首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The results of two field studies and an open-top chamber fumigation experiment showed that the response of mature Scots pine to SO(2) and NO(2) differed from that of mature Norway spruce. Moreover, the response of pine seedlings to SO(2) and NO(2) differed from that of mature trees. The greater increase in the needle total S concentrations of pine suggested more abundant stomatal uptake of SO(2) compared to spruce. Both pine seedlings and mature trees also seemed to absorb more N from atmospheric deposition. Mature pine was able to assimilate SO(4)(2-) derived from SO(2) into organic S more effectively than mature spruce at the high S and N deposition sites, whereas both pine and spruce seedlings accumulated SO(4)-S under NO(2)+SO(2) exposure. Spruce, in turn, accumulated SO(4)-S even when well supplied with N. Net assimilation of SO(4)(2-) in conifer seedlings was enhanced markedly by elevated temperature. To protect the northern coniferous forests against the harmful effects of S and N deposition, it is recommended that the critical level for SO(2) as a growing season mean be set at 5-10 microg m(-3) and NO(2) at 10-15 microg m(-3), depending on the 'effective temperature sum' and/or whether SO(2) and NO(2) occur alone or in combination.  相似文献   

2.
To assess the impacts of the decline in sulphur (S) deposition over the past 20 years in Ontario, soil chemistry and sugar maple (Acer saccharum Marsh) foliar chemistry were measured at 17 sites in south and central Ontario in 2005 and compared with archived samples collected in 1986. Foliar S concentrations were lower in 2005, reflecting the decline in S deposition whereas foliar N remained unchanged, reflecting the lack of change in N deposition in Ontario. Mineral soil pH, exchangeable base cations were lower in 2005 whereas total S, N and cation exchange capacity (CEC) were unchanged. Foliar concentrations of Ca were positively related to soil Ca levels in the A-horizon and were lower in 2005. Despite evidence of increasing soil acidity and losses of calcium, foliar base cation concentrations at most sites were adequate for sugar maple and forest health in terms of canopy appearance (Decline Index) improved.  相似文献   

3.
Data from a large-scale foliar survey were used to calculate the extent to which N and S deposition determined the mineral composition of Scots pine and Norway spruce needles in Finland. Foliar data were available from 367 needle samples collected on 36 plots sampled almost annually between 1987 and 2000. A literature study of controlled experiments revealed that acidifying deposition mediates increasing N and S concentrations, and decreasing Mg:N and Ca:Al ratios in the needles. When this fingerprint for N and S elevated deposition on tree foliage was observed simultaneously with increased N and S inputs, it was considered sufficient evidence for assuming that acidifying deposition had altered the mineral composition of tree needles on that plot in the given year. Evidence for deposition-induced changes in the mineral composition of tree foliage was calculated on the basis of a simple frequency model. In the late eighties the evidence was found on 43% of the Norway spruce and 27% of Scots pine plots. The proportion of changed needle mineral composition decreased to below 8% for both species in the late nineties.  相似文献   

4.
Pekey B  Karakaş D  Ayberk S 《Chemosphere》2007,67(3):537-547
Wet deposition and dry deposition samples were collected in an urban/industrialized area of Izmit Bay, North-eastern Marmara Sea, Turkey, from September 2002 to July 2003. The samples were analyzed for sixteen polycyclic aromatic hydrocarbon (PAH) compounds by using HPLC-UV technique. Wet and dry deposition concentrations and fluxes of PAHs were determined. The results showed that PAH concentrations were high because of industrial processes, heavy traffic and residential areas next to the sampling site. Total dry deposition flux of the fifteen 3-6 ring PAHs was 8.30 microg m(-2)day(-1), with a range of 0.034-1.77 microg m(-2)day(-1). The total wet deposition flux of the fifteen 3-6 ring PAHs was 1716 microg m(-2) 11 month(-1), with a range of 10-440 microg m(-2) 11 month(-1). Significant seasonal differences were observed in both types of deposition samples. The winter fluxes of total PAHs were 1.5 and 2.5 times greater than those of the warm period for wet and dry deposition samples, respectively. Factor analysis of dry deposition samples and back trajectory analysis of wet deposition samples were also used to characterize and identify the PAH emission sources in this study.  相似文献   

