首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为研究磁性硅球(Fe_3O_4@SiO_2)对序批式活性污泥反应器(SBR)污水处理系统中脱氮除磷性能的影响,建立了3个相同的SBR(编号依次为1号、2号和3号),在2号和3号反应器中分别投加0.5 g·L~(-1)的纳米Fe_3O_4和Fe_3O_4@SiO_2,1号反应器为不投加任何磁性材料的对照组。结果表明:Fe_3O_4@SiO_2对SBR中的污泥性能有显著的影响,3号反应器在运行20 d时,反应器内活性污泥结构完整,饱满密实,污泥粒径多集中分布在0.3~1.0 mm,颗粒化现象明显,而1号反应器无明显颗粒污泥,2号反应器虽能看到有少部分的颗粒污泥,但分布不均匀;Fe_3O_4@SiO_2对污泥胞外蛋白(PN)、胞外多糖(PS)的含量有促进作用,并能改善污泥的沉降性能,第70天时,3号反应器内PN和PS含量分别为318.89 mg·g~(-1)和28.51 mg·g~(-1),污泥沉降指数(SVI)为35.22 mL·g~(-1),性能优于1号和2号反应器;在除污方面,2号和3号反应器对污水总氮(TN)和总磷(TP)去除率比1号反应器分别提升了10.80%、15.20%和9.40%、12.40%,3号反应器表现出最高的脱氮除磷性能;此外,在典型周期内,3号反应器对氮素及磷的去除速率明显高于1号反应器,在240 min内,1号和3号反应器对TN去除速率分别为4.56 mg·(L·h)~(-1)和5.84 mg·(L·h)~(-1),对TP去除速率分别为0.44 mg·(L·h)~(-1)和0.51 mg·(L·h)~(-1)。由此可见,经SiO2包覆后所制备的Fe_3O_4@SiO_2,提高了其在水体的分散性,增大了与污泥的接触程度,极大促进了污泥经磁聚、吸附作用富集到其表面形成颗粒污泥,并利于脱氮除磷等微生物截留和附着,提高活性污泥反应系统的脱氮除磷效果和去除速率。以上结果可为进一步探索磁性纳米材料对SBR活性污泥脱氮除磷性能影响提供参考。  相似文献   

2.
研究以厌氧颗粒污泥接种的复合式厌氧折流板反应器(HABR)启动:在HABR中直接接种厌氧颗粒污泥,以退浆废水为试验进水,在系统水力停留时间为168 h,中温(32±1) ℃,进水pH值6.5~8,碱度适当偏高条件下,进入反应器废水COD浓度由1 800 mg/L逐渐提高到13 520 mg/L,运行60 d后系统COD去除率最低为45%,并且保持稳定,出水pH值和碱度相对比较稳定,污泥明显呈颗粒状,反应器启动完成。反应器可以在短时间内重新启动,污泥活性很快得到恢复。  相似文献   

3.
针对厌氧反硝化工艺在处置高浓度硝酸盐废液过程中难以连续运行的实际情况,系统研究了升流式污泥床(USB)反应器恢复启动过程中微生物群落变化过程。结果表明:采用原水NO-3-N负荷的30%(710.7 mg·L~(-1))恢复启动23 d,NO-3-N平均去除率为99%,比反硝化速率(RNO-3)从49.4 mg·(g·h)-1提升到170.7 mg·(g·h)-1(以VSS计),提高了3~4倍。高通量测序分析发现,Halomonas(盐单胞菌属)、Pseudomonas(假单胞菌属)、Alcaligenes(产碱杆菌属)为脱氮的优势菌种,与启动初期相比,启动末期的相对丰度分别增长了35%、31%和14%。优势菌种的相对丰度与RNO-3之间存在一定的正相关性,RNO-3每增加1倍,优势菌种的相对丰度平均扩增6.7%。USB厌氧反硝化反应器可以快速恢复启动,具有较好的工程应用可行性和运行灵活性。  相似文献   

4.
为探究组合启动模式实现厌氧氨氧化反应器高效启动和稳定运行的可行性,分别采用接种短程硝化污泥结合提高进水基质(A)和接种厌氧氨氧化污泥结合缩短水力停留时间(B)2种组合方式启动改良型UASB厌氧氨氧化反应器,对反应器启动效果进行研究,并通过改变进水基质比和低温冲击探究启动成功后的反应器性能。结果表明:A反应器启动成功时的总氮去除负荷(NRR)为0.520 kg·(m~3·d)~(-1)、亚硝化单胞菌Nitrosomonas相对丰度大幅下降、主要厌氧氨氧化菌属由Candidatus Kuenenia转化为Candidatus Brocadia;而B反应器NRR达到1.950 kg·(m~3·d)~(-1)、Candidatus Kuenenia始终为优势菌属。随着进水基质比的提高,B反应器的NRR和上升幅度始终高于A反应器,具有更强的抗负荷能力。当温度由35℃下降至15℃时,A和B反应器污泥对基质的降解速率分别下降92.94%和81.38%;温度恢复至35℃后,A反应器污泥降解速率的回升率大于B反应器污泥。因此,接种厌氧氨氧化污泥和缩短水力停留时间的组合方式更有利于改良型UASB厌氧氨氧化反应器的高效启动和稳定运行。  相似文献   

