首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
ANAMMOX菌利用零价铁还原硝酸盐脱氮研究   总被引:3,自引:1,他引:2  
采用全混式厌氧搅拌罐,研究在自养条件下,ANAMMMOX菌利用零价铁还原硝酸盐为氮气的可行性及最佳反应条件.投加铁屑71 g·L~(-1),接种厌氧氨氧化颗粒污泥200 mg·L~(-1),控制温度33℃±0.5℃,搅拌强度150 r·min~(-1),水力停留时间10 h,pH值为7.0~8.0.在中性条件下,添加厌氧氨氧化微生物的零价铁还原硝酸盐体系一次性投加零价铁,0~5 d硝酸盐脱氮负荷达到0.12 kg·(m~3·d)~(-1).反应出水氨和亚硝酸盐始终小于2.0 mg·L~(-1),硝酸盐以氮气形式损失,出水pH较进水高值超过8.0,并且可溶性铁含量始终小于7 mg·L~(-1).硝酸盐去除氮能力始终高于0.1 kg·(m~3·d)~(-1).批试实验优化反应条件:在偏酸性条件下(pH值为4~6)反应速度加快,并且液相总氮损失率大于89%.反应温度在30~40℃时,液相总氮损失率大于89%.过于极端的pH值环境及温度环境均不利于耦合反应的进行.  相似文献   

2.
一种CANON工艺处理低氨氮废水的新模式   总被引:3,自引:2,他引:3  
完颜德卿  袁怡  李祥  毕贞 《环境科学》2017,38(3):1122-1129
利用上流式污泥床反应器,以出水复氧回流的方式快速启动CANON工艺,并研究了启动及运行过程特征.结果表明,以出水复氧进行回流的方式可以快速启动并稳定运行CANON工艺;在污泥体积分数为25%,进水NH_4~+-N为157 mg·L~(-1),HRT为2 h的条件下,经过50 d的稳定运行,总氮去除速率NRR从1.31 kg·(m~3·d)~(-1)逐渐升高到1.47 kg·(m~3·d)~(-1).复氧回流的方式有效地控制了反应器内溶解氧的量,使得DO0.01 mg·L~(-1),对系统中的NOB起到了良好的抑制效果,同时也为An AOB提供了一个良好的生长环境;通过控制回流量的大小可以精确地控制NO_2~-的产生速率,使得与NO_2~-消耗速率达到一个良好的平衡状态,避免了NO_2~-的积累及其硝化反应的发生.因此,复氧回流CANON工艺在运行的稳定性方面表现出了很大的优势,为CANON工艺处理低氨氮废水提供了一个新模式.  相似文献   

3.
磷酸盐对厌氧氨氧化活性污泥脱氮效能的影响   总被引:1,自引:0,他引:1  
周正  刘凯  王凡  林兴  李祥  黄勇  顾澄伟 《环境科学》2017,38(6):2453-2460
通过接种厌氧氨氧化污泥,研究了磷酸盐浓度变化对厌氧氨氧化活性污泥脱氮效能长短期的影响,对其抑制动力学参数进行拟合,并基于荧光定量PCR的测定,分析了受磷酸盐抑制前后反应器中厌氧氨氧化细菌丰度的变化.短期研究结果表明,磷酸盐浓度小于30 mg·L~(-1)对厌氧氨氧化污泥的脱氮效能没有明显的影响;随着进水磷酸盐浓度的升高,氮去除速率呈加速下降趋势;磷酸盐浓度大于200 mg·L~(-1)时,厌氧氨氧化污泥活性达到完全的抑制状态;采用Haldane抑制模型拟合磷酸盐抑制的动力学参数,所得半抑制常数为70.1 mg·L~(-1).长期研究结果表明,磷酸盐浓度小于50 mg·L~(-1)时,对厌氧氨氧化污泥脱氮效能的影响不大;磷酸盐浓度在70~90 mg·L~(-1)时,厌氧氨氧化污泥活性开始受到明显影响,经过一段时间可以有所恢复,但磷酸盐浓度越高,恢复所需时间越长;当磷酸盐浓度达到100 mg·L~(-1)时厌氧氨氧化污泥的脱氮效能受到严重抑制,氮去除速率由158.33 g·(m~3·d)~(-1)下降至60.17 g·(m~3·d)~(-1)左右,抑制约62%.荧光定量PCR结果表明,抑制后的污泥体系中ANAMMOX菌细胞浓度由(9.97±0.86)×107cells·m L~(-1)下降至(8.26±0.54)×107cells·m L~(-1),有相对减少的趋势.  相似文献   

