The findings also showed that the majority of the respondents hold a positive view of the potential of GM crops.  相似文献   

4.
Thailand plays an important role in the international trade of food and agricultural products, which is in alignment with its national strategy of serving as the “kitchen of the world.” When looking at its agricultural promotion and export policies, the country only counts the value gains from exports while neglecting environmental externalities related to plantation practices. The purpose of this study was to perform a trade-off analysis between consumptive water, land, and fertilizer use together with the economic values of major crops for export and consumption in the country. The results show that to gain income from agricultural exports, the country has exploited various natural resources. The area used to harvest rice, sugarcane, cassava, and rubber adds up to approximately 15.3 million ha: 7.2 million ha of which is for domestic consumption and 8.1 ha for export. To produce Thailand’s agricultural exports, total water use is estimated to be 49.8–67.5 billion m3 per year (61–65 %), while the amount used to produce crops for domestic consumption is 26.5–43.7 billion m3 per year (35–39 %). Meanwhile, 1,056–1,826 thousand tons (54 %) of fertilizer was used on crops for domestic consumption, and 1,222–1,370 thousand tons (46 %) of fertilizer was used on export crops. The best crop choice for export in terms of its export value, land use, fertilizer use, and water consumption is rubber. The worst crop choices for export are rice and cassava. More sustainable agricultural practices are needed to effect improvements such as increased yields and reduced fertilizer and water use.  相似文献   

5.
We studied trends in food production and nitrous oxide emissions from India's agricultural sector between 1961 and 2000. Data from Food and Agricultural Statistics (FAO) have been gathered covering production, consumption, fertilizer use and livestock details. IPCC 1996 revised guidelines were followed in studying the variations in N2O-N emissions. Results suggest that total N2O-N emissions (direct, animal waste and indirect sources) increased ~6.1 times from ~0.048 to ~0.294 Tg N2O-N, over 40 years. Source-wise breakdown of emissions from 1961–2000 indicated that during 1961 most of the N2O-N inputs were from crop residues (61%) and biological nitrogen fixation (25%), while during 2000 the main sources were synthetic fertilizer (~48%) and crop residues (19%). Direct emissions increased from ~0.031 to ~0.183 Tg. It is estimated that ~3.1% of global N2O-N emissions comes from India. Trends in food production, primarily cereals (rice, wheat and coarse grains) and pulses, and fertilizer consumption from 1961–2000 suggest that food production (cereals and pulses) increased only 3.7 times, while nitrogenous fertilizer consumption increased ~43 times over this period, leading to extensive release of nitrogen to the atmosphere. From this study, we infer that the challenge for Indian agriculture lies not only in increasing production but also in achieving production stability while minimizing the impact to the environment, through various management and mitigation options.  相似文献   

6.
Health impacts from pesticide use are of continuous concern in the European population, requiring a constant evaluation of European pesticide policy. However, health impacts have never been quantified accounting for specific crops contributing differently to overall human exposure as well as accounting for individual substances showing distinct environmental behavior and toxicity. We quantify health impacts and related damage costs from exposure to 133 pesticides applied in 24 European countries in 2003 adding up to almost 50% of the total pesticide mass applied in that year. Only 13 substances applied to 3 crop classes (grapes/vines, fruit trees, vegetables) contribute to 90% of the overall health impacts of about 2000 disability-adjusted life years in Europe per year corresponding to annual damage costs of 78 million Euro. Considering uncertainties along the full impact pathway mainly attributable to non-cancer dose–response relationships and residues in treated crops, we obtain an average burden of lifetime lost per person of 2.6 hours (95% confidence interval between 22 seconds and 45.3 days) or costs per person over lifetime of 12 Euro (95% confidence interval between 0.03 Euro and 5142 Euro), respectively. 33 of the 133 assessed substances accounting for 20% of health impacts in 2003 are now banned from the European market according to current legislation. The main limitation in assessing human health impacts from pesticides is related to the lack of systematic application data for all used substances. Since health impacts can be substantially influenced by the choice of pesticides, the need for more information about substance application becomes evident.  相似文献   

