首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stormwater modelling indicated an average annual discharge from Sydney estuary catchment of 215,300 mL and loadings of 0.8, 0.5, 1.7, 3.2, 1.1, 3.6 and 17.7 tonnes for As, Cd, Cr, Cu, Ni, Pb and Zn, respectively. Priority for remediation should be given to creeks with high-metal loads in the upper and central estuary, as well as discharging to the western shores of Middle Harbour. Managerial strategies need to target dissolved and particulate metal phases to ensure effective remediation. The proportion of metals discharged under low- (<5 mm rainfall/day), medium- (>5 to <50 mm/day) and high-flow conditions (>50 mm/day) was approximately 10%, 60% and 30% of total loading, respectively. Under high-flow conditions the estuary becomes stratified and most metals are exported to the sea, whereas metals discharged during low-flow may be remediated by infiltration. Effective remediation will depend on the extent to which ‘first-flush’ metals associated with medium-flow conditions can be remediated.  相似文献   

2.
Stormwater contaminant loading estimates using event mean concentration (EMC), rainfall/runoff relationship calculations and computer modelling (Model of Urban Stormwater Infrastructure Conceptualisation—MUSIC) demonstrated high variability in common methods of water quality assessment. Predictions of metal, nutrient and total suspended solid loadings for three highly urbanised catchments in Sydney estuary, Australia, varied greatly within and amongst methods tested. EMC and rainfall/runoff relationship calculations produced similar estimates (within 1 SD) in a statistically significant number of trials; however, considerable variability within estimates (~50 and ~25 % relative standard deviation, respectively) questions the reliability of these methods. Likewise, upper and lower default inputs in a commonly used loading model (MUSIC) produced an extensive range of loading estimates (3.8–8.3 times above and 2.6–4.1 times below typical default inputs, respectively). Default and calibrated MUSIC simulations produced loading estimates that agreed with EMC and rainfall/runoff calculations in some trials (4–10 from 18); however, they were not frequent enough to statistically infer that these methods produced the same results. Great variance within and amongst mean annual loads estimated by common methods of water quality assessment has important ramifications for water quality managers requiring accurate estimates of the quantities and nature of contaminants requiring treatment.  相似文献   

3.
Sydney estuary (Australia) catchment is substantially urbanised (80%) and small (480 km2) with a large population (2.5 million) and is therefore highly sensitive to anthropogenic influence. The Model for Urban Stormwater Improvement Conceptualisation used to model nutrient export to the estuary determined an average annual load of 475 t total nitrogen, 63.5 t total phosphorus and 343,000 t total suspended solids. Model verification included intense, short-term water sampling and analysis undertaken in the current project and use of published data spanning 10 years. Under high-rainfall conditions (>50 mm day???1), the estuary becomes stratified and nutrients are either removed from the estuary directly in a plume or indirectly by advective/dispersive remobilisation. The majority of the nutrient load is delivered during moderate rainfall (5–50 mm day???1) conditions and accumulates close to discharge points and remains in the estuary. To significantly reduce nutrient load, management strategies should aim to minimise low and moderate rainfall pollutant loads.  相似文献   

4.
Measurement of intertidal rock assemblages was investigated as a potential biological indicator to provide a quantitative estimate of the impact of urbanised catchment discharge on the estuaries of Sydney, Australia, from 1995 to 1999. Based on the presence and characteristics of adjacent human activities, sampling locations were categorised as: Bush; Urban; Urban with Sewer Overflows; and Industry with Sewer Overflows. In Sydney Harbour, variation in assemblage structure was measured between most impact categories, however differences between impact categories were not consistent for each year. Nevertheless, in years of above average rainfall (1998–1999), reference assemblages adjacent to national parks and distant from urbanisation were different to all other putatively impacted assemblages. Variability within assemblages was least at reference locations in each year and greatest at locations adjacent to stormwater canals and sewer overflows, particularly in 1998–1999. Variation in assemblage structure in Sydney estuaries was most strongly correlated with chlorophyll – a concentrations. Univariate analysis also identified highly significant differences for a number of factors, however, interactions between year, impact categories and location for numerous analyses, confounded the differentiation between impact categories. The results suggest that intertidal rock assemblages in Sydney Harbour and surrounding estuaries appear to be responding to the quality and quantity of discharge from urbanised catchments and, furthermore, that assemblages are more suitable than individual taxa to indicate the difference between Bush and anthropogenically disturbed estuarine locations.  相似文献   

