首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以钛酸丁酯为钛源、MCM-41分子筛为载体,采用溶胶-凝胶法制备了掺杂与负载相结合的光催化剂Ba/TiO2/MCM-41。结果表明:Ba/TiO2/MCM-41是一种比表面积高达341.2 m2/g的介孔材料,主要晶相为锐钛矿相,比P25有更强的紫外光吸收。将Ba/TiO2/MCM-41用于光催化氧化水中的对硝基苯甲酸,当催化剂投加量为0.5 g/L,对硝基苯甲酸初始pH为4、浓度为2×10-4mol/L时,紫外光照30 min后,对硝基苯甲酸降解率达到96.0%。用紫外光谱、红外光谱和高效液相色谱分析对硝基苯甲酸降解前后的变化,发现随着光照时间延长,苯环上的硝基、羧基吸收峰逐渐减弱;对硝基苯甲酸首先被降解为一些中间小分子产物,随着反应进行,小分子物质也逐渐被降解。  相似文献   

2.
以钛基掺硼金刚石为基体,采用电沉积的方法制备了Ti/BDD/PbO2复合电极,并将其用于化学需氧量(COD)的测定。采用扫描电子显微镜(SEM)和X射线衍射谱图(XRD)表征了电极的微观形貌及结构,采用电化学工作站考察了电极对有机物响应特性。实验结果表明,在1.45 V的低电位条件下,线性范围为0.5~175 mg/L,检测限为0.3 mg/L(S/N=3)。采用Ti/BDD/PbO2复合电极测定法和重铬酸钾标准方法对市政污水、食品废水及印染废水的对比结果表明,2种方法的相对误差小于10%,具有良好的一致性。  相似文献   

3.
乐果是常规饮用水处理技术难以去除的一种典型有机磷农药。为了能够控制并去除饮用水中的农药残留,达到进一步净化水质的目的,建立了降解动力学模型,采用模拟降解饮用水中乐果的方法,对比了乐果在紫外(UV)、氯(Cl2)、紫外/氯(UV/Cl2)、真空紫外/紫外(VUV/UV)和真空紫外/紫外/氯(VUV/UV/Cl2)5种工艺下的去除效果,并考察了乐果初始浓度、Cl2投加量、溶液p H、水中共存天然有机物(NOM)和无机阴离子(N O_3~-、Cl-、HCO_3~-、SO_4~(2-))对VUV/UV/Cl2工艺降解乐果的影响。结果表明:VUV/UV/Cl2对乐果的降解效率最高,乐果的去除率随其初始浓度的增加而减小;适当增加Cl2投加量,可提高乐果的降解效率;提高p H有利于乐果的降解;NOM对乐果的降解有一定的抑制作用;水中共存无机阴离子NO_3~-、Cl-和HCO_3~-可以捕获反应体系中的强氧化性羟基自由基(HO·),对乐果的降解起到抑制作用,而SO_4~(2-)因其捕获HO·的速率很低,无抑制作用。  相似文献   

4.
针对焦化废水生物处理出水中继续存在多种有机污染物而影响达标及存在安全隐患的现状,基于废水中有机物的物理化学特性,构建了氧化/吸附/混凝的深度处理过程。在NaC lO投加量为40 mg/L,AC投加量为500 mg/L,PFS投加量为300 mg/L,反应时间为0.5 h,以及pH为7.0的最佳条件下,先氧化后吸附混凝,该过程可以实现COD去除率为75%以上,色度去除率80%以上,处理后的水样其COD值与色度值分别下降到60 mg/L及20倍以下;通过GC/MS方法分析处理前后水样中的有机物组分,发现水样中大部分单环芳香族化合物和多环芳香族化合物,部分含氮杂环化学物、有机氯化物以及溴化物被去除,但是,长链烷烃和部分芳香烃继续保留。研究结果证明了氧化/吸附/混凝协同工艺的效果与焦化废水生物出水中有机污染物的分子结构、存在形态形成构效关系,催化作用与氧化作用的协同是获得高效去除率的关键。  相似文献   

5.
以某油井钻井废水经高效混凝+吸附过滤处理后的出水为研究对象,采用Fe/Cu/C微电解对钻井废水进行深度处理研究。结果表明,Fe/Cu/C微电解的最佳工艺条件为:Fe/Cu/C质量比为7∶3∶10,Fe/Cu/C投加量为1 000 g/L,pH为3.0,气水比为54∶1,反应时间为180 min;Fe/Cu/C微电解对钻井废水深度处理的效能十分显著,在最佳工艺条件下,废水COD质量浓度由428.63 mg/L降至98.32 mg/L,COD去除率达到77.06%。  相似文献   