4.
马航  朱强  朱亮  李祥  黄勇  魏凡凯  杨朋兵 《环境科学》2016,37(8):3094-3100
为了研究硫自养反硝化处理高含氟光伏废水的可行性,室温(20~25℃)下,采用驯化后的硫自养反硝化生物膜反应器,探究了不同进水F-浓度对硫自养反硝化脱氮效能的影响.结果表明,当进水F-浓度为0~700 mg·L~(-1)时,随着F-浓度的提升,反应器的脱氮效能逐渐提升,且当F-浓度为700 mg·L~(-1)时,可获最大TN去除速率1.0 kg·(m3·d)-1.当进水F-浓度在700~900 mg·L~(-1)时,经短期驯化,TN去除速率可稳定在0.81~0.87 kg·(m~3·d)~(-1).当进水F-浓度提升至900 mg·L~(-1)以上时,反应器的TN去除速率随进水F-浓度的提升而下降,最低至0.4~0.5 kg·(m~3·d)~(-1).以光伏废水为研究对象,在进水F-浓度为800 mg·L~(-1)左右,进水NO_3~--N浓度为390~420 mg·L~(-1),HRT为8.8 h的条件下,经50 d运行后,获得稳定的脱氮效能,TN去除速率为1.1 kg·(m~3·d)~(-1),出水TN为15~25 mg·L~(-1),达到污水接管排放标准.采用传统反硝化工艺和硫自养反硝化工艺脱氮处理光伏废水的成本分别为2.468元·t~(-1)和2.072 8元·t~(-1),硫自养反硝化工艺更节约脱氮处理成本.  相似文献   

5.
通过接种城镇污水处理厂的污泥,采用连续流反应器启动亚硝化系统并改变进水磷酸盐的浓度,研究了不同磷酸盐浓度对亚硝化系统的影响.结果表明经过14 d的运行,亚硝化系统启动成功,氨氮转化率达到92.2%,亚硝酸盐累积率为73.66%,亚硝酸盐产生速率达到14.42 g·(m~3·d)~(-1).磷酸盐浓度在10~30 mg·L~(-1)时对亚硝化系统的影响并不大;随着磷酸盐浓度持续提高,氨氮转化率在不断降低.当磷酸盐的浓度为80 mg·L~(-1)时,系统的氨氮转化率为13.6%,亚硝酸盐累积率仅18.19%,亚硝酸盐产生速率仅0.54 g·(m~3·d)~(-1),亚硝化反应受到严重抑制.将进水磷酸盐浓度降低到0,经过14 d运行,亚硝化系统获得恢复,且氨氮转化率可以达到80%以上,亚硝酸盐累积率达到86.96%,亚硝酸盐产生速率为15.63g·(m~3·d)~(-1).  相似文献   

6.
为了考察亚硝化颗粒污泥(NGS)的持续增殖能力,向柱状序批式反应器(SBR)内接种极少量种污泥,在130 d内,将氨氮容积负荷(NLR)从0.74 kg·(m~3·d)~(-1)提高到6.66 kg·(m~3·d)~(-1),成功使反应器内污泥浓度(MLSS)从0.1 g·L~(-1)增长至11.8 g·L~(-1),对应的亚硝态氮累积负荷从0.4 kg·(m~3·d)~(-1)升至4.9 kg·(m~3·d)~(-1).当NLR低于4.44 kg·(m~3·d)~(-1)时,反应器内粒径200μm的污泥数量明显增多,颗粒平均粒径大幅减小.当NLR继续提高时,颗粒平均粒径的增长过程遵循修正的Logistic模型,其比增长速率k值约为0.022 9 d-1.在运行期间,较高的游离氨(FA)和游离亚硝酸(FNA)浓度能够对亚硝酸盐氧化菌(NOB)起到联合抑制作用,这使得出水中亚硝态氮累积率(NAR)始终高于80%.上述实验结果将为工业化高效NGS反应器的启动操作提供重要参考.  相似文献   