5.
Thermotolerant coliform (TC) loadings were quantified for 49 catchments draining into the North and South Bays of Santa Catarina (SC, southeastern Brazil), an area known for its tourism and aquaculture. TC loadings were calculated based on flow measurements taken in 26 rivers. TC concentrations ere quantified based on surface water samples collected at 49 catchment outlets in 2012 and 2013. Median TC loads ranged from 3.7 × 103 to 6.8 × 108 MPN s?1. TC loadings in the catchments increased in proportion to increases in resident human population, population density and percentage of urbanised area. Catchments with more than 60% of area covered by wastewater collection and treatment systems had higher TC loads per person than catchments with less than 25%. Based on the study catchments, these results indicate that current sewerage infrastructure is ineffective in reducing contamination of faecal origin to surface waters. These findings have important implications for the management of microbiological health hazards in bathing, recreational and shellfish aquaculture waters in the North and South Bays of Santa Catarina Island.  相似文献   

6.
Faecal coliform (FC) bacteria were used as a proxy of faecal indicator organisms (FIOs) to assess the microbiological pollution risk for eight mesoscale catchments with increasing lowland influence across north-east Scotland. This study sought to assess the impact of urban areas on microbial contaminant fluxes. Fluxes were lowest in upland catchments where populations are relatively low. By contrast, lowland catchments with larger settlements and a greater number of grazing populations have more elevated FC concentrations throughout the year. Peak FC counts occurred during the summer months (April–September) when biological activity is at its highest. Lowland catchments experience high FC concentrations throughout the year whereas upland catchments exhibit more seasonal variations with elevated summer conditions and reduced winter concentrations. A simple linear regression model based on catchment characteristics provided scope to predict FC fluxes. Percentage of improved grazing pasture and human population explained 90 and 62 % of the variation in mean annual FC concentrations. This approach provides scope for an initial screening tool to predict the impact of urban space and agricultural practice on FC concentrations at the catchment scale and can aid in pragmatic planning and water quality improvement decisions. However, greater understanding of the short-term dynamics is still required which would benefit from higher resolution sampling than the approach undertaken here.  相似文献   

7.
Contaminants deposited on impermeable surfaces migrate to stormwater following rainfall events, but accurately quantifying their spatial and temporal yields useful for mitigation purposes is challenging. To overcome limitations in current sampling methods, a system was developed for rapid quantification of contaminant build-up and wash-off dynamics from different impervious surfaces. Thin boards constructed of concrete and two types of asphalt were deployed at different locations of a large carpark to capture spatially distributed contaminants from dry atmospheric deposition over specified periods of time. Following experimental exposure time, the boards were then placed under a rainfall simulator in the laboratory to generate contaminant runoff under controlled conditions. Single parameter effects including surface roughness and material composition, number of antecedent dry days, rain intensity, and water quality on contaminant build-up and wash-off yields could be investigated. The method was applied to quantify spatial differences in deposition rates of contaminants (TSS, zinc, copper and lead) at two locations varying in their distance to vehicle traffic. Results showed that boards exposed at an unused part of the carpark >50 m from vehicular traffic captured similar amounts of contaminants compared with boards that were exposed directly adjacent to the access route, indicating substantial atmospheric contaminant transport. Furthermore, differences in contaminant accumulation as a function of surface composition were observed. Runoff from asphalt boards yielded higher zinc loads compared with concrete surfaces, whereas runoff from concrete surfaces resulted in higher TSS concentrations attributed to its smoother surfaces. The application of this method enables relationships between individual contaminant behaviour and specific catchment characteristics to be investigated and provides a technique to derive site-specific build-up and wash-off functions required for modelling contaminant loads from impermeable surfaces.  相似文献   

8.
An assessment of suspended sediment transport was carried out in a number of semiarid catchments during flood events in order to quantify the degradation rates. In order to quantify these, a systematic sampling procedure of the episodic flood events was proposed for representative catchments. The procedure allows for an integration over the whole run-off episode using both the rising and falling limbs of the run-off hydrograph to compute the sediment quantities for each individual flood event. Higher sediment concentrations occurred in the rising limb than those at the recession for any stage of flow. The maximum suspended sediment concentration was observed at the peak of the flood hydrograph. An integration of the sediment concentration over its duration gave the total sediment yield from the flood event. For the ephemeral channels, only a small number of flood events were observed over a three-year experimental period each with a duration of the order of 3–6 h. It is notable that high sediment loads were associated with high flow volumes which were effectively the result of the catchment characteristics and incident rainfall causing the flood events in the respective catchments. A large percentage of the annual sediment yield from a catchment is transported by the ephemeral streams during a small number of flood events. The correct determination of the total sediment yield from any of the flood events depends entirely on the accuracy of the measurements. The understanding of run-off and sediment loss for the representative catchments aims at assisting planning, management and control of water and land resources for sustainable development in the semi-arid parts of the tropics. The sediment rates reveal the degradation of catchments which have repercussions on the crop and pasture production and this has a bearing on the soil and water conservation programmes in the delicate ecological balance of the semi-arid areas. Further, these rates will determine the lifespan of the reservoirs planned for the dry river valleys (ephemeral streams) and existing ones which serve livestock and domestic needs. These occasionally will require costly rehabilitation and scooping to increase effective storage unless conservation measures are taken, and these measures are bound to vary from place to place as per the representative catchments output.  相似文献   

