首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Larvae of the ithomiine butterflyPlacidula euryanassa sequester tropane alkaloids (TAs) from the host plantBrugmansia suaveolens and pass them through the pupae to freshly emerged adults. Wild caught adults also show in their tissues, variable amounts of pyrrolidizine alkaloids (PAs), probably sequestered from variable plant sources and subject to dynamics of incorporation, accumulation and utilization of PAs by ithomiine butterflies. The ratio TAs/PAs is also variable between different populations.Miraleria cymothoe, another ithomiine that feeds onB. suaveolens as larvae, does not sequester TAs from the host-plant, but sequesters PAs from plant sources visited by the adult butterflies. The main alkaloid found in both butterflies is lycopsamine, which also is the principal PA found in all genera of Ithomiinae.  相似文献   

2.
Summary The primitive, Apocynaceae-feeding Ithomiine,Tithorea harmonia, incorporates dehydropyrrolizidine alkaloids (PAs) from its larval foodplant (Prestonia acutifolia), rarely visiting PA sources pharmacophagously in the adult; females show higher concentrations of PAs than males, with similar variance. The close relativeAeria olena (feeding onP. coalita, without PAs) shows similar PA concentrations in both sexes and greater variation in males, like more advanced Solanaceae-feeding Ithomiine such asMechanitis polymnia, which likeA. olena obtain PAs by pharmacophagy in the adult (mainly males). This difference is due to the dynamics of PA incorporation in these species. Little variation in PA content was found among allopatric populations of the same species, but variation in available PA sources in different months was correlated with different average storage levels in the butterflies.  相似文献   

3.
Summary. Field collected exocrine defensive secretions of nine neotropical Platyphora species were analyzed for the presence of plant acquired pyrrolizidine alkaloids (PAs) and pentacyclic triterpene saponins. All species secrete saponins. In addition, five species feeding on Tournefortia (Boraginaceae), Koanophyllon (Asteraceae, tribe Eupatorieae) and Prestonia (Apocynaceae) were shown to sequester PAs of the lycopsamine type, which are characteristic for species of the three plant families. The PA sequestering species commonly store intermedine, lycopsamine and their O3′-acetyl or propionyl esters as well as O7- and O9-hydroxyisovaleryl esters of retronecine. The latter as well as the O3′-acyl esters were not found in the beetles’ host plants, suggesting the ability of the beetles to esterify plant derived retronecine and intermedine or its stereoisomers. Despite the conformity of the beetles’ PA patterns, considerable inconsistencies exist regarding the PA patterns of the respective host plants. One host plant was devoid of PAs, while another contained only simple necines. Since the previous history of the field collected beetles was unknown this discrepancy remains obscure. In contrast to the Palearctic chrysomeline leaf beetles, e.g. some Oreina species which ingest and store PAs as their non-toxic N-oxides, Platyphora leaf beetles absorb and store PAs as the toxic free base (tertiary PA), but apparently avoid to accumulate PAs in the haemolymph. This suggests that Chrysolina and Platyphora leaf beetles developed different lines of adaptations in their parallel evolution of PA mediated chemical defense. Received 30 November 2000; accepted 5 February 2001  相似文献   