7.
硫自养反硝化耦合厌氧氨氧化脱氮条件控制研究   总被引:2,自引:4,他引:2  
周健  黄勇  刘忻  袁怡  李祥  完颜德卿  丁亮  邵经纬  赵蓉 《环境科学》2016,37(3):1061-1069
采用全混式厌氧搅拌罐,研究自养条件下,厌氧氨氧化与硫自养反硝化共同存在时,前者对系统中硫酸盐的产生和碱度消耗的影响.投加单质硫颗粒50 g·L~(-1),接种厌氧氨氧化颗粒污泥100 g·L~(-1)(湿重),控制温度35℃±0.5℃,搅拌强度120r·min-1,p H为8.0~8.4.启动硫自养反硝化阶段,进水硝酸盐浓度为200 mg·L~(-1),水力停留时间为5.3 h,反应器硝态氮负荷达0.56~0.71 kg·(m~3·d)~(-1).硫自养反硝化耦合厌氧氨氧化反应过程中,添加60 mg·L~(-1)氨氮后,硝态氮负荷仍维持在0.66~0.88kg·(m~3·d)~(-1),氨氮负荷为0.27 kg·(m~3·d)~(-1).反应体系内单位硝酸盐转化产生的硫酸盐Δn(SO~(2-)_4)∶Δn(NO~-_3)由1.21±0.06降低至1.01±0.10,Δ(IC)∶Δ(NO~-_3-N)由0.72±0.1降低至0.51±0.11,出水p H值由6.5上升至7.2.序批试实验优化反应条件:在搅拌强度G_T值为22~64 s~(-1),p H值为8.08时,耦合反应Δn(NH~+_4)∶Δn(NO~-_3)最高达到0.43,硝酸盐转化速率提升60%,过高搅拌强度(搅拌速度G_T值64 s~(-1))、不适宜的p H值(最适p H值为8.02)环境都会起同步转化效率的降低.  相似文献   

8.
李祥  朱亮  黄勇  杨朋兵  崔剑虹  马航 《环境科学》2016,37(4):1467-1471
在多晶硅废水处理过程中,为了减少先除氟后脱氮工艺中酸碱的投加量.本实验运行反硝化反应器研究了先脱氮后除氟工艺中先脱氮的可行性.结果表明,废水中F-浓度对反硝化存在一定的影响.当F-浓度控制在750 mg·L~(-1)左右,反硝化污泥脱氮速率无明显影响,当F-浓度继续增加时,反硝化污泥的脱氮速率逐步降低.在处理含F-(浓度控制在800 mg·L~(-1))多晶硅清洗废水时,反硝化污泥的脱氮性能无明显影响,经过93 d的运行,总氮出水稳定在50 mg·L~(-1)以内,总氮去除率达到90%以上,去除速率达到5 kg·(m~3·d)~(-1).经计算,与传统先除氟后脱氮工艺相比,可节省大约70%的碱投加量和100%的酸投加量,极大地降低废水处理成本.  相似文献   

9.
ANAMMOX菌利用零价铁转化氨和硝酸盐实验   总被引:4,自引:4,他引:0  
周健  黄勇  袁怡  刘忻  李祥  沈杰  杨朋兵 《环境科学》2015,36(12):4546-4552
研究在自养条件下,零价铁促使厌氧氨氧化菌同步转化硝酸盐和氨氮的性能.添加零价铁,温度35℃±0.5℃,进水p H7~8,进水氨氮、硝态氮分别为50~100 mg·L~(-1)、50~100 mg·L~(~(-1))条件下,添加ANAMMOX菌后硝酸盐的还原加快8.2倍,并且出现硝酸盐和氨的同步转化,其转化速率最高达17.2 mg·(L·h)~(-1).改变反应时间及进水n(NH+4):n(NO-3),两者摩尔转化比于1.2~3.5范围内波动,该反应并非基元反应.实验证明,氨与硝酸盐同步转化途径为零价铁作用首先将硝酸盐还原为亚硝酸盐,生成的亚硝酸盐再与氨发生厌氧氨氧化反应.  相似文献   

