首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 453 毫秒
1.
为处理奶牛场废水中常检出抗生素,考察了小试规模缺氧/好氧(A/O)系统对低C/N奶牛场废水中常规污染物和抗生素的处理效果。当进水COD、总氮、氨氮和总磷分别在1 242~4 350、830~1 367、818~1 291和6~12 mg·L−1,A池和O池水力停留时间(HRT)分别为3~4 d和2.05~5.4 d时,系统出水COD<400 mg·L−1、氨氮<10 mg·L−1、总氮去除率为40%~60%(无外加碳源)、总磷基本没有去除;通过调节硝化液回流比(1.0∶1~1.3∶1)可在进水COD/总氮≥3.1时实现碱度的自给自足;对11种磺胺类和8种β-内酰胺类抗生素研究发现,共检出9种磺胺类和1种β-内酰胺类抗生素(总浓度为5.89~17.31 μg·L−1),系统对抗生素的总去除率大于93%;先后2次向进水中人为添加8种磺胺类抗生素(每种浓度先后为50 μg·L−1和200 μg·L−1)不会影响系统运行的稳定性,且抗生素的总去除率大于90%,A池和O池的抗生素去除率分别为15.0%~34.2%和69.1%~91.4%;在O池中的HRT降低50%时,系统对抗生素的总去除率基本不变。除甲氧苄啶外,其余7种磺胺类抗生素主要在O池中均得到去除,这与其分子结构中的S—N键有关。以上结果对奶牛场废水处理后还田具有重要的参考价值。  相似文献   

2.
针对传统A/O(anaerobic/oxic)工艺中反硝化细菌对有机物的利用效率低、A2N(anaerobic/anoxic-nitrification)工艺工序繁琐和出水氨氮浓度较高的问题,提出了一种泥水分离反应器,将双污泥体系与A/O工艺结合构建A/O双污泥工艺。对工艺运行过程的脱氮性能、微生物群落变化及氮素转化规律进行了研究,根据研究结果评估泥水分离反应器和A/O双污泥工艺在实际应用中的开发潜力,并总结工艺和反应器需要优化的问题,提出解决问题的思路。结果表明:在进水氮负荷为0.11 kg·(m3·d)-1条件下,工艺的氮去除负荷可以达到0.089 kg·(m3·d)-1,NH_4+-N去除率超过95%、COD去除率超过90%,TN去除率达到80%以上,该工艺能够实现长期稳定运行。反硝化过程反应速率是提升A/O双污泥工艺脱氮效率的限速步骤,强化有机物在缺氧池中的接触停留是有机物利用率提高的关键。因此,需要对现有碳源的投加方式、污水的进水方式或工艺的反应器数量进行优化,进一步...  相似文献   

3.
针对生猪养殖废水处理过程中普遍存在的脱氮效果不佳,工艺流程较长等问题,采用中试规模序批式膜生物反应器(SMBR)处理生猪养殖废水,并与猪场现有废水处理A2/O工艺进行了比较。结果表明:SMBR在运行温度逐步降低的情况下,可以取得较好的污染物去除效果,氨氮平均出水浓度为10 mg·L−1,去除率达到98.6%;总氮平均出水浓度为31 mg·L−1,去除率达到96.5%;COD为332 mg·L−1,去除率达到96.5%。猪场现有A2/O工艺对氨氮、总氮和耗氧有机物的去除率分别为99%、88%和97%。高通量测序和OUT分类结果表明,SMBR中主要的AOB为Nitrosomonas,NOB主要为Nitrospira、NitrobacterNitrolancea。AOB是SMBR主要的硝化细菌,NOB是A2/O工艺中主要的硝化细菌,并且反硝化细菌在SMBR中的菌群丰度高于A2/O工艺中的反硝化菌群丰度。综上所述,与A2/O工艺相比,SMBR具有短流程和脱氮效果较好等优势,这可使其具有较好的应用前景。  相似文献   