7.
Crop diversity is central to traditional risk management practices on the Andean Altiplano and may find renewed importance in adapting to climate change. This study explored the role of crop diversity in farmers’ adaptation actions in eight Aymara communities on the northern Bolivian Altiplano. Using a combination of quantitative and qualitative methods, including multifactor analysis and a community resilience self-assessment, we investigated how farmers’ use of diversity in adaptation is related to their perceptions of crop and variety tolerances and other environmental, social, and economic factors. Few crops and varieties were perceived as tolerant to increasingly intense and unpredictable drought, frost, hail, and pest and disease outbreaks. Some local crops and varieties were perceived as vulnerable to emerging conditions (e.g. oca, papalisa, isaño), whereas bitter potatoes and wild relatives of quinoa and cañahua were perceived as highly stress tolerant and provide food in harsh periods. A total 19% of households surveyed (N = 193) had introduced new crops or varieties—often disease resistant or early maturing—as an adaptive action. Introduction of commercial crops was a common adaptation action, reflecting farmers’ response to warming temperatures and changing economic opportunities, but greater sensitivity of the introduced crops may cause maladaptation. Despite intensification of cropping systems, households continue to maintain a median four potato varieties with different tolerance traits, yet this risk management practice was not perceived as adaptation. Strengthening resilience will require a combination of actions, including maintaining and expanding crop portfolios and restoring soil and ecosystem health, using both traditional and innovative approaches.  相似文献   

8.
We review and analyze regulatory categories for longer duration of use (defined as ≥ 7 day) tetracyclines (TCs) and penicillins (PNs) approved for U.S. livestock and poultry, together with scientific studies, surveillance programs and risk assessments pertaining to antimicrobial resistance. Indications listed on a government database were grouped into three broad categories according to the terminology used to describe their use: disease control (C), treatment (T) and growth improvement (G). Consistent with mostly therapeutic uses, the majority (86%) of listed indications had C and/or T terms. Several studies showed interruption of early disease stages in animals and modulation of intestinal microflora. Longer-duration exposures are consistent with bacteriostatic modes of action, where adequate exposure time as well as concentration is needed for sufficient antimicrobial activity. Other effects identified included reduced animal pathogen prevalence, toxin formation, inflammation, environmental impacts, improved animal health, reproductive measures, nutrient utilization, and others. Several animal studies have shown a limited, dose-proportionate, selective increase in resistance prevalence among commensal animal bacteria following longer-duration exposures. Pathogen surveillance programs showed overall stable or declining resistance trends among sentinel bacteria. Quantitative, microbiologically detailed resistance risk assessments indicate small probabilities of human treatment failure due to resistance under current conditions. Evaluations of longer-duration uses of TCs, PNs, and other antimicrobial classes used in food-producing animals should consider mechanisms of activity, known individual- and population-level health and waste reduction effects in addition to resistance risks.  相似文献   

9.
There is a growing interest to study human dermal exposure to a large number of chemicals, whether in the indoor or outdoor environment. Such studies are essential to predict the systemic exposure to xenobiotic chemicals for risk assessment purposes and to comply with various regulatory guidelines. However, very little is currently known about human dermal exposure to persistent organic pollutants. While recent pharmacokinetic studies have highlighted the importance of dermal contact as a pathway of human exposure to brominated flame retardants, risk assessment studies had to apply assumed values for percutaneous penetration of various flame retardants (FRs) due to complete absence of specific experimental data on their human dermal bioavailability. Therefore, this article discusses the current state-of-knowledge on the significance of dermal contact as a pathway of human exposure to FRs. The available literature on in vivo and in vitro methods for assessment of dermal absorption of FRs in human and laboratory animals is critically reviewed. Finally, a novel approach for studying human dermal absorption of FRs using in vitro three-dimensional (3D) human skin equivalent models is presented and the challenges facing future dermal absorption studies on FRs are highlighted.  相似文献   

10.
Tripathi  Rahul  Dhal  B.  Shahid  Md  Barik  S. K.  Nayak  A. D.  Mondal  B.  Mohapatra  S. D.  Chatterjee  D.  Lal  B.  Gautam  Priyanka  Jambhulkar  N. N.  Fitton  Nuala  Smith  Pete  Dawson  T. P.  Shukla  A. K.  Nayak  A. K. 《Environment, Development and Sustainability》2021,23(8):11563-11582

A study was conducted to examine the interrelationships among socioeconomic factors, household consumption patterns, calorie intake and greenhouse gas emissions factors in rural eastern India based on household survey data. Findings indicated that higher monthly per capita incomes (12.1–80.1$) were associated with greater average calorie intakes (2021–2525 kcal d?1). As estimated by the FEEDME model, in total 17.2% of the population was calorie malnourished with a regional disparity of 29.4–18.2% malnourishment. Greenhouse gas (GHG) emissions were calculated only on the basis of crop and livestock production and consumption. Rice accounted for the highest share of total GHG emissions, on average 82.6% on a production basis, which varied from 58.1% to 94.9% in regional basis. Rice contributed the greatest share (~?65% and 66.2%) in terms of both calories and GHG emissions (CO2 eq y?1), respectively, on a consumption basis. We conclude that extensive rice farming and increasing animal product consumption are dominant factors in the higher carbon footprint in this region and are likely to further increase with increase in per capita income. This study provides useful information to help for better crop planning and for fine-tuning food access policy, to reduce carbon footprint and calorie malnutrition.