4.
Summary. Tracer feeding studies with radioactively labeled pyrrolizidine alkaloids (PAs) were performed to attain experimental information about the specificity and mechanisms of uptake, metabolism and storage of PAs in the alkaloid sequestering ithomiine butterfly Mechanitis polymnia. Adult butterflies easily ingest the tracers offered dissolved in a saturated sugar solution. Feeding of [14C]rinderine (free base) confirmed that M. polymnia is well adapted to sequester and maintain PAs of the lycopsamine type. Approximately 80% of the ingested radioactivity can be recovered in methanol extracts of the butterflies over a period of at least 6 hours. Labeled rinderine is efficiently N-oxidized and transformed into a metabolite of still unknown structure. These two metabolites are formed in almost equal amounts and account for more than 90% of total radioactivity. After four hours the toxic free base is only detectable in traces. Radioactively labeled senecioylretronecine (free base), a PA that often accompanies PAs of the lycopsamine type in plants, is metabolized in a different manner. The toxic free base disappeared as fast as the tertiary rinderine, but the final products which accumulated in a stable ratio after 12 hours were mainly two polar metabolites of unknown structure; senecioylretronecine N-oxide accounts for less than 10% of total PAs. Labeled senecionine a macrocyclic PA, which never has been found in wild caught M. polymnia is only slowly N-oxidized. In females ca 50% of the ingested senecionine is still present as free base after 24 hours, whereas under the same conditions in males this percentage is only ca 20%. This difference in N-oxidation was the only significant sex-specific difference observed in various experiments. Larvae of M. polymnia which feed on Solanum tabacifolium, a plant that does not contain PAs, are able to sequester and partly N-oxidize labeled senecioylretronecine and senecionine. However, the storage is not very efficient; with the two tracers less than 5% of radioactivity remained in the bodies after 24 hours. Received 19 October 1999; accepted 24 November 1999  相似文献   

5.
Summary Of three common mouse species at the Mexican overwintering sites of the monarch butterfly, onlyPeromyscus melanotis eats monarchs. We hypothesized thatP. aztecus andReithrodontomys sumichrasti reject monarchs because they are more sensitive to the bitter taste and/or toxic effects of the cardiac glycosides (CGs) and pyrrolizidine alkaloids (PAs) in the butterflies. Two-choice preference tests revealed no difference in taste avoidance thresholds to free base and N-oxide forms of the PA, monocrotaline, but very different avoidance thresholds to the CG, digitoxin. Avoidance thresholds forR. sumichrasti andP. aztecus were, in respective order, 1020 and 34 times less than that forP. melanotis. We also tested the toxic sensitivity of juvenile mice by chronically feeding diets containing digitoxin or monocrotaline at concentrations similar to those used in the preference tests. No species developed CG toxicity, but bothP. melanotis andP. aztecus developed moderate PA toxicity (R. sumichrasti was not tested for PA toxicity).P. aztecus grew more slowly and manyP. melanotis had hepatic metabolic lesions. Thus, the three mouse species responded very differently to the taste and toxic properties of CGs and PAs at ecologically relevant concentrations: 1) CGs were taste rejected by all species exceptP. melanotis, while PAs were not; and 2) PAs were toxic, while CGs were not.  相似文献   

6.
Summary. The alkaloid profiles of the life history stages of the highly polyphagous arctiid Estigmene acrea were established. As larvae individuals had free choice between a plain diet (alkaloid-free) and a diet that was supplemented with Crotalaria-pumila powder with a known content and composition of pyrrolizidine alkaloids (PAs). Idiosyncratic retronecine esters (insect PAs) accounted for approximately half of the PAs recovered from the larvae. These alkaloids were synthesized by the larvae through esterification of dietary supinidine yielding the estigmines, and esterification of retronecine yielding the creatonotines. The retronecine is derived from insect-mediated degradation of the sequestered pumilines (macrocyclic PAs of the monocrotaline type). With one exception, the PA profiles established for larvae were found almost unaltered in all life-stages as well as larval exuviae and pupal cocoons. The exception is the males, which in comparison to pupae and adult females, showed a significantly decreased quantity of the creatonotines and pumilines. These data support the idea that the creatonotines are direct precursors of the PA-derived male courtship pheromone, hydroxydanaidal. Crosses of PA-free males with PA-containing females and vice versa confirmed an efficient trans-mission of PAs from males to females and then from females to eggs. In single cases a male bestowed almost his total PA load to the female, and a female her total load to the eggs. The results are discussed with respect to pheromone formation, PA transmission between life-stages, and the defensive role of PAs against predators and parasitoids  相似文献   