4.
针对上海某制药工厂产生高浓度难降解有机废水的水质特性,采用预处理+A3/O+MBR+RO组合工艺进行处理。结果表明:该工艺处理高浓度制药废水性能良好,且工艺运行稳定,对COD、NH3-N的平均去除率达到 96.2 %、99.1%;该运行系统能满足此类制药废水水质水量波动较大、可生化性较差的状况;废水经预处理单元时,采用动态调整投加药剂量的优化方式,以实现降低药剂使用成本;后进入生化单元,通过对溶解氧、内回流比的优化调整,厌氧池、好氧池溶解氧分别控制为0.2~0.3 mg·L−1、2~5 mg·L−1,好氧池至缺氧池内回流比控制为100 %~150 %,系统脱氮除磷效果良好;在经复合深度膜处理单元出水稳定后达标排放。该系统工艺所产生的剩余污泥采用板框压滤结合低温烘干的优化模式,降低污泥含水率,以减少污泥委外与后续的处理成本,从而达到减污降碳的环境经济效益。本项目排水水质满足上海市地方标准《污水综合排放标准》 (DB31/199-2018) 的三级标准与《污水排入城镇下水道水质标准》 (GB/T31962-2015) 的B级标准。该案例可为高浓度制药废水工艺实现减污降碳优化目标提供技术参考。  相似文献   

5.
针对现有微氧反应器存在回流能耗高、工程放大困难等问题,设计了2类新型曝气沉淀一体化微氧反应器。根据污泥滞留能力、污染物去除性能初步测试,优选出升流式矩形反应器和改进型圆形反应器作为沼液处理实验的微氧反应器。结果表明:2个反应器的平均NH4+-N去除负荷为0.410 kg·(m3·d)−1,平均TIN去除负荷为0.105 kg·(m3·d)−1,出水SS均小于0.10 g·L−1,都拥有优良的滞泥能力和污染物去除能力,无显著性差异(P>0.05)。在污泥浓度相近的情况下,升流式矩形反应器中污泥的VSS/SS由64.4%增至78.0%,这说明生物量明显增加,而改进型圆形反应器中污泥的VSS/SS降至62.1%;污泥指数显示升流式矩形反应器的污泥沉降性能更好。从污泥性状和工程放大可能性考虑,升流式矩形反应器更适合在工程上应用。  相似文献   

6.
为提高低碳氮比污水中易生物降解有机物的含量,实验设计了水解(H)/移动床生物膜反应器(AMBBR)/好氧(O)工艺,并与传统A/O工艺对比,考察其作为低碳源污水脱氮工艺的可行性。通过小试对比低温下(10.9~13℃)两工艺中污泥的反硝化性能,并进行了实验室规模的中试运行。小试结果显示,AMBBR两相污泥对硝酸盐的去除率比单纯反硝化污泥高出19.4%。中试结果表明,相同的运行条件下,两工艺对COD和NH3-N的去除效率相当,但H/AMBBR/O工艺对总氮的去除效率均优于传统A/O工艺;在各自最优工况下,前者平均总氮去除率较后者高出22.39%,且前者通过剩余污泥的回流水解实现了部分污泥减量化,尤其是对于温暖地区,该工艺能够有效改善低碳源污水脱氮性能。  相似文献   

7.
马昭  刘玉玲  杨侃 《环境工程学报》2015,9(10):4803-4810
为了优化控制A2/O工艺的污染物去除效果,基于ASDM数学模型,以BioWin软件为模拟平台,对A2/O工艺进行模拟与优化。先根据实际工艺构建模型且对其进行校正,通过模型模拟值与实验实测值的对比,得知COD、TN、TP与氨氮的模拟值与实测值误差较小。后通过调节运行参数对校正后模型进行优化,优化结果表明,在维持混合液内回流比为250%、污泥回流比为60%、污泥停留时间为9 d与好氧池溶解氧浓度为1.75~2.25 mg/L的工况下,A2/O工艺能得到较好的脱氮除磷与有机物去除效果。  相似文献   

8.
以我国北方某改良型A2/O工艺 (设计规模6×104 m3·d−1) 为例,基于一年的运行数据,考察碳源储存与生物脱氮除磷能力之间的关系,分析碳源利用效率和能耗情况。结果表明:在7—9月,系统碳源的综合利用效率为53%~55%,这说明消耗的碳源中超过50%比例用于生物脱氮除磷;反硝化菌较聚磷菌对环境的变化更敏感;外加碳源的延伸成本占直接成本的20.5%。因此,污水处理厂应充分考虑进出水水质及环境条件变化对碳源有效利用的影响。本研究结果可为减污降碳协同增效背景下城市污水处理厂A2/O工艺及其他常规工艺的优化调控提供参考。  相似文献   