  相似文献   

11.
The study assesses green and blue water footprints (WFs) and virtual water (VW) trade in China under alternative scenarios for 2030 and 2050, with a focus on crop production, consumption and trade. We consider five driving factors of change: climate, harvested crop area, technology, diet, and population. Four scenarios (S1–S4) are constructed by making use of three of IPCC's shared socio-economic pathways (SSP1–SSP3) and two of IPCC's representative concentration pathways (RCP 2.6 and RCP 8.5) and taking 2005 as the baseline year. Results show that, across the four scenarios and for most crops, the green and blue WFs per tonne will decrease compared to the baseline year, due to the projected crop yield increase, which is driven by the higher precipitation and CO2 concentration under the two RCPs and the foreseen uptake of better technology. The WF per capita related to food consumption decreases in all scenarios. Changing to the less-meat diet can generate a reduction in the WF of food consumption of 44% by 2050. In all scenarios, as a result of the projected increase in crop yields and thus overall growth in crop production, China will reverse its role from net VW importer to net VW exporter. However, China will remain a big net VW importer related to soybean, which accounts for 5% of the WF of Chinese food consumption (in S1) by 2050. All scenarios show that China could attain a high degree of food self-sufficiency while simultaneously reducing water consumption in agriculture. However, the premise of realizing the presented scenarios is smart water and cropland management, effective and coherent policies on water, agriculture and infrastructure, and, as in scenario S1, a shift to a diet containing less meat.  相似文献   

12.
In the effort to predict the risks associated with contaminated soils, considerable reliance is placed on plant/soil concentration ratio (CR) values measured at sites other than the contaminated site. This inevitably results in the need to extrapolate among the many soil and plant types. There are few studies that compare CR among plant types that encompass both field and garden crops. Here, CRs for 40 elements were measured for 25 crops from farm and garden sites chosen so the grain crops were in close proximity to the gardens. Special emphasis was placed on iodine (I) because data for this element are sparse. For many elements, there were consistent trends among CRs for the various crop types, with leafy crops > root crops ≥ fruit crops ≈ seed crops. Exceptions included CR values for As, K, Se and Zn which were highest in the seed crops. The correlation of CRs from one plant type to another was evident only when there was a wide range in soil concentrations. In comparing CRs between crop types, it became apparent that the relationships differed for the rare earth elements (REE), which also had very low CR values. The CRs for root and leafy crops of REE converged to a minimum value. This was attributed to soil adhesion, despite the samples being washed, and the average soil adhesion for root crops was 500 mg soil kg−1 dry plant and for leafy crops was 5 g kg−1. Across elements, the log CR was negatively correlated with log Kd (the soil solid/liquid partition coefficient), as expected. Although, this correlation is expected, measures of correlation coefficients suitable for stochastic risk assessment are not frequently reported. The results suggest that r ≈ −0.7 would be appropriate for risk assessment.  相似文献   

13.
There is increasing interest in radiological assessment of discharges of naturally occurring radionuclides into the terrestrial environment. Such assessments require parameter values for the pathways considered in predictive models. An important pathway for human exposure is via ingestion of food crops and animal products. One of the key parameters in environmental assessment is therefore the soil-to-plant transfer factor to food and fodder crops. The objective of this study was to compile data, based on an extensive literature survey, concerning soil-to-plant transfer factors for uranium, thorium, radium, lead, and polonium. Transfer factor estimates were presented for major crop groups (Cereals, Leafy vegetables, Non-leafy vegetables, Root crops, Tubers, Fruits, Herbs, Pastures/grasses, Fodder), and also for some compartments within crop groups. Transfer factors were also calculated per soil group, as defined by their texture and organic matter content (Sand, Loam, Clay and Organic), and evaluation of transfer factors' dependency on specific soil characteristics was performed following regression analysis. The derived estimates were compared with estimates currently in use.  相似文献   