7.
Summary. The harvestman Mitopus morio (Phalangidae) is a generalist predator. It is known to prey on larvae of the chrysomelid leaf beetle Oreina cacaliae defended by plant acquired pyrrolizidine alkaloids (PAs). Tracer feeding experiments were performed to determine how harvestmen tolerate protoxic PAs. Minced meat containing either [14C]senecionine or [14C]senecionine N-oxide was fed to M. morio and subsequently feces and bodies were analyzed. Labeled alkaloid N-oxide remained stable and was eliminated almost unaltered with the feces; only 10% was recovered as tertiary PA. In contrast, approximately 80% of labeled tertiary alkaloid (senecionine) ingested with the diet was N-oxidized and eliminated; the remaining 20% consisted of unchanged senecionine and a polar metabolite of unknown structure. Harvestmen process their diet by excreting digestive juice, indicated by bleaching of the meat color. Analysis of the processed diet revealed some N-oxidation of [14C]senecionine, suggesting the gut as the site of Noxidation. Analysis of the bodies of harvestmen 80 hours after the tracer feeding pulse revealed only trace amounts of the polar metabolite. Neither senecionine nor its N-oxide could be detected in the body extracts. The results are discussed in relation to the strategies of PA adapted insects to avoid accumulation of tertiary PAs in living tissues.  相似文献   

8.
Summary Oreina cacaliae andO. speciosissima (Coleoptera, Chrysomelidae) sequester in their elytral and pronotal defensive secretions pyrrolizidine alkaloids (PAs) as Noxides (PA N-oxides). The PA N-oxide patterns found in the beetles and their host plants were evaluated qualitatively and quantitatively by capillary gas chromatography/mass spectrometry (GC-MS). Of the three host plantsAdenostyles alliariae (Asteraceae) is the exclusive source for PA N-oxide sequestration in the defensive secretions of the beetles. With the exception of O-acetylseneciphylline the N-oxides of all PAs ofA. alliariae, i.e. senecionine, seneciphylline, spartioidine, integerrimine, platyphylline and neoplatyphylline were identified in the secretion. PA N-oxides typical ofSenecio fuchsii (Asteraceae) were detected in the bodies of the beetles but not in their secretion. No PAs were found in the leaves of the third host plant,Petasites paradoxus (Asteraceae). The results suggest the existence of two distinctive storage compartments for PA N-oxides in the beetle: (1) the defensive secretion, containing specifically PA N-oxides acquired fromA. alliariae; (2) the body of the beetle, sequestering additionally but less selectively PA N-oxides from other sources,e.g. S. fuchsii or monocrotaline N-oxide fed in the laboratory. The concentration of PA N-oxides in the defensive secretion is in the range of 0.1 to 0.3 mol/1, which is more than 2.5 orders of magnitude higher than that found in the body of the beetle. No significant differences exist in the ability of the two species of beetles to sequester PA N-oxides fromA. alliariae, althoughO. speciosissima, but notO. cacaliae, produces autogenous cardenolides. A negative correlation seems to exist between the concentrations of plant-derived PA N-oxides andde novo synthesized cardenolides in the defensive secretion ofO. speciosissima.  相似文献   

9.
Summary This paper is the fourth in a series on cardenolide fingerprints of monarch butterflies (Danaus plexippus, Danainae) and their host-plant milkweeds (Asclepiadaceae) in the eastern United States. Cardenolide concentrations ofAsclepias humistrata plants from north central Florida ranged from 71 to 710 µg/0.1 g dry weight, with a mean of 417 µg/0.1 g. Monarchs reared individually on these plants contained cardenolide concentrations ranging from 243 to 575 µg/0.1 g dry weight, with a mean of 385 µg/0.1 g. Cardenolide uptake by butterflies was independent of plant concentration, suggesting that sequestration saturation occurs in monarchs fed cardenolide-rich host plants. Thinlayer chromatography resolved 19 cardenolides in the plants and 15 in the butterflies. In addition to humistratin,A. humistrata plants contained several relatively non-polar cardenolides of the calotropagenin series which are metabolized to more polar derivatives in the butterflies. These produced a butterfly cardenolide fingerprint clearly distinct from those previously established for monarchs reared on otherAsclepias species. In emetic assays with the blue jay,Cyanocitta cristata, the 50% emetic dose (ED50) per jay was 57.1 µg, and the average number of ED50 units per butterfly was 13.8, establishing that this important south eastern milkweed produces highly emetic, chemically defended monarchs. Our data provide further support for the use of cardenolide fingerprints of wild-caught monarchs to make ecological predictions concerning defence against natural enemies, seasonal movement and larval host-plant utilization by monarch butterflies during their annual cycle of migration, breeding and overwintering.  相似文献   