9.
针对2种脱氮除磷工艺的剩余污泥,在微氧条件下,以花生渣厌氧发酵产生的VFAs为碳源,控制反应时间为5 h,DO≤0.2 mg·L−1,COD为650~750 mg·L−1,对比2种不同工艺的剩余污泥合成聚羟基脂肪酸酯(PHAs)的量,并探究了增设前置曝气对微氧条件下剩余污泥合成PHAs的影响。结果表明,在微氧条件下,连续流中同步亚硝化反硝化脱氮除磷系统二沉池的剩余污泥(R1)和采用A2O工艺的实际水厂的剩余污泥(R2)合成PHAs最高量分别为108.6 mg·g−1和58.58 mg·g−1,R1比R2更具有合成PHAs的能力;在增设前置曝气实验中,曝气时间的延长和曝气量的增大均可促进PHAs的合成;当曝气气量为50 L·h−1时,曝气20 min后,R1合成的PHAs最高为172.5 mg·g−1。氧化还原电位(Eh)是微氧条件下PHAs合成过程中的重要指示参数,当Eh值为最低时,PHAs合成量最多。以上结果可为脱氮除磷工艺剩余污泥利用廉价碳源合成PHAs提供参考。  相似文献   

10.
为解决低C/N污水脱氮除磷难题,建立了基于污泥双回流-AOA新工艺的中试系统来处理低C/N城镇污水,处理规模为100 m3·d−1,考察了系统对COD和氮磷的处理效果,并对比了无第二污泥回流时的AOA工艺处理效果,分析了设置第二污泥回流的优势。结果表明,污泥双回流-AOA工艺污水处理效果显著优于无第二污泥回流时的AOA工艺,COD、NH4+-N、TN、TP平均去除率分别达88.8%,96.3%,85.8%,94.1%。内源反硝化批次实验表明,内源脱氮负荷与污泥浓度呈正相关。设置第二污泥回流,提高了缺氧区MLSS,缺氧段比反硝化速率和内碳源转化率均提升,缺氧区脱氮负荷提高,促进系统TN去除率提高;系统第二污泥回流比100%时,缺氧区脱氮负荷为0.086 kgN·(m-3·d−1)。此外,设置第二污泥回流可有效避免系统在缺氧末和二沉池NH4+-N和TP质量浓度小幅回升。高通量测序结果表明,属于反硝化聚糖菌 (DGAOs) 的Candidatus_Competibacter为系统的优势菌属。本研究结果可为污泥双回流-AOA新工艺实现高效脱氮除磷提供参考。  相似文献   

11.
以某电路板生产企业硝化系统崩溃后的物化出水为研究对象,采用气相色谱-质谱(GC-MS)对物化出水成分进行了分析,解析了硝化系统崩溃的原因,同时采用活性炭吸附、Fenton强化和活性污泥回流3种预处理方法结合生物增效剂重建硝化系统。结果表明:物化出水中含有的硫脲和其他苯酚类硝化抑制物是导致硝化系统崩溃的主要原因;投加生物增效剂并结合剩余污泥回流点切换的方式,可快速地重新建立硝化系统,使氨氮含量降低至0.41 mg·L−1,去除率达到98.9%。工程实践结果表明,将此方法应用于电路板生产企业硝化系统,在15 d内将A/O生化系统的氨氮的去除率从−20%~20%提升至90%~95%。以上结果为电路板生产废水生产企业污水处理系统硝化系统重建提供一种经济、可行的方法。  相似文献   