5.
Bimonthly integrated measurements of NO2 and NH3 have been made over one year at distances up to 10 m away from the edges of roads across Scotland, using a stratified sampling scheme in terms of road traffic density and background N deposition. The rate of decrease in gas concentrations away from the edge of the roads was rapid, with concentrations falling by 90% within the first 10 m for NH3 and the first 15 m for NO2. The longer transport distance for NO2 reflects the production of secondary NO2 from reaction of emitted NO and O3. Concentrations above the background, estimated at the edge of the traffic lane, were linearly proportional to traffic density for NH3 (microg NH3 m(-3) = 1 x 10(-4) x numbers of cars per day), reflecting emissions from three-way catalysts. For NO2, where emissions depend strongly on vehicle type and fuel, traffic density was calculated in terms of 'car equivalents'; NO2 concentrations at the edge of the traffic lane were proportional to the number of car equivalents (microg NO2 m(-3) = 1 x 10(-4) x numbers of car equivalents per day). Although absolute concentrations (microg m(-3)) of NH3 were five times smaller than for NO2, the greater deposition velocity for NH3 to vegetation means that approximately equivalent amounts of dry N deposition to road side vegetation from vehicle emissions comes from NH3 and NO2. Depending on traffic density, the additional N deposition attributable to vehicle exhaust gases is between 1 and 15 kg N ha(-1) y(-1) at the edge of the vehicle lane, falling to 0.2-10 kg N ha(-1) y(-1) at 10 m from the edge of the road.  相似文献   

6.
Ammonia concentration gradients above a Douglas fir canopy were measured from 16 August to 31 December 1989 by two automated high-precision thermodenuders at the location Speulderbos in The Netherlands. Concentration gradients were used to calculate the dry deposition flux of ammonia via flux-gradient theory. Meteorological data were obtained from a nearby tower. Ammonia concentrations were highly variable with highest values during the night. Concentration gradients were very small during daytime and quite large at night. Median values of the calculated deposition flux and deposition velocity were 0.1 microg m(-2) s(-1) and 3.2 cm s(-1) respectively (N=1624).  相似文献   

7.
Effects and implications of reduced and oxidised N, applied under 'real world' conditions, since May 2002, are reported for Calluna growing on an ombrotrophic bog. Ammonia has been released from a 10 m line source generating monthly concentrations of 180-6 microg m(-3), while ammonium chloride and sodium nitrate are applied in rainwater at nitrate and ammonium concentrations below 4mM and providing up to 56 kg N ha(-1) year(-1) above a background deposition of 10 kg N ha(-1) year(-1). Ammonia concentrations, >8 microg m(-3) have significantly enhanced foliar N concentrations, increased sensitivity to drought, frost and winter desiccation, spring frost damage and increased the incidence of pathogen outbreaks. The mature Calluna bushes nearest the NH3 source have turned bleached and moribund. By comparison the Calluna receiving reduced and oxidised N in rain has shown no significant visible or stress related effects with no significant increase in N status.  相似文献   

8.
Bioindicators of enhanced nitrogen deposition   总被引:8,自引:0,他引:8  
Increased deposition of atmospheric N largely from intensive agriculture is affecting biodiversity and the composition of natural and semi-natural vegetation in Europe. The value of species based bioindicators such as the Ellenberg N index and measurements of total tissue N and free amino acids in key plant species, is described with reference to a mixed woodland downwind of a livestock farm in the Scottish Borders, operated for over 20 years with a measured spatial gradient of ammonia concentration (29-1.5 microg m(-3)). All the indicators examined showed a relationship with N deposition and provided some indication of vegetation change. Total tissue N and arginine concentrations were most closely linked with ammonia concentrations and N deposition, with r(2) values of >0.97 and >0.78 respectively.  相似文献   

9.
The marker variables, Ellenberg Nitrogen Index, nitrous oxide and nitric oxide fluxes and foliar nitrogen, were used to define the impacts of NH3 deposition from nearby livestock buildings on species composition of woodland ground flora, using a woodland site close to a major poultry complex in the UK. The study centred on 2 units in close proximity to each other, containing 350,000 birds, and estimated to emit around 140,000 kg N year(-1) as NH3. Annual mean concentrations of NH3 close to the buildings were very large (60 microg m(-3)) and declined to 3 microg m(-3) at a distance of 650 m from the buildings. Estimated total N deposition ranged from 80 kg N ha(-1) year(-1) at a distance of 30 m to 14 kg N ha(-1) year(-1) at 650 m downwind. Emissions of N2O and NO were 56 and 131 microg N m(-2) h(-1), respectively at 30 m and 13 and 80 microg N m(-2) h(-1), respectively at 250 m downwind of the livestock buildings. Species number in woodland ground flora downwind of the buildings remained fairly constant for a distance of 200 m from the units then increased considerably, doubling at a distance of 650 m. Within the first 200 m downwind, trends in plant species composition were hard to discern because of variations in tree canopy composition and cover. The mean Ellenberg N Index ranged from 6.0 immediately downwind of the livestock buildings to 4.8 at 650 m downwind. The mean abundance weighted Ellenberg N Index also declined with distance from the buildings. Tissue N concentrations in trees, herbs and mosses were all large, reflecting the substantial ammonia emissions at this site. Tissue N content of ectohydric mosses ranged from approximately 4% at 30 m downwind to 1.6% at 650 m downwind. An assessment of the relative merits of the three marker variables concludes, that while Ellenberg Index and trace gas fluxes of N2O and NO give broad indications of impacts of ammonia emissions on woodland vegetation, the application of a critical foliar N content for ectohydric mosses is the most useful method for providing spatial information which could be of value to policy developers and planners.  相似文献   