10.
Summary. Pyrrolizidine alkaloids (PAs) present a model system in the investigation of tritrophic interactions mediated by plant secondary compounds. However, their toxicity for insect herbivores has never been experimentally proven. Here, we demonstrate the toxic effects of a PA on growth and survival of the eri silk moth Philosamia ricini. In a feeding experiment, larvae of this generalist herbivore fed with an artificial PA diet gained weight significantly slower than control animals, and died as pupae. We suggest that derivatives of the ingested PA N-oxide damage developmental functions during metamorphosis. A tracer test with [14C]senecionine N-oxide revealed that the caterpillars lack adaptations that would prevent conversion of the chemical into the pro-toxic free base. In contrast, the PA adapted leaf beetle Longitarsus anchusae accumulates PAs as N-oxides. We tested the purpose of sequestration in this species as defence against predators. Through a series of prey choice experiments with three carabid predator species, chemically non-protected bark beetle pupae were chosen almost uniformly over L. anchusae pupae. In a following choice test with one of these predators, artificially PA-treated mealworm segments deterred the predator from feeding. Overall the study corroborates the immediate toxic effect of PAs on non-adapted herbivores and the protective effect that adapted insects may gain by sequestering them. It thereby underlines the potential for PAs to play a central role in multitrophic interactions between plants, phytophages and their predators.  相似文献   

11.
Summary. Sequestration and processing of pyrrolizidine alkaloids (PAs) by leaf beetles of the genus Platyphora were investigated. Tracer experiments with labeled alkaloids were performed with P. eucosma feeding on Koanophyllon panamense (Asteraceae, tribe Eupatorieae). P. eucosma catalyzes the same reactions previously demonstrated for P. boucardi specialized to Prestonia portobellensis (Apocynaceae): (i) epimerization of rinderine to intermedine; (ii) esterification of retronecine yielding insect-specific PAs; (iii) efficient transport of the PAs as free bases into the defensive secretions. P. bella feeding on Tournefortia cuspidata (Boraginaceae) shows the same sequestration behavior and ability to synthesize the specific retronecine esters. P. ligata, a species phylogenetically closely related to the PA adapted species and clustering in the same clade, but feeding on a host plant devoid of PAs, feeds easily on PA treated host-plant leaves, but does not sequester or metabolize PAs. P. kollari a species clustering outside the PA clade refused to feed on its food-plant leaves painted with PAs. The results are discussed in relation to host-plant selection of the PA adapted species and the role of PAs in chemical defense. Received 20 September 2002; accepted 18 November 2002.  相似文献   

12.
Summary. The occurrence of pyrrolizidine alkaloids (PAs) in Pittocaulon (ex Senecio) praecox (Asteraceae) a species endemic to Mexico was established. The aboveground plant organs contain the 1,2-saturated monoester 7-angeloyl-dihydroxyheliotridane together with a small proportion of its 9-angeloyl isomer as major alkaloid. The monoesters are accompanied by the macrocyclic otonecine derivative senkirkine. Roots contain only related macrocyclic PAs with senecionine, senkirkine and platyphylline as major components; monoesters are absent. The broom-like succulent stems of P. praecox are infested by the scale insect Ceroplastes albolineatus conspicuously visible by its huge wax cover. All life-history stages, i.e. females, eggs, first instar nymphs (crawlers) and the wax cover were found associated with PAs. The measured PA concentrations clearly indicate sequestration. The highest PA concentrations (mg / g dry weight) reached are: mature females, 0.44; eggs, 0.58; crawlers, 0.37; wax cover, 0.08. The host plant as well as in the infesting scale insect contain the PAs exclusively as free bases. As a phloem-feeder C. albolineatus must acquire the PAs with the ingested phloem sap. This appears plausible since in Senecio species PA are transmitted and circulated through the phloem path. It is suggested that PAs may protect particularly the crawlers as the most endangered stage in the life-cycle of the scale insect.  相似文献   