5.
针对水性涂料使用过程产生的乙二醇乙醚有机废气,通过膜生物反应器进行处理,考察了进气浓度、停留时间、液体喷淋量以及循环液pH对净化性能的影响;研究了膜生物反应器降解乙二醇乙醚废气动力学;采用16S rRNA、宏基因组测序技术对微生物群落结构及功能基因进行了分析。结果表明,适宜的运行条件为停留时间10 s,循环液pH 7.60,喷淋密度1.2 m~3·(m~2·h)~(-1);生化降解乙二醇乙醚的最大反应速率为666.67 g·(m~3·h)~(-1);经过2次进气负荷的提高,反应器中的优势菌属发生变化,由30 d的Methyloversatilis、90 d的Methyloversatilis、Pseudomonas变为145 d的Thauera和Flavobacterium。膜生物反应器能够高效降解乙二醇乙醚有机废气,去除率可达99.6%,本研究为处理水性涂料产生的醇醚类有机废气提供了参考。  相似文献   

6.
通过水力自旋填料与常规生物填料的对比试验,研究了传质性能对污水生物反应处理工艺的影响.结果表明:生物反应器内物系间的传质条件对氧传递效率有较大影响;SCMT型自旋传质填料良好的传质性能,能够创造理想的传质条件,使生物反应器内DO基本保持一致;使用SCMT型自旋传质填料生物反应器处理城市污水,可以在较短的停留时间(1.00 h)或较小的气水比(体积比,4∶1)的情况下,出水水质达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)二级标准.  相似文献   

7.
采用小试规模的膨胀颗粒污泥床(EGSB)反应器,考察其启动规律及运行特点.在60 d内EGSB反应器的COD容积负荷达到12 kg/(m3·d),COD去除率保持在95%以上.试验中对不同水力负荷下污泥床状态进行了分析.结果表明,将水力负荷控制在1.0 m3/(m2·h)以上,可以确保污泥颗粒化的进行及EGSB反应器的稳定,否则易发生沟流、活塞式漂浮等污泥床异常现象.同时,对颗粒污泥性质及微生物相变化进行了跟踪分析.随着运行条件的改变,由上流式厌氧污泥床(UASB)反应器接种的污泥结构、性能和微生物群落都在不断发生变化.最终得到的颗粒污泥结构密实,沉降速率为38.8~64.6 m/h,比产甲烷活性达到314.25 mL/(g·d),内部微生物相丰富,各菌种呈混杂分布.  相似文献   

8.
通过投加零价铁和增加微电场提高水解酸化的效果,改善混合工业废水的可生化性。实验在4个反应器中同步进行:微电场-零价铁厌氧反应器(R1)、微电场厌氧反应器(R2)、零价铁厌氧反应器(R3)及普通厌氧反应器(R4)。结果表明,微电场-零价铁对水解酸化具有明显的促进作用,在水力停留时间(HRT)为81 h时,TOC去除率达70%,BOD5/COD由0.15增至0.41,废水的可生化性显著提高。  相似文献   

9.
为实现硫酸盐还原菌(SRB)批量富集培养与包埋技术的工业化应用,采用纤维丝挂膜方式进行SRB的批量富集培养,以高通量测序方法分析SRB培养前后微生物种群变化,并采用生物包埋技术对富集后的厌氧污泥进行包埋;研究了SRB纤维丝填料、包埋填料活性恢复过程及对高浓度硫酸盐的去除情况;探讨了饥饿环境对于该包埋填料的影响。结果表明:采用间歇运行的小空间厌氧移动床进行SRB的培养,历时50 d,硫酸盐去除率最终稳定在80%以上;富集后的硫酸盐还原功能菌Desulfomicrobium比例由36.06%上升至58.68%,还原速率由49.32 mg·(L·h)-1上升至338.7 mg·(L·h)-1;采用聚乙烯醇(PVA)制作了SRB生物活性包埋填料,在包埋填料填充率为20%情况下,包埋填料对硫酸盐的去除效率最高可达91.96%;经15 d的饥饿环境后,对SRB包埋填料进行短期恢复,即可实现重复利用。该包埋填料具有良好的硫酸盐还原性能和恢复性能,为其工业化应用提供技术参考。  相似文献   

10.
将移动床生物膜反应器(MBBR)与膜生物反应器(MBR)有机结合,研究了该MBBR—MBR串联系统在水力停留时间(HRT)为17.50、11.75h条件下的脱碳脱氮的效果以及对工业园区综合废水污染物的去除情况。结果表明:(1)MBBR—MBR串联系统脱碳脱氮的效果良好,HRT的改变对系统的去除效果有一定的影响,随着总HRT由17.50h变为11.75h,模拟废水中COD的去除效果降低,但氨氮、硝态氮和TN的去除效果基本不受影响。(2)MBBR—MBR串联系统处理印染工业园区综合废水也有较好的效果,当进水COD、氨氮分别为150~450、20~40mg/L时,出水COD、氨氮平均分别为53.1、1.8mg/L,MBBR—MBR串联系统对COD、氨氮的去除率平均分别为80.4%、93.1%,但系统对TN的去除效果不是很理想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号