12.
石岩  单威  陈明飞  郑凯凯  王燕  李激 《环境工程学报》2019,13(12):2845-2852
用中试规模生物絮凝工艺处理含化学絮凝剂的生活污水,分别研究了HRT和进水SS对生物絮凝系统污染物去除特性、剩余污泥产量、污泥特性和温室气体排放的影响。结果表明:生物絮凝系统对COD、TN和TP有较好的去除效果,且污染物去除效果受进水SS影响较大;生物絮凝系统平均污泥产量和平均有机物产量最高可达 53.63 kg·d−1和21.14 kg·d−1;污泥胞外聚合物EPS浓度和PN/PS均与有机负荷呈反比;化学絮凝剂通过影响PN/PS和EPS浓度,可间接影响污泥的沉降性能;生物絮凝系统与AAO工艺相结合,可降低50.12 g·m−3温室气体的排放。因此,生物絮凝工艺可为污水处理厂节能降耗运行奠定基础,有望得到广泛应用。  相似文献   

13.
为了实现中低浓度氨氮废水情况下CANON工艺的快速启动和稳定运行,在升流式生物膜反应器中,通过调控水力停留时间、溶解氧和回流比,研究进水氨氮浓度为200 mg·L−1时CANON工艺的快速启动过程。结果表明:1~17 d,污泥处于驯化阶段,HRT为12 h,DO控制在0.1~0.2 mg·L−1,50%的回流比满足污泥上升流态;18~60 d,HRT逐步缩短至8 h,DO控制在0.3~0.5 mg·L−1,回流比增大至150%,AOB和 ANAMMOX在该阶段成功富集,填料上初步形成生物膜;61 d时,HRT缩短至6 h,加大回流比至200%,溶解氧控制在0.3~1.0 mg·L−1,系统启动加速,此时,进水氨氮负荷增加至0.795 kg·(m3·d)−1;运行至第93天,氨氮和总氮平均去除率分别达到95%和82%,ANAMMOX完成挂膜,CANON工艺成功启动。高通量测序结果显示,在整个启动过程中,优势菌群AOB和ANAMMOX的丰度呈增长趋势,启动完成时,生物膜中AOB占比19.46%,ANAMMOX占比22.49%,分别属于BrocadiaceaeNitrosmonadaceae。CANON系统集成絮体、颗粒和填料挂膜3种污泥形态为一体,实现了在中低浓度氨氮废水中的高效稳定运行。  相似文献   

14.
针对低C/N城市污水脱氮除磷因碳源不足存在能耗、药耗高以及脱氮除磷效率低等问题,开发一体式短程硝化/厌氧氨氧化 (PN/A) 耦合强化生物除磷工艺 (EBPR) ,以降低碳源消耗和能耗、提高脱氮除磷效率,从而实现高效低耗减污降碳。通过构建悬浮污泥和生物膜共存的混合系统,采用厌氧-好氧运行模式以及间歇曝气,考察短程硝化/厌氧氨氧化与强化生物除磷过程的耦合效果。结果表明,反应器能长期稳定运行,出水总无机氮 (TIN) 质量浓度稳定低于4 mg·L−1,溶解态磷 (DP) 质量浓度约0.2 mg·L−1,TIN平均去除率大于90%,DP的平均去除率大于85%,平均脱氮负荷为53 mg·(g·d)−1,强化间歇曝气能够在系统内实现NOB抑制,亚硝氮积累率可达60%以上,甚至100%。控制悬浮污泥好氧污泥龄为3.5 d,NOB由悬浮污泥向填料转移。由于生物膜传质受限,系统的亚硝氮积累率并未受到影响。该系统内厌氧氨氧化活性提高了5倍,厌氧氨氧化菌以Candidatus Brocadia为主,相对丰度为1.1%,较主流条件下提高了2.75倍。本研究结果证实了主流条件下厌氧氨氧化与传统脱氮除磷工艺耦合的可行性,这表明此耦合工艺具备更好应对水质波动的能力,能保证稳定良好的出水水质。该案例可为低C/N城市污水实现高效低耗减污降碳的脱氮除磷提供参考。  相似文献   