10.
基质暴露水平对ANAMMOX微生物的生长代谢有着重要意义,目前关于基质暴露水平对ANAMMOX污泥长期富集过程中生长特性的研究少有报道.采用两个连续流搅拌反应器,在逐步提升进水负荷的过程中,研究了高基质暴露水平培养方式(R1:出水NH_4~+-N和NO_2--N浓度均为40~60 mg·L~(-1))与低基质暴露水平培养方式(R~2:出水NH_4~+-N和NO_2--N浓度均为0~20 mg·L~(-1))对ANAMMOX微生物生长量和生物活性,以及反应器脱氮效能的影响及机制.结果表明,高基质暴露水平培养方式更有利于ANAMMOX反应器脱氮性能的提升.相比之下,高基质暴露水平培养方式下获得的NLR [0. 69 kg·(m~3·d)~(-1)]和NRR [0. 41 kg·(m~3·d)~(-1)]分别是低基质暴露水平培养方式的2倍;高基质暴露水平培养方式下,ANAMMOX污泥浓度(以VSS计)和总基因拷贝数分别达到1805 mg·L~(-1)和4. 81×1012copies,更有利于ANAMMOX微生物的快速富集培养;低基质暴露水平培养方式下,ANAMMOX污泥的活性更强[以N/VSS计,0. 27 g·(g·d)~(-1)],有利于富集生物活性更高的ANAMMOX污泥.  相似文献   

11.
张玉君  李冬  王歆鑫  张杰 《环境科学》2021,42(9):4383-4389
为了探究间歇梯度曝气下污泥龄对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)的影响,研究短程硝化内源反硝化除磷系统对于处理低C/N比生活污水的优势作用,本文采用SBR反应器培养好氧颗粒污泥,实验进水采用实际生活污水.结果表明,在SRT由50 d逐渐降低至30 d过程中,比氨氧化速率由3.16 mg·(g·h)-1增加至4.38 mg·(g·h)-1,比亚硝酸盐氧化速率由3.4 mg·(g·h)-1降为1.8 mg·(g·h)-1左右,可知NOB活性降低约44%,从而使系统实现了短程硝化.当SRT为30 d时,由典型周期实验可知亚硝酸盐最大积累量可达6.93mg·L-1.由于系统中污泥浓度随SRT的减少而略有降低,因此在反应进行至40 d左右时根据DO曲线采取降低曝气量的策略,最终SRT为30 d时系统出水COD浓度为40.76 mg·L-1,TN浓度为12.4 mg·L-1,TP浓度为0.31 mg·L-1,强化了系统中C、N和P的同步去除,最终得到了稳定运行的短程硝化内源反硝化除磷系统.同时好氧颗粒污泥EPS含量与SRT呈现负相关性,蛋白质含量由污泥龄为50 d的66.7 mg·g-1升为30 d的95.1mg·g-1,多糖保持在12.1~17.2 mg·g-1的范围内,说明SRT的降低对蛋白质含量的影响较多糖大,当SRT为30 d时,PN/PS值保持在6.2左右,好氧颗粒污泥在该条件下仍能保持较好的结构稳定性.  相似文献   

12.
污泥龄及pH值对反硝化除磷工艺效能的影响   总被引:1,自引:1,他引:1  
以SBR成功富集后的反硝化聚磷菌(DPBs)为研究对象,分别考察了污泥龄(SRT,35、25、15 d)及pH值(7.5、8.0、8.5)对反硝化除磷过程的影响.结果表明,SRT从35d缩短至25d,使活性污泥浓度(MLVSS)从2821 mg·L-1降低为2301 mg·L-1,而污泥负荷(F/M,以COD/MLVSS计)从0.256kg·(kg·d)-1增加至0.312 kg·(kg·d)-1,虽然净释磷量及净吸磷量有所下降,但是由于污泥活性的增加,此阶段厌氧释磷、缺氧吸磷及比反硝化速率均达到最高,分别为25.07、15.92及9.45 mg·(g·h)-1,污泥含磷率从4.78%升为5.33%,出水PO43--P浓度保持在0.5 mg·L-1以下,即PO43--P去除率稳定在95%以上;当SRT进一步缩短为15d时,MLVSS低至1448 mg·L-1,污泥中DPBs占聚磷菌(PAOs)的比例从82.4%骤降为65.7%,表明过短的SRT使得DPBs逐渐从系统中流失,此阶段污泥含磷率降至3.43%,释磷、吸磷及比反硝化速率亦出现不同程度的降低.随着pH值的升高(7.5~8.0),厌氧释磷及缺氧吸磷速率也升高,pH值为8.0时分别达到25.86mg·(g·h)-1和16.62 mg·(g·h)-1;当pH超过8.0后,除磷效率快速下降,推测为磷化学沉淀导致.  相似文献   