6.
采用O3/H2O2/UV工艺处理1,2,4-三氯苯(TCB)模拟废水,考察了TCB初始浓度、pH、H2O2投加量及O3转化率等因素对O3/H2O2/UV降解TCB的影响,推断了TCB可能的降解途径。结果表明:(1)H2O2、O3、UV、O3/H2O2、O3/H2O2/UV 5种体系对TCB的降解效果为H2O2相似文献   

7.
为提高低碳氮比污水中易生物降解有机物的含量,实验设计了水解(H)/移动床生物膜反应器(AMBBR)/好氧(O)工艺,并与传统A/O工艺对比,考察其作为低碳源污水脱氮工艺的可行性。通过小试对比低温下(10.9~13℃)两工艺中污泥的反硝化性能,并进行了实验室规模的中试运行。小试结果显示,AMBBR两相污泥对硝酸盐的去除率比单纯反硝化污泥高出19.4%。中试结果表明,相同的运行条件下,两工艺对COD和NH3-N的去除效率相当,但H/AMBBR/O工艺对总氮的去除效率均优于传统A/O工艺;在各自最优工况下,前者平均总氮去除率较后者高出22.39%,且前者通过剩余污泥的回流水解实现了部分污泥减量化,尤其是对于温暖地区,该工艺能够有效改善低碳源污水脱氮性能。  相似文献   

8.
研究了邻苯二甲酸二丁酯(DBP)在UV/H2O2/草酸铁络合物体系中的光降解.结果表明,UV/H2O2/草酸铁络合物能有效地光解DBP;在pH值为4时,DBP光解速率最快,中性和碱性条件下光解效率降低;DBP的光解速率随H2O2浓度的升高而增大,但H2O2浓度较大时,其对·OH的清除作用使DBP的光解速率减慢;[Fe3 ]/[C2O42]<1/10,DBP光解速率随Fe3 浓度增大明显提高,[Fe3 ]/[C2O42]>1/10时,引起DBP光解速率的增加不明显.  相似文献   

9.
以钛酸丁酯为钛源、MCM-41分子筛为载体,采用溶胶-凝胶法制备了掺杂与负载相结合的光催化剂Ba/TiO2/MCM-41。结果表明:Ba/TiO2/MCM-41是一种比表面积高达341.2 m2/g的介孔材料,主要晶相为锐钛矿相,比P25有更强的紫外光吸收。将Ba/TiO2/MCM-41用于光催化氧化水中的对硝基苯甲酸,当催化剂投加量为0.5 g/L,对硝基苯甲酸初始pH为4、浓度为2×10-4mol/L时,紫外光照30 min后,对硝基苯甲酸降解率达到96.0%。用紫外光谱、红外光谱和高效液相色谱分析对硝基苯甲酸降解前后的变化,发现随着光照时间延长,苯环上的硝基、羧基吸收峰逐渐减弱;对硝基苯甲酸首先被降解为一些中间小分子产物,随着反应进行,小分子物质也逐渐被降解。  相似文献   

10.
11.
为实现对柴油机碳烟和NOx的低温同步去除,采用柠檬酸络合法制备分子筛负载钙钛矿型金属复合氧化物催化剂,应用X衍射分析仪(XRD)和电镜扫描仪(SEM)对催化剂性能进行表征,并在微型固定床反应器中对催化剂低温去除碳烟和NOx进行活性评价。利用程序升温反应(TPR)技术,进行催化剂活性评价、柴油机负荷和排放等特性实验。结果表明,A位用适量Ce部分取代La,B位用适量Cu部分取代Mn,可使碳颗粒燃烧温度降低,CO2选择性好,NOx转化率升高。La0.4Ce0.6Cu0.2Mn0.8O3/HZSM-5催化剂的最大NOx转化率为81.0%,Ti、Tm和Tf分别为250、350和475℃,表明该催化剂具有较好的催化活性,能在低温条件下去除碳烟和NOx。  相似文献   

12.
13.
采用硼氢化钠还原法制备核-壳结构的Fe-FeOxH2x-3复合材料,研究了富里酸在UV/H2O2和UV/H2O2/Fe-FeOxH2x-3两种不同反应体系下的降解情况。结果表明,核-壳结构Fe-FeOxH2x-3的存在,提高了UV/H2O2降解富里酸的反应速率,TOC去除达到84%。采用XAD树脂吸附法对反应前后的富里酸进行化学分级表征,结果表明,富里酸经反应后憎水酸(HoA)、弱憎水酸(WHoA)和憎水中性物质(HoN)都有所减少,进而转化为亲水性物质(HiM);用超滤膜法对富里酸进行物理分级表征,考察了富里酸在反应前后分子量分布的变化情况。同时,富里酸经过反应后生成的中间产物降低了三氯甲烷生成趋势。  相似文献   