10.
Lead (Pb) concentrations were measured in samples of peat soils, sediments and clams (Rangia cuneata) collected from the Pungo River region of coastal North Carolina. In peat soils, mean Pb concentrations (dry weight +/- 1 SD) were significantly higher (p<0.05) in surface samples (12.8microg g(-1)+/-7.6) than in samples from depths of 20 cm (2.7microg g(-1)+/-2.7) or 1 m (3.6microg g(-1)+/-3.6). Mean Pb concentrations in surface sediments from canals draining peatlands and from the Pungo River which receives this drainage ranged from 0.1microg g(-1)+/-0.1 to 7.0microg g(-1)+/-0.6. These Pb concentrations are similar to values reported in other studies for areas considered uncontaminated. Fractionation analysis revealed that the majority of the Pb in the peat and sediment samples was associated with the residual fraction, with lesser amounts in the organically-bound fraction, and generally negligible amounts in the water-soluble fraction. These results indicate that the bulk of the Pb in the soils and sediments of this area is relatively immobile and non-bioavailabe. This is supported by the relatively low concentrations of Pb (0.2-0.5 microg g(-1), dry weight) observed in soft tissues of R. cuneata collected from the Pungo River.  相似文献   

11.
Radioactive sulphate (35SO4) was applied to the soil below a Scots pine forest on 23 June 1989, and its movement into the canopy and into throughfall and stemflow was measured over 4 months. The specific activity, Bq (mg S)(-1), of the canopy increased monotonically; uptake by current-year (1989) expanding needles was initially twice as fast as by older needles or live twigs. By 10 October the canopy average specific activity was 62 Bq (mg S)(-1). The specific activity of net throughfall (throughfall + stemflow - rain), deduced from measurements from six throughfall collectors, six stemflow collectors and two rain collectors, fell rapidly from 12.6 Bq (mg S)(-1) in late July to <1 Bq (mg S)(-1) in mid-August. The results suggest (assuming rapid equilibration of 35S with sulphate in soil) that root-derived sulphate contributed c. 3% of sulphate in net throughfall and that dry deposition of SO2 and sulphate particles contributed c. 97% of the 0.56 g S m(-2) measured in net throughfall over the period. Simultaneous measurements of SO2 at canopy height and of NH3 above and within the canopy gave mean concentrations of 5.9 and 0.86 microg m(-3), respectively, sufficient to account for the sulphate measured in net throughfall only if codeposition of NH3 and SO2 occurred to canopy surfaces. The large values of specific activity observed in July, however, indicate that throughfall composition may be closely related to recent soil input of sulphate, and that equilibrium cannot be safely assumed. The possibility of a significant contribution of soil-derived sulphate to sulphate deposition in net throughfall cannot be ruled out on the basis of this experiment.  相似文献   

12.
Trace element dry deposition fluxes were measured using a smooth, greased, knife-edge surrogate surface (KSS) holding greased Mylar strips in Bursa, Turkey. Sampling program was conducted between October 2002 and June 2003 and 46 dry deposition samples were collected. The average fluxes of crustal metals (Mg, Ca, and Fe) were one to four orders of magnitude higher than the fluxes of anthropogenic metals. Trace element fluxes ranged from 3 (Cd) to 24,230 (Ca) microg m(-2) d(-1). The average trace element dry deposition fluxes measured in this study were similar to those measured in other urban areas. In addition, ambient air samples were also collected simultaneously with flux samples and concentrations of trace elements, collected with a TSP sampler, were between 0.7 and 4900 ng m(-3) for Cd and Ca, respectively. The overall trace element dry deposition velocities, calculated by dividing the fluxes to the particle phase concentrations ranged from 2.3+/-1.7 cm s(-1) (Pb) to 11.1+/-6.4 cm s(-1) (Ni). These values are in good agreement with the values calculated using similar techniques. The anthropogenic and crustal contributions were estimated by employing enrichment factors (EFs) calculated relative to the average crustal composition. Low EFs for dry deposition samples were calculated. This is probably due to contamination of local dust and its important contribution to the collected samples.  相似文献   