13.
Summary Our paper addresses field survivorship of first instar monarch butterfly larvae (Danaus plexippus L., Lep.: Danainae) in relation to the dual cardenolide and latex chemical defenses of the sand hill milkweed plant,Asclepias humistrata (Asclepiadaceae) growing naturally in north central Florida. Survival of first instar larvae in the field was 11.5% in the first experiment (15–20 April 1990), and dropped to 3.4% in the second experiment (20–30 April). About 30% of the larvae were found glued to the leaf surface by the milkweed latex. Predator exclusion of non-flying inverte-brates by applying tanglefoot to the plant stems suggested that the balance of the mortality was due to volant inverte-brates, or to falling and/or moving off the plants. Regression analyses to isolate some of the other variables affecting survivorship indicated that first instar mortality was correlated with (1) increasing cardiac glycoside concentration of the leaves, (2) increasing age of the plants, and (3) the temporal increase in concentration of cardiac glycosides in the leaves. The study also provided confirmatory data of previous studies that wild monarch females tend to oviposit onA. humistrata plants containing intermediate concentrations of cardiac glycosides. Cardiac glycoside concentration in the leaves was not correlated with that in the latex. The concentration of cardenolide in the latex is extremely high, constituting an average of 1.2 and 9.5% of the mass of the wet and dry latex, respectively. The data suggest that an increase in water content of the latex is compensated for by an influx of cardenolide with the result that the cardenolide concentration remains constant in the latex systems of plants that are growing naturally. We also observed first instar larvae taking their first bite of milkweed leaves in the field. In addition to confirming other workers findings that monarch larvae possess elaborate sabotaging behaviour of the milkweed's latex system, we discovered that several larvae on their first bite involuntarily imbided a small globule of latex and instantly became cataleptic. This catalepsis, lasting up to 10 min, may have been in response to the high concentration of cardenolide present in the latex ofA. humistrata, more than 10 times that in the leaves. The results of the present study suggest that more attention should be directed to plant chemical defenses upon initial attack by first instar insect larvae, rather than attempting correlations of plant chemistry with older larvae that have already passed the early instar gauntlet. The first bite of neonate insects may be the most critical moment for coping with the chemical defenses of many plants and may play a much more important role in the evolution of insect herbivory than has previously been recognized.  相似文献   

14.
Gross  Jürgen  Hilker  Monika 《Chemoecology》1994,5(3-4):185-189
Summary The exocrine glandular secretions of larvae of the subfamily Chrysomelinae are known to repel conspecific adults, other competitive phytophagous insects and natural enemies. InPhaedon cochleariae, the intraspecific activity of tlc fractions of the larval secretion was tested in order to examine the ecological significance of two fractions containing minor components and a fraction containing the major compound, the cyclopentanoid monoterpene (epi)chrysomelidial. InChrysomela lapponica, the defensive activity of the larval secretion against ants is known from specimens feeding upon willow or birch. The feeding preferences of larvae and adults ofC. lapponica from a Finnish and a Czech population were tested. The Finnish individuals significantly preferred feeding uponSalix borealis, whereas they hardly fed upon birch. The Czech specimens clearly preferred birch (Betula pubescens) to willow species. Application of salicin onto leaves of a willow species free of this phenolglycoside revealed that the Finnish individuals preferred feeding upon leaves with salicin. On the other hand, the Czech individuals avoided feeding upon leaves ofB. pubescens treated with salicin. The chemical composition of the glandular secretion of the Finnish larvae differed from the one of the Czech larvae. GC-MS-analyses of the secretions revealed that salicylaldehyde was the only major component of the secretion of Finnish larvae feeding upon the salicin-containing willowS. borealis. The glandular secretion of the Czech larvae feeding upon birch contained numerous esters of isobutyric acid and 2-methylbutyric acid. When Czech larvae had fed upon a salicin-containing willow (S. fragilis), the major compounds of their secretion were benzoic acid, salicylalcohol and benzoic acid esters; salicylaldehyde was only detected in traces. Thus,C. lapponica individuals from the Finland population adapted so closely to a salicincontaining willow that they clearly prefer this plant for food and that they obviously derive their main larval defensive compound (salicylaldehyde) from their host-plant.  相似文献   