14.
以活性铝氧化物AlOxHy处理某高氟地下水的中试实验获得的吸附剂废料AlOxHy-Fn为对象,考察其对三价砷(As(Ⅲ))和五价砷(As(Ⅴ))吸附去除性能,并对吸附机理进行了探讨。研究显示,AlOxHy-Fn为多孔无定型且具有不规则表面的絮状结构,比表面积为218.88 m2/g,零电荷点pHZPC在pH为8左右;AlOxHy-Fn可快速吸附As(Ⅲ)和As(Ⅴ),且反应24 h后的平衡吸附量分别为0.60和3.41 mg/g,朗格缪尔模型可以很好地描述As(Ⅲ)和As(Ⅴ)在AlOxHy-Fn表面的吸附,且As(Ⅲ)和As(Ⅴ)的最大吸附容量分别为13.63和63.27 mg/g;AlOxHy-Fn在pH=4~10范围内对As(Ⅴ)去除率在90%以上,As(Ⅲ)在中性和弱碱性pH范围内吸附效果较好,但去除率仍在32%以下。AlOxHy-Fn表面性质、砷形态分布特征等对As(Ⅲ)与As(Ⅴ)的吸附有重要影响,电负性As(Ⅴ)较电中性As(Ⅲ)更容易吸附在AlOxHy-Fn表面。AlOxHy-Fn吸附除砷过程中,在pH为6时氟溶出量最低(0.40 mg/g),过高或过低pH均会导致氟溶出量增大;氟溶出量与As(Ⅴ)吸附量之间有明显正相关关系(R2=0.97),但与As(Ⅲ)吸附量无相关关系;铝溶出量在pH为4~10范围内均很低。将AlOxHy-Fn回用作为除砷吸附剂去除工业含砷废水的砷具有良好的技术经济可行性,且将As(Ⅲ)氧化为As(Ⅴ)是提高去除效果的重要手段。  相似文献   

15.
采用溶胶凝胶法制备LixNi1-xO和ZnO粉体,利用球磨法制备ZnO/LixNi1-xO复合粉体,以紫外光为光源,通过降解甲基橙,研究了锂掺杂及n-p复合对氧化镍的光催化性能影响.结果表明:当投放量为0.1 g/L,x≤0.075(摩尔分数)的锂掺杂氧化镍均比未掺杂氧化镍的光催化活性高.当锂掺杂摩尔分数为0.025,...  相似文献   

16.
Microorganisms isolated from soil degrade phenylurea herbicides via two major pathways: (i) direct hydrolysis by an amidase leading to N,O-dimethylhydroxylamine, CO2 and aniline1 and (ii) N-dealkylation, which has been described as the first step in urea herbicide degradation by a variety of organisms including mammals, plants and microbial systems (for a review see reference 2).Until now no attempts have been made to investigate the mechanism of N-demethylation of substituted ureas in soil microorganisms, due to the instability of the N-hydroxymethyl intermediates. This reaction mechanism has only been described in detail in green plants3–5. As among soil fungi Phycomycetes are known to demethylate phenylurea herbicides6,7 this study has been made to identify intermediate hydroxymethyl compounds from urea herbicides, when incubated with the fungus Cunninghamella echinulata Thaxter.  相似文献   

17.
18.
19.
以钛酸四丁酯为原料,空心微珠为载体,采用溶胶凝胶法制备TiO2/beads光催化剂载体,然后浸渍法制备出H4SiW12O40/TiO2/beads表面负载修饰型复合光催化剂,并运用SEM、XRD、FT-IR和DRS对催化剂进行表征和分析。研究了H4SiW12O40/TiO2/beads对亚甲基蓝降解的光催化活性,考察了光强度、pH值、曝气量、底物浓度和催化剂用量等对催化效率的影响。实验结果表明,在中性条件下,H4SiW12O40/TiO2/beads催化剂的投加量为0.25 g/L,浓度为7.5 mg/L的亚甲基蓝溶液在250 W的紫外灯和600 W的可见光灯下光照60 min降解率分别可达到94.5%和55%。  相似文献   

20.
The protozoan, Tetrahymenathermophila, metabolizes pentachloronitrobenzene to several products, including nitrite, pentachlorothioanisole and pentachloroaniline. The latter two metabolites were identified by gas chromatographymass spectrometry. Pentachlorothioanisole may be produced via a glutathione-dependent pathway, and two key enzymes of this pathway, glutathione transferase and thiol S-methyltransferase, have been detected in crude extracts of this microorganism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号