13.
Plant and soil bio(chemical) indicators are increasingly used to provide information on N deposition inputs and effects in a wide range of ecosystem types. However, many factors, including climate and site management history, have the potential to influence bioindicator relationships with N due to nutrient export and changing vegetation nutrient demands. We surveyed 33 heathlands in England, along a gradient of background N deposition (7.2–24.5 kg ha−1 year−1), using Calluna vulgaris growth phase as a proxy for time since last management. Our survey confirmed soil nutrient accumulation with increasing time since management. Foliar N and phosphorus (P) concentrations in pioneer- and mature-phase vegetation significantly increased with N deposition. Significant interactions between climate and N deposition were also evident with, for example, higher foliar P concentrations in pioneer-phase vegetation at sites with higher temperatures and N deposition rates. Although oxidized N appeared more significant than reduced N, overall there were more, stronger relationships with total N deposition; suggesting efforts to control all emissions of N (i.e., both oxidized and reduced forms) will have ecological benefits.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-014-0529-4) contains supplementary material, which is available to authorized users.  相似文献   

14.
Densely populated cities can experience high concentrations of traffic-derived pollutants, with oxides of nitrogen and ammonia contributing significantly to the overall nitrogen (N) budget of urban ecosystems. This study investigated changes in the biochemistry of in situ Calluna vulgaris plants to detect signals of N deposition across an urban–rural gradient from central London to rural Surrey, UK. Foliar N concentrations and δ15N signatures were higher, and C/N ratios lower, in urban areas receiving the highest rates of N deposition. Plant phosphorus (P) concentrations were also highest in these areas, suggesting that elevated rates of N deposition are unlikely to result in progressive P-limitation in urban habitats. Free amino acid concentrations were positively related to N deposition for asparagine, glutamine, glycine, phenylalanine, isoleucine, leucine and lysine. Overall, relationships between tissue chemistry and N deposition were similar for oxidised, reduced and total N, although the strength of relationships varied with the different biochemical indicators. The results of this study indicate that current rates of N deposition are having substantial effects on plant biochemistry in urban areas, with likely implications for the biodiversity and functioning of urban ecosystems.  相似文献   

15.
Recent studies have demonstrated that natural abundance (15)N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, delta(15)N of foliage and soil also increases. We measured foliar delta(15)N at 11 high-elevation spruce-fir stands along an N deposition gradient in 1987-1988 and at seven paired northern hardwood and spruce-fir stands in 1999. In 1999, foliar delta(15)N increased from -5.2 to -0.7 per thousand with increasing N deposition from Maine to NY. Foliar delta(15)N decreased between 1987-1988 and 1999, while foliar %N increased and foliar C:N decreased at most sites. Foliar delta(15)N was strongly correlated with N deposition, and was also positively correlated with net nitrification potential and negatively correlated with soil C:N ratio. Although the increase in foliar %N is consistent with a progression towards N saturation, other results of this study suggest that, in 1999, these stands were further from N saturation than in 1987-1988.  相似文献   

16.
Simultaneous measurements of gaseous hydrogen peroxide and ozone made in southern England are reported. The hydrogen peroxide measurements are the first reported for the United Kingdom and show clear diurnal trends and correlate with ozone measurements. Measurements were made during a photochemical episode when a peak hydrogen peroxide concentration of 2.5 microg m(-3) was recorded with a simultaneous peak of 168 microg m(-3) in the ozone concentration. From observations on the rate of decay in the measured concentrations, an evening-time deposition velocity of 0.28 cm s(-1) was derived for hydrogen peroxide.  相似文献   

17.
For the assessment of potential risks from total exposure to both spray drift and volatilised pesticides, field experiments in barley were carried out with insecticide application in May and June 2000. Pesticide concentrations in the air at the edge of the treated plot and at various distances in downwind direction were determined. The concentrations at 10 m distance were 0.29 and 0.58 microg/m(3) (lindane), 0.07 and 0.12 microg/m(3) (parathion) or <0.02 and 0.04 microg/m(3) (pirimicarb) after 1 d. To quantify the exposure of aquatic ecosystems, water containers simulating surface waters were placed in downwind direction of the plot at distances of 10 and 50 m. Lindane as the most volatile and most persistent of the investigated active substances showed the highest entries in surface water with 35 and 153 microg/m(2) after 1 d at a distance of 10 m, attributable to a larger extent to deposition of volatilised compound than to spray drift when drift reducing nozzles were used. Similar results were obtained for parathion, but at a lower level. Mainly due to its photolytic instability in water, pirimicarb decayed in surface water, where a maximum deposition was measured 2 h after application.  相似文献   

