首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ambient air observations of hazardous air pollutant (HAPs), also known as air toxics, derived from routine monitoring networks operated by states, local agencies, and tribes (SLTs), are analyzed to characterize national concentrations and risk across the nation for a representative subset of the 187 designated HAPs. Observations from the National Air Toxics Trend Sites (NATTS) network of 27 stations located in most major urban areas of the contiguous United States have provided a consistent record of HAPs that have been identified as posing the greatest risk since 2003 and have also captured similar concentration patterns of nearly 300 sites operated by SLTs. Relatively high concentration volatile organic compounds (VOCs) such as benzene, formaldehyde, and toluene exhibit the highest annual average concentration levels, typically ranging from 1 to 5 µg/m3. Halogenated (except for methylene chloride) and semivolatile organic compounds (SVOCs) and metals exhibit concentrations typically 2–3 orders of magnitude lower. Formaldehyde is the highest national risk driver based on estimated cancer risk and, nationally, has not exhibited significant changes in concentration, likely associated with the large pool of natural isoprene and formaldehyde emissions. Benzene, toluene, ethylbenzene, and 1,3-butadiene are ubiquitous VOC HAPs with large mobile source contributions that continue to exhibit declining concentrations over the last decade. Common chlorinated organic compounds such as ethylene dichloride and methylene chloride exhibit increasing concentrations. The variety of physical and chemical attributes and measurement technologies across 187 HAPs result in a broad range of method detection limits (MDLs) and cancer risk thresholds that challenge confidence in risk results for low concentration HAPs with MDLs near or greater than risk thresholds. From a national monitoring network perspective, the ability of the HAPs observational database to characterize the multiple pollutant and spatial scale patterns influencing exposure is severely limited and positioned to benefit by leveraging a variety of emerging measurement technologies.

Implications:?Ambient air toxics observation networks have limited ability to characterize the broad suite of hazardous air pollutants (HAPs) that affect exposures across multiple spatial scales. While our networks are best suited to capture major urban-scale signals of ubiquitous volatile organic compound HAPs, incorporation of sensing technologies that address regional and local-scale exposures should be pursued to address major gaps in spatial resolution. Caution should be exercised in interpreting HAPs observations based on data proximity to minimum detection limit and risk thresholds.  相似文献   

2.
Background concentrations of 18 air toxics for North America   总被引:1,自引:0,他引:1  
The U.S. Clean Air Act identifies 188 hazardous air pollutants (HAPs), or "air toxics," associated with adverse human health effects. Of these air toxics, 18 were targeted as the most important in a 10-City Pilot Study conducted in 2001 and 2002 as part of the National Air Toxics Trend Sites Program. In the present analysis, measurements available from monitoring networks in North America were used to estimate boundary layer background concentrations and trends of these 18 HAPs. The background concentrations reported in this study are as much as 85% lower than those reported in recent studies of HAP concentrations. Background concentrations of some volatile organic compounds were analyzed for trends at the 95% confidence level; only carbon tetrachloride (CCI4) and tetrachloroethylene decreased significantly in recent years. Remote background concentrations were compared with the one-in-a-million (i.e., 10(6)) cancer benchmarks to determine the possible causes of health risk in rural and remote areas; benzene, chloroform, formaldehyde, and chromium (Cr) fine particulate were higher than cancer benchmark values. In addition, remote background concentrations were found to contribute between 5% and 99% of median urban concentrations.  相似文献   

3.
The dispersion formulation incorporated in the U.S. Environmental Protection Agency's AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwind receptors ranging from 10-m to 100-m from the edge of a major highway in Raleigh, North Carolina. The contributions are computed using the following steps: 1) Evaluate dispersion model estimates with 10-min averaged NO data measured at 7 m and 17 m from the edge of the road during a field study conducted in August, 2006; this step determines the uncertainty in model estimates. 2) Use dispersion model estimates and their uncertainties, determined in step 1, to construct pseudo-observations. 3) Fit pseudo-observations to actual observations of VOC concentrations measured during five periods of the field study. This provides estimates of the contributions of traffic emissions to the VOC concentrations at the receptors located from 10 m to 100 m from the road. In addition, it provides estimates of emission factors and background concentrations of the VOCs, which are supported by independent estimates from motor vehicle emissions models and regional air quality measurements. The results presented in the paper demonstrate the suitability of the formulation in AERMOD for estimating concentrations associated with mobile source emissions near roadways. This paper also presents an evaluation of the key emissions and dispersion modeling inputs necessary for conducting assessments of local-scale impacts from traffic emissions.  相似文献   