14.
Silicone polymers are used for a wide array of applications from passive samplers in environmental studies, to implants used in human augmentation and reconstruction. If silicone sequesters toxicants throughout implantation, it may represent a history of exposure and potentially reduce the body burden of toxicants influencing the risk of adverse health outcomes such as breast cancer. Objectives of this research included identifying a wide variety of toxicants in human silicone implants, and measuring the in vivo absorption of contaminants into silicone and surrounding tissue in an animal model. In the first study, eight human breast implants were analyzed for over 1400 organic contaminants including consumer products, chemicals in commerce, and pesticides. A total of 14 compounds including pesticides such as trans-nonachlor (1.2–5.9 ng/g) and p,p′-DDE (1.2–34 ng/g) were identified in human implants, 13 of which have not been previously reported in silicone prostheses. In the second project, female ICR mice were implanted with silicone and dosed with p,p′-DDE and PCB118 by intraperitoneal injection. After nine days, silicone and adipose samples were collected, and all implants in dosed mice had p,p′-DDE and PCB118 present. Distribution ratios from silicone and surrounding tissue in mice compare well with similar studies, and were used to predict adipose concentrations in human tissue. Similarities between predicted and measured chemical concentrations in mice and humans suggest that silicone may be a reliable surrogate measure of persistent toxicants. More research is needed to identify the potential of silicone implants to refine the predictive quality of chemicals found in silicone implants.  相似文献   

15.
Oil palm (Elaeis guineensis) has become one of the most rapidly expanding crops in the world. Many countries have promoted its cultivation as part of a broader rural development strategy aimed at generating paid work and producing both export commodities and biofuels. However, oil palm expansion has often occurred at the expense of ecosystems and subsistence agriculture, and on lands riddled with tenure conflicts. In this article, we analyse the implications of the combined effect of labouring in oil palm plantations and land access on households, and we discuss how these implications affect human well-being in two indigenous communities of the Polochic valley, Guatemala. Combining participant observation, semi-structured interviews, and land-time budget analysis at household level, we reveal how oil palm cultivation increases incomes for plantation workers’ households, but decreases the productivity of maize cultivation, reduces the time that household members have available for other activities and, particularly, reduces women’s resting time. In contrast, households that focus more intensively on maize cultivation show higher degrees of food security and women can allocate more time to social activities. However, our results also show that maize consumption per capita has not decreased in households working in oil palm plantations since such crop is considered sacred by the Q’eqchi’ and plays a central role in their diet and culture. In conclusion, we argue that while working for an oil palm cultivation can increase specific elements of the basic material conditions for a good life, other aspects such as food security, health, freedom of choice, and social relationships can become deteriorated.  相似文献   

16.
Half of the seafood consumed globally now comes from aquaculture, or farmed seafood. Aquaculture therefore plays an increasingly important role in the global food system, the environment, and human health. Traditionally, aquaculture feed has contained high levels of wild fish, which is unsustainable for ocean ecosystems as demand grows. The aquaculture industry is shifting to crop-based feed ingredients, such as soy, to replace wild fish as a feed source and allow for continued industry growth. This shift fundamentally links seafood production to terrestrial agriculture, and multidisciplinary research is needed to understand the ecological and environmental health implications. We provide basic estimates of the agricultural resource use associated with producing the top five crops used in commercial aquaculture feed. Aquaculture's environmental footprint may now include nutrient and pesticide runoff from industrial crop production, and depending on where and how feed crops are produced, could be indirectly linked to associated negative health outcomes. We summarize key environmental health research on health effects associated with exposure to air, water, and soil contaminated by industrial crop production. Our review also finds that changes in the nutritional content of farmed seafood products due to altered feed composition could impact human nutrition. Based on our literature reviews and estimates of resource use, we present a conceptual framework describing the potential links between increasing use of crop-based ingredients in aquaculture and human health. Additional data and geographic sourcing information for crop-based ingredients are needed to fully assess the environmental health implications of this trend. This is especially critical in the context of a food system that is using both aquatic and terrestrial resources at unsustainable rates.  相似文献   

17.
Genetically modified (GM) crops have been recognised to be economically beneficial to subsistence farmers and have been projected as essential tools for addressing challenges in hunger, environmental sustainability and international development. Yet the uncertainty of their effects on human health and the undesirable ecological consequences of these organisms have raised concerns on the rapid pace of their production. Regulating the release of these organisms is a critical environmental issue. The Cartagena protocol on bio-safety, the principle legal arrangement for the regulation of these organisms, has ratifications from only 157 countries and has proven to be a weak regulator. Countries like India and Brazil have seen the proliferation of unapproved stealth GM varieties which make regulation even more difficult. In this paper, we explore the debate surrounding the introduction of GM organisms and analyse the effectiveness of existing legal regimes to regulate their use.  相似文献   