15.
Oviposition by butterflies on young leaves: Investigation of leaf volatiles   总被引:2,自引:0,他引:2  
Bergström  Gunnar  Rothschild  Miriam  Groth  Inga  Crighton  Cathy 《Chemoecology》1994,5(3-4):147-158
Summary Various butterflies select young foliage on which to lay their eggs; volatiles emitted by young and old leaves have been compared (by sorption enrichment, followed by GC-MS) to gauge possible qualitative and quantitative differences between the two age groups. The plants investigated are cabbage (Brassica oleracea), two milkweeds (Asclepias syriaca andA. curassavica), the bitter orange (Citrus aurantium) and the lime (C. aurantiifolia). The chemical compounds identified belong to three classes, isoprenoids, fatty acid derivatives and benzenoids. Quantitative differences were found between young and old leaves, of which a few may be characteristic of young leaves only. Thirty-four single trials withDanaus plexippus exposed to volatiles from young and old leaves are recorded.  相似文献   

16.
Summary Interactions were studied among alkaloid-containing legumes (Erythrina corallodendrum andSpartium junceum) and non-toxic plants (Citrus sinensis, Cucurbita moschata andEuphorbia tirucalli), several polyphagous homopterans,Aphis craccivora (Aphididae),Icerya purchasi, I. aegyptiaca (Margarodidae),Lepidosaphes ulmi (Diaspididae) andPlanococcus citri (Pseudococcidae), and some major natural enemies of these homopterans. Significant reductions in survival due to negative effects of alkaloid containing as compared with non-alkaloidal plants were recorded for the predatorsRodolia cardinalis andChilocorus bipustulatus, but not forCryptolaemus montrouzieri (Coleoptera: Coccinellidae),Chrysoperla carnea (Neuroptera: Chrysopidae) andSympherobius sanctus (Neuroptera: Sympherobiidae). The development time of the larvae or pupae ofR. cardinalis, C. carnea andS. sanctus was longer on the toxic plants than on the non-toxic ones. The percentage of parasitism ofA. craccivora collected from the non-alkaloidal plantsVicia palaestina andMelilotus albus was much higher than that onS. junceum. The parasitoid complexes ofA. craccivora differed between both plant groups. The nutritive value of honeydew ofI. purchasi andA. craccivora, as expressed by the life span ofEncyrtus infelix (Hymenoptera: Encyrtidae) adults, was also investigated. Life spans were significantly longer when the wasps fed on honeydew produced on non-alkaloidal plants (C. sinensis andPittosporum tobira) than on alkaloid containing plants whenI. purchasi — but notA. craccivora — was the producer. It is suggested that the chemical defense ofE. corallodendrum andS. junceum is exploited by polyphagous phytophages to reduce predation. In nature, population growth and density of four of the investigated homopterans are conspicuously high when they developed on the alkaloid containing plant species, and very low on non-alkaloid plants. The efficiency of their natural enemies may be reduced by sequestration of alkaloids (or other toxic plant compounds) or their transfer into excreted honeydew. Therefore it is assumed that a generalist phytophagous homopteran may be protected from its natural enemies, although at different rates of efficiency, if it can safely sequester the host allelochemical when it develops on toxic species within its host range.  相似文献   

17.
The most frequently investigated defence mechanism among larvae of tortoise beetles is protection by faecal shields, which generally present chemicals that are directly sequestered and/or modified from larval host-plants. In the present work we investigate the tortoise beetle Chelymorpha reimoseri that feeds on the leaves of Ipomoea carnea fistulosa (Convolvulaceae), seeking for the importance of this mechanism to their larvae. We show that 4th instar larvae suffer low predation regardless of the presence of shields in field and laboratory bioassays with ants and chicks. Chloroform extract from larvae without shields provided high protection against predation as shown in bioassays in the field, as well as against chicks, suggesting that C. reimoseri does not rely on the shield for protection. The aqueous extract of the shields did not show activity in such bioassays. The compounds responsible for this protection have yet to be identified, and it remains an open question as to whether they are sequestered from the host plant or de novo biosynthesized. This is the first record of chemical defence in cassidine beetles without the need for faecal shields. These findings indicate that more attention should be paid to chemicals present in the tissues of larvae and/or adults of tortoise beetles; the protective compounds sequestered from host plants or de novo biosynthesized can provide an alternative or complementary strategy against predation in these insects.  相似文献   