4.
The objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxics assessments in Environmental Justice applications, epidemiological studies, and environmental health risk assessments. In this study, we developed and applied a method to characterize air toxics concentrations in urban areas using results of the recently conducted field study in Wilmington, DE. Mobile measurements were collected over a 4- x 4-km area of downtown Wilmington for three components: formaldehyde (representative of volatile organic compounds and also photochemically reactive pollutants), aerosol size distribution (representing fine particulate matter), and water-soluble hexavalent chromium (representative of toxic metals). These measurements were,used to construct spatial and temporal distributions of air toxics in the area that show a very strong temporal variability, both diurnally and seasonally. An analysis of spatial variability indicates that all pollutants varied significantly by location, which suggests potential impact of local sources. From the comparison with measurements at the central monitoring site, we conclude that formaldehyde and fine particulates show a positive correlation with temperature, which could also be the reason that photochemically generated formaldehyde and fine particulates over the study area correlate well with the fine particulate matter measured at the central site.  相似文献   

5.
Several recent studies associated long-term exposure to air pollution with increased mortality. An ongoing cohort study, the Netherlands Cohort Study on Diet and Cancer (NLCS), was used to study the association between long-term exposure to traffic-related air pollution and mortality. Following on a previous exposure assessment study in the NLCS, we improved the exposure assessment methods.Long-term exposure to nitrogen dioxide (NO2), nitrogen oxide (NO), black smoke (BS), and sulphur dioxide (SO2) was estimated. Exposure at each home address (N=21 868) was considered as a function of a regional, an urban and a local component. The regional component was estimated using inverse distance weighed interpolation of measurement data from regional background sites in a national monitoring network. Regression models with urban concentrations as dependent variables, and number of inhabitants in different buffers and land use variables, derived with a Geographic Information System (GIS), as predictor variables were used to estimate the urban component. The local component was assessed using a GIS and a digital road network with linked traffic intensities. Traffic intensity on the nearest road and on the nearest major road, and the sum of traffic intensity in a buffer of 100 m around each home address were assessed. Further, a quantitative estimate of the local component was estimated.The regression models to estimate the urban component explained 67%, 46%, 49% and 35% of the variances of NO2, NO, BS, and SO2 concentrations, respectively. Overall regression models which incorporated the regional, urban and local component explained 84%, 44%, 59% and 56% of the variability in concentrations for NO2, NO, BS and SO2, respectively.We were able to develop an exposure assessment model using GIS methods and traffic intensities that explained a large part of the variations in outdoor air pollution concentrations.  相似文献   

6.
Volatile organic compounds (VOCs) are major group of air pollutants which play critical role in atmospheric chemistry. It contributes to toxic oxidants which are harmful to ecosystem human health and atmosphere. Data on levels of VOCs in developing countries is lacking. In India information at target VOCs as defined in USEPA compendium method TO-14 is almost totally lacking. The present work deals with estimation of target VOCs at 15 locations in five categories namely residential, industrial, commercial, traffic intersections and petrol refueling stations in Delhi, the capital of India. The monitoring was carried out during peak hours in morning and evening each month for a year in 2001. Ambient air was adsorbed on adsorbent tubes, thermally desorbed and analyzed on GC–MS. The results show that levels of VOCs are high and stress the need for regular monitoring programme of VOCs in urban environment.  相似文献   

7.
One monitoring station is insufficient to characterize the high spatial variation of traffic-related heavy metals within cities. We tested moss bags (Hylocomium splendens), deployed in a dense network, for the monitoring of metals in outdoor air and characterized metals’ long-term spatial distribution and its determinants in Girona, Spain. Mosses were exposed outside 23 homes for two months; NO2 was monitored for comparison. Metals were not highly correlated with NO2 and showed higher spatial variation than NO2. Regression models explained 61-85% of Cu, Cr, Mo, Pb, Sb, Sn, and Zn and 72% of NO2 variability. Metals were strongly associated with the number of bus lines in the nearest street. Heavy metals are an alternative traffic-marker to NO2 given their toxicological relevance, stronger association with local traffic and higher spatial variability. Monitoring heavy metals with mosses is appealing, particularly for long-term exposure assessment, as mosses can remain on site many months without maintenance.  相似文献   