15.
将新型智能化曝气控制系统(automatic oxygen supply device,AOSD)应用于A/O工艺中,研究AOSD系统曝气模式控制下的A/O工艺(I-A/O)与持续曝气模式的A/O工艺(C-A/O)对低C/N生活污水处理能力的有效性,并从系统活性污泥特性的角度探究I-A/O系统反硝化菌在脱氮过程中对碳素的摄取、利用途径。结果表明:低进水碳源负荷下,I-A/O与C-A/O系统对COD、NH4+-N的平均去除率稳定且均达80%以上;I-A/O系统对TN去除率高出C-A/O系统25.97%,其对TN具有明显的去除优势;2套系统对TP均无去除效果。I-A/O系统活性污泥好氧异养菌产率系数YH为0.142 mg·mg-1,活性污泥衰减系数Kd为0.018 d-1,均低于C-A/O系统;在进水低C/N水平下,I-A/O系统活性污泥可通过更强的吸附贮存碳源能力、较低的好氧异养菌竞争压力、溶胞作用为反硝化菌提供更多的碳源以便脱氮反应。C/N是I-A/O系统曝气总量节省率重要影响因素之一,相比于C-A/O系统,其处理低C/N生活污水可节约曝气系统约52%的曝气量。  相似文献   

16.
餐厨废水是一类高油、高盐、高氮等较为复杂的废水,在传统厌氧处理中面临污泥漂浮流失、有机负荷低及COD去除效果差等问题。通过构建中试规模厌氧膜生物反应器(anaerobic membrane reactor, AnMBR)处理餐厨废水,考察了3个运行阶段(污泥驯化阶段、容积负荷(volume loading rate, VLR)提升阶段和污泥停留时间(sludge retention time, SRT)缩短阶段)的厌氧消化性能、稳定性能、污泥性质和膜性能变化。结果表明,在污泥驯化阶段,低负荷(1.5 kg·(m3·d)−1)污泥驯化方式能够实现AnMBR的快速启动,甲烷产率由227 mL·g−1 (以COD计)迅速提升至267 mL·g−1,COD去除率达到99%。在VLR提升阶段,当负荷由3.0 kg·(m3·d)−1逐渐增加至12.0 kg·(m3·d)−1时,甲烷产率由283 mL·g−1升高并稳定至335 mL·g−1左右,COD去除率达到98.5%。然而此阶段污泥浓度由13.39 g·L−1迅速升高至45.59 g·L−1,从而导致膜污染加剧,平均膜通量下降速率由0.53 L·(m2·h·d)−1增至0.78 L·(m2·h·d)−1。在SRT缩短阶段(由100 d缩短至40 d),尽管排泥量由0.4 L·d−1增加至1 L·d−1,甲烷产率并没有受到明显影响,仍稳定在335 mL·g−1左右,COD去除率达到98.9%。此外,缩短SRT增大了排泥量,反应器内污泥浓度由45.59 g·L−1逐渐降低至45.27 g·L−1,缓解了膜污染,膜通量下降速率减缓到0.42 L·(m2·h·d)−1。在整个运行阶段,AnMBR对毒性物质氨氮具有良好的耐受能力,尽管体系内氨氮质量浓度高达2 600 mg·L−1,VFA/ALK始终低于0.04,表明AnMBR不仅对外界环境变化有着较好的缓冲能力,而且对消化体系的内源性抑制因素也有着良好的耐受能力。综上,AnMBR在处理餐厨废水时表现了良好的处理性能和稳定性能。  相似文献   

17.
焦化废水预处理系统中高效好氧污泥的培养驯化   总被引:1,自引:0,他引:1  
为了改善焦化废水在生化系统中的处理效果,驯化高效好氧活性污泥,研究焦化废水的预处理效果。研究表明,活性污泥驯化时间为2个月。进水量为150 L/d,容积负荷达到2 kg COD/(m3·d),SS浓度为2 000 mg/L,SV30达到20%,COD去除率为85%,挥发酚和氰化物去除率分别为100%和95%,对氨氮没有去除效果。  相似文献   

18.
采用高效活性污泥法(HiCAS)-垂直潜流人工湿地(VSFCW)组合工艺,利用好氧生化池(28 L)和人工湿地(65 cm×65 cm×40 cm),在水力停留时间(HRT)为1h、污泥停留时间(SRT)为0.2 d、水力负荷为4.08 m3·(m2·d)-1、污泥负荷为0.973 kg·(kg·d)-1、持续射流曝气...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号