18.
Summary. The Na+, K+-ATPase of the Monarch butterfly (Danaus plexippus) is insensitive to the inhibition by cardiac glycosides due to an amino acid replacement: histidine instead of asparagine at position 122 of the α-subunit representing the ouabain binding site. By PCR amplification of the DNA sequence of this site, a PCR product of 270 bp was obtained from DNA extracted from Danainae species (Danaus plexippus, D. chrysippus, D. gillipus, D. philene, D. genutia, Tirumala hamata, Euploea spp., Parantica weiskei, P. melusine), Sphingidae (Daphnis nerii) and mimics of milkweed butterflies (Hypolimnas missipus, Limenitis archippus and L. arthemis, Nymphalidae). Analysis of the nucleotide sequences revealed that the single point mutation in the ouabain binding domain (AAC-Asn for CAC-His) was present only in Danaus plexippus, but not in the other species investigated. Since these milkweed butterflies also store cardenolides, other structural modifications of the Na+, K+-ATPase may have occurred or other strategies of cardenolide tolerance have been developed. Received 15 May 2000; accepted 29 June 2000  相似文献   

19.
沉积物中六氯苯对摇蚊幼虫的慢性毒性效应   总被引:1,自引:0,他引:1  
以淡水底栖动物花翅羽摇蚊(Chironomus kiiensis)幼虫为受试生物,研究了沉积物中六氯苯(HCB)对其28 d的慢性毒性效应,观察摇蚊幼虫的存活情况和活动行为,以死亡率、羽化率和羽化时间为受试终点,计算28 d试验后沉积物中HCB对摇蚊的半数致死浓度(lethal concentration 50,LC50)以及50%羽化时间(50%emergence time,EmT50)。结果表明,HCB对摇蚊28 d的LC50为59.8 mg·kg-1,对摇蚊羽化率的半数效应浓度(half maximal effective concentration,EC50)为59.8 mg·kg-1。与大多数污染物不同,HCB有促进摇蚊幼虫筑巢行为和羽化的作用,随着HCB染毒浓度升高,摇蚊幼虫筑巢行为加强,EmT50缩短。暴露于高浓度HCB(21.6 mg·kg-1)时,摇蚊的EmT50与对照相比明显缩短,尤其对雄性摇蚊影响更大。但与对照相比,HCB对羽化摇蚊的性别比没有很大影响。  相似文献   

20.
A study of otolith aging and growth-rate variation in the flyingfish Hirundichthys affinis (Günther) was conducted in the eastern Caribbean (10–16°N; 58–62°W) in 1987–1989. Daily otolith-increment formation was validated in laboratory-reared larvae, confirming the usefulness of otolith-increment counts for age determination of H. affinis juveniles (<150 mm fork length, FL). A mark-recapture programme to validate increment formation in wild adults was unsuccessful due to tetracycline-linked mortality and insufficient tetracycline uptake in slow-growing adult otoliths. A von Bertalanffy growth curve fitted to juvenile size-at-age data gave preliminary growth-curve parameters of t 0=2.85 d and k=0.00854 on a daily basis, with an asymptotic length, L, of 245 mm FL, for eastern Caribbean flyingfish. Juvenile growth rate in H. affinis is sensitive to spatial and temporal variation in temperature. Growth rates were higher where sea-surface temperatures were higher, and were higher for juveniles hatched in warmer months (April–July) than in colder months (November–March). Growth rates were also higher near islands than at more oceanic locations. Variation in juvenile growth rates may influence the spatial and temporal variation in spawning frequency observed in H. affinis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号