13.
王凡  陆明羽  殷记强  李祥  黄勇 《环境科学》2018,39(8):3782-3788
本研究在一体式分区反应器中接种成熟的厌氧氨氧化污泥和亚硝化污泥,通过与反硝化反应器串联,研究了前置反硝化与短程硝化-厌氧氨氧化串联工艺处理晚期垃圾渗滤液的脱氮除碳性能.结果表明,未串联反硝化之前,短程硝化-厌氧氨氧化反应器在进水氨氮浓度为600 mg·L~(-1),COD浓度483 mg·L~(-1)时,总氮去除速率(NRR)可达1.88 kg·(m3·d)-1,总氮去除率(NRE)可达90.3%;而在进水COD浓度483 mg·L~(-1),即C/N0.8时,短程硝化-厌氧氨氧化反应器的NRR下降至1.50 kg·(m3·d)-1.通过前置反硝化反应器可以迅速缓解有机物对厌氧氨氧化的不利影响;反硝化与短程硝化-厌氧氨氧化串联反应器在进水NH+4-N浓度为1 100 mg·L~(-1),COD浓度1 150 mg·L~(-1)时,仍可稳定高效运行,整体NRR可达1.37kg·(m3·d)-1,厌氧区NRRana高达15.6 kg·(m3·d)-1,平均NRE可达98.6%,在仅利用原水中有机碳源的情况下实现了垃圾渗滤液的高效深度脱氮.此工艺晚期处理垃圾渗滤液可去除大部分易生物降解有机物.  相似文献   

14.
谭潇  黄靓  杨平  涂弈州 《环境科学》2017,38(8):3422-3428
高盐废水通常含有高COD浓度,难以处理,引用具有耐盐性能的生物反应器处理高盐废水成为必要.使用模拟高盐废水在3.267 kg·(m~3·d)~(-1)的COD容积负荷下,将Cl~-浓度逐步从0提升至10 000 mg·L~(-1),研究盐度对膨胀颗粒污泥床(expanded granular sludge bed,EGSB)反应器的影响.结果表明,Cl~-浓度小于7 500 mg·L~(-1)时,对微生物的抑制作用较低;Cl~-浓度为7 500 mg·L~(-1)时,反应器的COD去除率能保持在98.1%左右,容积产气率能够基本保持在1.3 m~3·(m~3·d)~(-1)以上,大粒径的厌氧颗粒污泥仍然占据体系的主体;当Cl~-浓度为10 000 mg·L~(-1)时,反应器中的厌氧颗粒污泥受到严重影响.采用高通量测序技术对0和5 000 mg·L~(-1)两个Cl~-浓度下的厌氧颗粒污泥的微生物菌群结构进行分析,结果表明,盐度影响了微生物的种群分布,在5 000 mg·L~(-1)的Cl~-浓度下,主要的优势菌属由Cl~-浓度为0时的Methanoregula与Longilinea变为Methanobacterium、Methanospirillum、Methanothrix和Paludibacter.  相似文献   

15.
接种单一/混合污泥对厌氧氨氧化反应器快速启动的影响   总被引:1,自引:0,他引:1  
张泽文  李冬  张杰  郭跃洲  李帅 《环境科学》2017,38(12):5215-5221
在两组SBR反应器R0、R1中分别接种单一类型反硝化颗粒污泥和反硝化颗粒污泥与好氧硝化污泥的混合污泥(体积比为2∶1)来启动厌氧氨氧化,旨在探求不同接种污泥对厌氧氨氧化反应器快速启动的影响.结果表明,R0用时64 d成功启动厌氧氨氧化,总氮去除负荷为0.26 kg·(m~3·d)~(-1),R1用时47 d,总氮去除负荷为0.30 kg·(m~3·d)~(-1),比R0缩短了17 d;在富集培养阶段,R1中红色污泥大量出现,系统厌氧氨氧化特征比R0更加明显;反应器启动成功后,R0的化学计量比为1.20和0.34,R1的化学计量比为1.26和0.21,比R0更接近理论值1.32和0.26,R0中污泥的MLSS和MLVSS分别恢复到初始种泥的51%(4.2 g·L~(-1))和38%(2.3 g·L~(-1)),R1中污泥的MLSS和MLVSS分别恢复到初始种泥的54%(4.4 g·L~(-1))和42%(2.6 g·L~(-1)),高于R0,可以推测,R1驯化过程中厌氧氨氧化菌(AnAOB)增殖速率比R0更快.采用混合污泥作为接种污泥能够加速厌氧氨氧化的启动进程,且启动成功之后系统的脱氮性能更加稳定.  相似文献   