8.
One of the requirements of the 1990 Clean Air Act Amendments (CAA) is that 1-h ozone nonattainment areas that are classified severe or higher category are required to operate a network of photochemical assessment monitors (PAMS) to provide hourly measurements of volatile organic compounds (VOCs) comprising of Carbon number <12 (C2–C12), along with carbonyl measurements at 3-h intervals during the summer ozone season. Often collocated with PAMS are 24-h-integrated canister and cartridge-based measurements of selected air toxic compounds, thereby providing an opportunity for inter-comparison and validation of both sets of data. In this study, we report such a comparison and estimates of trend for benzene, m-, p- and o-xylene, toluene, ethylbenzene, 1,2,4-trimethylbenzene, formaldehyde and acetaldehyde at Bronx, NY. The analysis shows that hourly PAMS and 24-h-integrated air toxics are in good agreement with each other exhibiting similar trends and that the PAMS with the higher temporal resolution offers information on excursions of the toxic compounds that would be quite useful in assessment of acute health effects. These findings were also found to be applicable to other locations such as South De Kalb, GA; Gary, IN and Lynn, MA.  相似文献   

9.
The U.S. Environmental Protection Agency (EPA) is in the process of designing a national network to monitor hazardous air pollutants (HAPs), also known as air toxics. The purposes of the expanded monitoring are to (1) characterize ambient concentrations in representative areas; (2) provide data to support and evaluate dispersion and receptor models; and (3) establish trends and evaluate the effectiveness of HAP emission reduction strategies. Existing air toxics data, in the form of an archive compiled by EPA's Office of Air Quality Planning and Standards (OAQPS), are used in this paper to examine the relationship between estimated annual average (AA) HAP concentrations and their associated variability. The goal is to assess the accuracy, or bias and precision, with which the AA can be estimated as a function of ambient concentration levels and sampling frequency. The results suggest that, for several air toxics, a sampling schedule of 1 in 3 days (1:3) or 1:6 days maybe appropriate for meeting some of the general objectives of the national network, with the more intense sampling rate being recommended for areas expected to exhibit relatively high ambient levels.  相似文献   

10.
This paper summarizes information on the spatial and temporal variability of selected air toxics pollutants collected on a national basis primarily for a period encompassing 1990-2003. Spatial information on pollutant concentrations is characterized in terms of within-city and between-city variability. Temporal information is summarized as diurnal and seasonal variability and in multiyear trends. The information on variability is presented in the framework of a larger need for systematic documentation of information on air toxics pollutants to assess progress in air pollution control programs.  相似文献   

11.
Under the Clean Air Act Amendments, the United States Environmental Protection Agency is required to regulate emissions of 188 hazardous air pollutants. The EPA, Office of Air Quality Planning and Standards is currently conducting a National-scale Air Toxics Assessment with a goal to identify air toxics which are of greatest concern, in terms of contribution to population inhalation risk. The results will be used to set priorities for the collection of additional air toxics emissions and monitoring data. Expanded ambient air toxics monitoring will take the form of a national air toxics monitoring network. With all monitoring data, however, comes uncertainty in the form of environmental variability (spatial and temporal) and monitoring error (sample collection and laboratory analysis). With this in mind, existing data from the Urban Air Toxics Monitoring Program (UATMP) were analyzed to obtain a general understanding of these sources of variability and then provide recommendations for managing the data uncertainties of a national network. The results indicate that environmental variability, in particular temporal, comprises most of the overall variability observed in the UATMP data. However, at lower ambient levels (on the order of 0.1–0.5 ppbv or lower) environmental variability tends to dissipate and monitoring error takes over, most notably analytical error. Overall, the results suggest that common techniques in ambient air toxics monitoring for carbonyls and volatile organic compounds may satisfy many of the primary objectives of a national air toxics monitoring network.  相似文献   