18.
Soil and plants were sampled throughout winter and spring near a perennial stream traversing a restored mine site in a winter-rainy climate. Within 1m of an acidic reach of the stream, soil had pH 3-5 and 50-100 microg/g "bioavailable" copper (extractable with 0.01 M CaCl2). Soil 2-3 m from the stream had pH 5-8 and lower (less than 3 microg/g) bioavailable copper. "Oxide-bound" copper (extractable with 2N HCl) was 50-100 microg/g at most locations. Copper concentrations in the shoots of field-collected Bromus carinatus declined from 20 microg/g in winter to 2 microg/g in spring at all sampling sites. A similar temporal pattern was found in plants grown under controlled conditions. Thus B. carinatus has a developmental program for control of shoot copper concentration, causing a seasonally-varying pattern of copper phytoaccumulation over a large range of copper availability in the soil.  相似文献   

19.
Foliage on spruce trees (Picea rubens Sarg.) growing on dry SO(2) deposition zones (dry SO(2) deposition ranging from 0.5 and 8.5 S kg ha(-1) year(-1)) downwind from a SO(2) emission source was analyzed to assess chronic effects of long-term low-grade SO(2) deposition on net photosynthesis, stomatal conductance, dark respiration, stomatal antechamber wax structures, elemental concentrations in and on foliage (bulk and surficial concentrations), and types of epiphytic fungi that reside in the phylloplane. Elemental distributions on stomatal antechambers, on fungal colonies, and on smooth surfaces between stomates and fungus colonies were determined with a scanning electronic microscope (SEM) by way of X-ray scanning. It was found that net photosynthesis of newly developed spruce foliage (current-year, and 1-year-old) was not significantly affected by the local SO(2) deposition rates. Sulfur dioxide deposition, however, may have contributed to the gradual decrease in net photosynthesis with increasing needle age. Dark respiration rates were significantly higher on foliage taken from high SO(2) deposition zones. Stomatal rod-web structures deteriorated to flakes with increasing needle age and increasing SO(2) deposition. Further inspection of the needle surfaces revealed an increasing abundance of fungal colonies with increasing needle age. Many fungal taxa were isolated and identified. It was found that black yeasts responded positively, and Xylohypha pinicola responded negatively to high rates of SO(2) deposition. Surficial concentrations of elements such as P, S, K, Cl, Ca were about 10 times higher on fungal colonies than on smooth needle surfaces. Surficial Ca contents on 4 or 5-year-old needles decreased with increasing SO(2) deposition, but surficial S concentrations remained the same. In contrast, bulk foliar Ca and S concentrations increased with increasing SO(2) deposition.  相似文献   

20.
Blubber samples from beluga whales (Delphinapterus leucas) in the St Lawrence River estuary were analysed for PCB congeners (ortho- and non-ortho-substituted) and other persistent organochlorines as well as chlorinated dibenzo-dioxins/furans (PCDD/Fs). Major individual components (mean concentrations > 1 microg g(-1)) were 4,4'-DDE, -DDD and -DDT, T12 (a toxaphene-related compound), trans-nonachlor, oxychlordane, mirex, HCB, tris(p-chlorophenyl) methane and dieldrin. Concentrations of SigmaPCBs (8.3-412 microg g(-1)), SigmaDDT (3.36-389 microg g(-1)) and mirex (0.18-6.8 microg g(-1)) were particularly elevated relative to other odontocetes in Canadian waters. SigmaDDT, PCBs (as Aroclor), mirex and T12 concentrations were positively correlated with age of adult females (> 10 years) but only weakly, or not significantly, correlated with age of adult males. PCDD/Fs were present at low ng kg(-1) levels and consisted mainly of penta- and hexachlorofurans, and hepta- and octachlorodioxin. CB126 (3,3',4,4',5-PCB) was the most prominent non-ortho-substituted PCB congener in beluga blubber. Total TCDD toxic equivalents averaged 330 ng kg(-1) in females and 1400 ng kg(-1) in males and were dominated by CB126, and the mono-ortho-substituted congeners CB105 and CB118. Biomagnification factors (BMFs) for mirex and SigmaPCB from fish to beluga ranged from 11 to 16, and were similar to BMFs in Arctic animals, indicating that elevated levels in St Lawrence animals are a consequence of relatively high levels of recalcitrant organochlorines in prey of the beluga in the St Lawrence river system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号