16.
Fe2+和Fe3+对厌氧氨氧化污泥活性的影响   总被引:3,自引:2,他引:1  
李祥  黄勇  巫川  王孟可  袁怡 《环境科学》2014,35(11):4224-4229
通过接种厌氧氨氧化污泥研究了Fe离子浓度及价态变化对厌氧氨氧化污泥活性的影响.短期浓度影响结果表明,当进水铁离子浓度由0升高到5 mg·L-1时,厌氧氨氧化污泥活性因受刺激而逐渐增强;当进水铁离子浓度大于5 mg·L-1时,因厌氧氨氧化反应产碱,铁离子形成氢氧化物沉淀,生物活性未受到影响.不同价态铁离子浓度变化对厌氧氨氧化污泥活性的影响无明显区别.长期价态影响结果表明,经过71个周期培养,含Fe2+进水的厌氧氨氧化反应器R1脱氮效能(以氮计)由0.28 kg·(m3·d)-1升高到0.65 kg·(m3·d)-1,是含Fe3+进水反应器R2的1.28倍.因此Fe2+更适合厌氧氨氧化菌生长的需求.实验结果进一步表明,Fe3+易导致厌氧氨氧化反应器R2内氨氮过量转化,亚硝氮与氨氮转化比(1.17)明显低于含Fe2+进水的反应器R1内亚硝氮与氨氮转化比(1.24).  相似文献   

17.
基于ABR-MBR组合工艺优化反硝化除磷性能的研究   总被引:5,自引:4,他引:1  
程朝阳  赵诗惠  吕亮  吴鹏  沈耀良 《环境科学》2016,37(11):4282-4288
基于ABR-MBR一体化反应器,以低C/N比生活污水为研究对象,结合厌氧折流板反应器(ABR)微生物相分离的特性,通过优化与ABR优质供碳和脱氮除磷相耦合的膜生物反应器(MBR)硝化液回流比以实现高效反硝化除磷,并对ABR-MBR污泥回流比进行优化.结果表明,在ABR段有机负荷为2.0 kg·(m3·d)-1、系统的水力停留时间(HRT)为9 h、泥龄(SRT)为15 d,系统获得最优的处理效果时的硝化液回流比和污泥回流比分别为300%和100%.其中TN和溶解性PO3-4-P平均去除率分别达84%和94%,ABR中反硝化除磷量可达系统总去除量的87%,平均出水TN和溶解性PO3-4-P浓度分别为12.98 mg·L-1和0.43 mg·L-1.  相似文献   

18.
目前运行容易失稳已成为制约厌氧氨氧化(ANAMMOX)工艺应用的因素之一.在保证底物不抑制的条件下,通过对实验室前期运行失稳的连续流全混反应器(CSTR)中的厌氧氨氧化污泥进行活性恢复,研究了滞留的基质浓度对ANAMMOX污泥恢复过程中颗粒化及活性的影响.结果表明,经过126d运行,ANAMMOX污泥活性获得恢复且脱氮能力明显提升.控制高、低基质浓度水平的2个反应器均能实现污泥的颗粒化及氮素的高效去除,NRR最大分别达到16. 97 kg·(m~3·d)~(-1)和14. 43 kg·(m~3·d)~(-1).随着反应器脱氮能力的提高(污泥颗粒粒径增大),R1、R2两个反应器内污泥的胞外聚合物EPS含量(以VSS计)均增大,分别由接种时的34. 45 mg·g~(-1)增大至77. 52 mg·g~(-1)和94. 18 mg·g~(-1),PN/PS由1. 89分别增大到6. 25和6. 84.在一定范围内,PN/PS比值增大有利于ANAMMOX污泥颗粒化,但PN/PS过大会导致颗粒污泥结构失稳上浮,加剧污泥流失现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号