12.
Air toxics emission inventories play an important role in air quality regulatory activities. Recently, Minnesota Pollution Control Agency (MPCA) staff compiled a comprehensive air toxics emission inventory for 1996. While acquiring data on the mass of emissions is a necessary first step, equally important is developing information on the potential toxicity of the emitted pollutants. To account for the toxicity of the pollutants in the emission inventory, inhalation health benchmarks for acute effects, chronic effects, and cancer were used to weight the mass of emissions. The 1996 Minnesota emissions inventory results were ranked by mass of emissions and by an index comprised of emissions divided by health benchmarks. The results show that six of eight pollutants ranked highest by toxicity were also the pollutants of concern indicated in environmental monitoring data and modeling data. Monitoring data and modeling results did not show high impacts of the other two pollutants that were identified by the toxicity-based emission ranking method. The biggest limitation in this method is the lack of health benchmark values for many pollutants. Despite uncertainties and limited information, this analysis provides useful information for further targeting pollutants and source categories for control.  相似文献   

13.
Ambient measurements of hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2005 were analyzed for diurnal, seasonal, and/or annual variability and trends. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Sufficient data were available to analyze diurnal variability for 14 air toxics, seasonal variability for 24 air toxics, and annual trends for 26 air toxics. Four diurnal variation patterns were identified and labeled invariant, nighttime peak, morning peak, and daytime peak. Three distinct seasonal patterns were identified and labeled invariant, cool, and warm. Multiple air toxics showed consistent decreasing trends over three trend periods, 1990–2005, 1995–2005, and 2000–2005. Trends appeared to be relatively consistent within chemically similar pollutant groups. Hydrocarbons such as benzene, 1,3-butadiene, styrene, xylene, and toluene decreased by approximately 5% or more per year at more than half of all monitoring sites. Concentrations of carbonyl compounds such as formaldehyde, acetaldehyde, and propionaldehyde were equally likely to have increased or decreased at monitoring sites. Chlorinated volatile organic compounds (VOCs) such as tetrachloroethylene, dichloromethane, and methyl chloroform decreased at more than half of all monitoring sites, but decreases among these species were much more variable than among the hydrocarbons. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time.  相似文献   

14.
The development of local, accurate emission factors is very important for the estimation of reliable national emissions and air quality management. For that, this study is performed for pollutants released to the atmosphere with source-specific emission tests from the semiconductor manufacturing industry. The semiconductor manufacturing industry is one of the major sources of air toxics or hazardous air pollutants (HAPs); thus, understanding the emission characteristics of the emission source is a very important factor in the development of a control strategy. However, in Korea, there is a general lack of information available on air emissions from the semiconductor industry. The major emission sources of air toxics examined from the semiconductor manufacturing industry were wet chemical stations, coating applications, gaseous operations, photolithography, and miscellaneous devices in the wafer fabrication and semiconductor packaging processes. In this study, analyses of emission characteristics, and the estimations of emission data and factors for air toxics, such as acids, bases, heavy metals, and volatile organic compounds from the semiconductor manufacturing process have been performed. The concentration of hydrogen chloride from the packaging process was the highest among all of the processes. In addition, the emission factor of total volatile organic compounds (TVOCs) for the packaging process was higher than that of the wafer fabrication process. Emission factors estimated in this study were compared with those of Taiwan for evaluation, and they were found to be of similar level in the case of TVOCs and fluorine compounds.  相似文献   

15.
Four different biofilter packing materials (two porous ceramics, perlite, and open pore polyurethane foam) were compared for the removal of toluene vapors. The focus was on evaluating performance at relatively short gas retention time (13.5 and 27 sec). The reactors were initially operated as biotrickling filters with continuous feeding and trickling of a nutrient solution. After significant plugging of the biotrickling filter beds with biomass was observed, the operation mode was switched to biofiltration with only periodic supply of mineral nutrients. This resulted in stable conditions, which allowed detailed investigations over > 6 months. The reactor packed with cattle bone Porcelite (CBP), a ceramic material containing some macronutrients and micronutrients, exhibited the highest performance. The critical load (i.e., load at which 95% removal occurred) was 29 g m(-3) hr(-1) at a gas retention time of 13.5 sec and 66 g m(-3) hr(-1) at a gas retention time of 27 sec. After the long-term experiment, the packing materials were taken from the reactors and examined. The reactors were divided into three sections, top, middle, and bottom, to determine whether spatial differentiation of biomass occurred. The assays included a double-staining technique to count total and live microorganisms and determination of moisture, protein, and dry weight contents. Microbial community analysis was also conducted by denaturing gradient gel electrophoresis. The results showed that most reactors had a significant fraction of inactive biomass. Comparatively, the CBP biofilter held significantly higher densities of active biomass, which may be the reason for the higher toluene removal performance. The analyses suggest that favorable material properties and the nutrients slowly released by the CBP provided better environmental conditions for the process culture.  相似文献   