18.
Sustainable and informed resource consumption is the key to make everyday living sustainable for entire populations. An intelligent and strategic way of addressing the challenges related with sustainable development of the everyday living of consumers is to identify consumption-determined hotspots in terms of environmental and health burdens, as well as resource consumptions. Analyzing consumer life styles in terms of consumption patterns in order to identify hotspots is hence the focus of this study. This is achieved by taking into account the entire value chain of the commodities consumed in the context of environmental and human health burdens, as well as resource consumptions. A systematic commodity consumption, commodity disposal, and life style survey of 1281 persons living in urbanized Danish areas was conducted. The findings of the survey showed new impact dimensions in terms of Personal Metabolism (PM) patterns of residents living in urbanized areas of Denmark. Extending the PM analysis with Life Cycle Assessment (LCA) provided a clear picture of the per capita environmental and human health burdens, as well as resource consumptions, and the exact origin hereof.A generic PM-LCA Model for all the 1281 persons was set-up in Gabi 6. The assessment results obtained applying the model on all 1281 personal consumption scenarios yielded the 1281 Personal Impact Profiles (PIPs). Consumption of food and energy (electricity and thermal energy) proved to be the primary impact sources of PM, followed by transport. The PIPs further revealed that behavioral factors (e.g. different diets, use of cars, household size) affect the profiles. Hence, behavioral changes are one means out of many that humanity will most likely have to rely on during the sustainable development process. The results of this study will help the Danish and other comparable populations to identify and prioritize the steps towards reducing their environmental, human health, and resource consumption burdens.  相似文献   

19.
There is high demand in environmental health for adoption of a structured process that evaluates and integrates evidence while making decisions and recommendations transparent. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework holds promise to address this demand. For over a decade, GRADE has been applied successfully to areas of clinical medicine, public health, and health policy, but experience with GRADE in environmental and occupational health is just beginning. Environmental and occupational health questions focus on understanding whether an exposure is a potential health hazard or risk, assessing the exposure to understand the extent and magnitude of risk, and exploring interventions to mitigate exposure or risk. Although GRADE offers many advantages, including its flexibility and methodological rigor, there are features of the different sources of evidence used in environmental and occupational health that will require further consideration to assess the need for method refinement. An issue that requires particular attention is the evaluation and integration of evidence from human, animal, in vitro, and in silico (computer modeling) studies when determining whether an environmental factor represents a potential health hazard or risk. Assessment of the hazard of exposures can produce analyses for use in the GRADE evidence-to-decision (EtD) framework to inform risk-management decisions about removing harmful exposures or mitigating risks. The EtD framework allows for grading the strength of the recommendations based on judgments of the certainty in the evidence (also known as quality of the evidence), as well as other factors that inform recommendations such as social values and preferences, resource implications, and benefits. GRADE represents an untapped opportunity for environmental and occupational health to make evidence-based recommendations in a systematic and transparent manner. The objectives of this article are to provide an overview of GRADE, discuss GRADE's applicability to environmental health, and identify priority areas for method assessment and development.  相似文献   

20.
Diet, food preferences and main ecophysiological characteristics such like energy requirements and thermoregulation characteristics of Mus spicilegus spicilegus (Petenyi, 1882) were studied. The most preferred foods for the mice were seeds of weed species that composed more than 85% of their diet. The results of food selection experiments shows that the total daily consumption by mice is 2.77 ± 0.76 g/animal/day or 5.5 kJ/g/day or 84.9 kJ/animal/day. From the total daily energy consumption 16.4% go back to nature in the form of feces and urine and the rest 83.6% animals utilized for assimilation. The results of the temperature preferences for Mus s. spicilegus shows preferred temperature zone from around 26 to 36°C where mice spent about 72% of the experimental time. The lowest value of oxygen consumption for resting metabolism rate (RMR) was registered at 30°C–3.20 ± 0.71 cm3 O2/g/h. It is possible to consider that the thermoneutral zone is around these temperature values. The obtained results give reason to conclude that from an ecophysiologycal point of view the climate in the south boundary of distribution provides optimal conditions for species development. The main cause for population decreasing probably is the loss of open habitats including natural steppe grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号