16.
High time-resolved (HTR) measurements can provide significant insight into sources and exposures of air pollution. In this study, an automated instrument was developed and deployed to measure hourly concentrations of 18 gas-phase organic air toxics and 6 volatile organic compounds (VOCs) at three sites in and around Pittsburgh, Pennsylvania. The sites represent different source regimes: a site with substantial mobile-source emissions; a residential site adjacent to a heavily industrialized zone; and an urban background site. Despite the close proximity of the sites (less than 13 km apart), the temporal characteristic of outdoor concentrations varied widely. Most of the compounds measured were characterized by short periods of elevated concentrations or plume events, but the duration, magnitude and composition of these events varied from site to site. The HTR data underscored the strong role of emissions from local sources on exposure to most air toxics. Plume events contributed more than 50% of the study average concentrations for all pollutants except chloroform, 1,2-dichloroethane, and carbon tetrachloride. Wind directional dependence of air toxic concentrations revealed that emissions from large industrial facilities affected concentrations at all of the sites. Diurnal patterns and weekend/weekday variations indicated the effects of the mixing layer, point source emissions patterns, and mobile source air toxics (MSATs) on concentrations. Concentrations of many air toxics were temporally correlated, especially MSATs, indicating that they are likely co-emitted. It was also shown that correlations of the HTR data were greater than lower time resolution data (24-h measurements). This difference was most pronounced for the chlorinated pollutants. The stronger correlations in HTR measurements underscore their value for source apportionment studies.  相似文献   

17.
Relationships between outdoor and indoor air pollution   总被引:1,自引:0,他引:1  
  相似文献   

18.
Gas phase concentrations of individual polycyclic aromatic hydrocarbons (PAHs) were measured in real time in combustion products from a co-flow diffusion flame using laser photoionization (LP) time-of-flight mass spectrometry (TOF/MS). In particular, a naphthalene detection sensitivity of 4 parts per billion (ppb) was demonstrated. The use of calibration mixtures with argon indicated the feasibility of naphthalene detection at about 45 parts per trillion (ppt) at a signal-to-noise (S/N) ratio of 20. This suggests the possibility of low-ppt level detection at a S/N of 1. The novelty of the system is the use of a heated sampling probe and a continuously purged, heated-pulse valve that was positioned close to the ionization zone, thereby allowing the generation of photoions in the high-density region of the sample jet, where concentrations of PAH are high. Because the system developed allows for the real time detection of select species, it represents a useful tool in continuous emissions monitoring (CEM) for environmental compliance as well as direct process control.  相似文献   

19.
某室外安装的大型空气压缩机对环境造成了严重噪声污染,离机器2m远处噪声高达114 5dB(A)。在不允许停机的情况下,充分利用现场条件,采取了为空气压缩机加隔声罩、进气口滤清器加消声百页和管道作隔声包扎等综合治理措施,相应测点噪声已降至88 7dB(A),厂界噪声降至机器安装前背景值。室外机器的噪声控制方法与室内机器有许多不同,分析了这些差异并重点介绍了所设计的隔声罩在声学、通风、耐气候性和结构等方面的设计要点。  相似文献   

20.
Probabilistic emission inventories were developed for 1,3-butadiene, mercury (Hg), arsenic (As), benzene, formaldehyde, and lead for Jacksonville, FL. To quantify inter-unit variability in empirical emission factor data, the Maximum Likelihood Estimation (MLE) method or the Method of Matching Moments was used to fit parametric distributions. For data sets that contain nondetected measurements, a method based upon MLE was used for parameter estimation. To quantify the uncertainty in urban air toxic emission factors, parametric bootstrap simulation and empirical bootstrap simulation were applied to uncensored and censored data, respectively. The probabilistic emission inventories were developed based on the product of the uncertainties in the emission factors and in the activity factors. The uncertainties in the urban air toxics emission inventories range from as small as -25 to +30% for Hg to as large as -83 to +243% for As. The key sources of uncertainty in the emission inventory for each toxic are identified based upon sensitivity analysis. Typically, uncertainty in the inventory of a given pollutant can be attributed primarily to a small number of source categories. Priorities for improving the inventories and for refining the probabilistic analysis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号