9.
As a consequence of the accumulation of anthropogenic Pb in upland catchments, there has been much recent concern about the potential mobilisation and transport of Pb from the soils to receiving waters and also the possible harmful effects that this might have on aquatic biota. This paper presents the findings of a two-year study of Pb behaviour in an organic-rich upland catchment at Glensaugh in NE Scotland. Pb inputs to the catchment were characterised by direct measurements of Pb concentration and (206)Pb/(207)Pb ratios in rain water and interception. Pb outputs from the catchment were calculated from measurements on stream water samples taken from the two main streams, the Cairn Burn and Birnie Burn. The relative contribution of Pb from groundwater and throughflow, under different flow conditions (base flow and high flow), to stream waters was investigated via analysis of springs sourced from groundwater and of waters flowing through the various soil horizons (S (surface), A, B, C, and D), respectively. The outcome of intensive sampling and analysis over the two-year time period was that, even with marked reduction in Pb inputs over the past two decades, the catchment was still acting as a net sink for the current atmospheric deposition. Although the Pb isotopic signature for stream water is very similar to that for the contemporaneous rain water ((206)Pb/(207)Pb approximately 1.15-1.16), only a small portion of the rain water is transferred directly to stream water. Instead, the Pb input is transferred to the stream waters mainly via groundwater and it was also confirmed that the latter had a similar Pb isotopic signature. From the Pb isotopic measurements on throughflow waters, however, Pb being removed via the streams contained some previously deposited Pb, i.e. mobilisation of a small portion of soil-derived anthropogenic Pb was occurring. These findings are important not only with respect to the source/sink status of the catchment but also for calculation of the extent of retention of the current atmospheric Pb inputs, which must take account of the release of previously deposited Pb from the catchment soils, a process occurring mainly under high flow conditions.  相似文献   

10.
A significant correlation between sedimentary metals, particularly the ‘bio-available’ fraction, and bioaccumulated metal concentrations in the native Sydney rock oyster (Saccostrea glomerata) tissues has been successfully demonstrated previously for Cu and Zn in a number of estuaries in New South Wales, Australia. However, this relationship has been difficult to establish in a highly modified estuary (Sydney estuary, Australia) where metal contamination is of greatest concern and where a significant relationship would be most useful for environmental monitoring. The use of the Sydney rock oyster as a biomonitoring tool for metal contamination was assessed in the present study by investigating relationships between metals attached to sediments and suspended particulate matter (SPM) to bioaccumulated concentrations in oyster tissues. Surficial sediments (both total and fine-fraction), SPM and wild oysters were collected over 3 years from three embayments (Chowder Bay, Mosman Bay and Iron Cove) with each embayment representing a different physiographic region of Sydney estuary. In addition, a transplant experiment of farmed oysters was conducted in the same embayments for 3 months. No relationship was observed between sediments or SPM metals (Cu, Pb and Zn) to tissue of wild oysters; however, significant relationship was observed against transplanted oysters. The mismatch between wild and farmed, transplanted oysters is perplexing and indicates that wild oysters are unsuitable to be used as a biomonitoring tool due to the involvement of unknown complex factors while transplanted oysters hold strong potential.  相似文献   

11.
The efficiency of a Stormwater Infiltration Basin (SIB) to remove contaminants from urban stormwater was assessed in the current investigation. The SIB, installed in an urban suburb in eastern Sydney (Australia), was monitored over seven rainfall events to assess the removal efficiency of the remedial device for total suspended solids (TSS), nutrients (TP, TKN, Nox, TN), trace metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn), organochlorine pesticides and faecal coliforms (FC) from stormwater. The weighted average concentration (WAC) of TSS in the stormwater effluent from the SIB was reduced by an average of 50%, whereas the WAC of Cu, Pb and Zn were also reduced by an average 68%, 93% and 52%, respectively. However, the WAC of Cr, Fe, Mn and Ni displays either similar concentrations as the stormwater influent (Cr and Mn), or substantially higher concentrations (Fe and Ni), due possibly to leaching of fine-grained zeolite clay particles in the filtration bed. The mean removal efficiency of the SIB for total phosphorus (TP) and total Kjeldahl nitrogen (TKN) was 51% and 65%, respectively. In contrast, the average WAC of oxidisable nitrogen (nitrate and nitrite nitrogen or Nox) is about 2.5 times greater in the effluent (1.34 ± 0.69 mg L–1) than in the incoming stormwater (0.62 ± 0.25 mg L–1). The WAC of total nitrogen (TN) was similar for stormwater at the in-flow and out-flow points. The SIB was very efficient in removing FC from stormwater; and the WAC of almost 70 (100 mL)–1 at inflow was reduced to <2000 cfu (100 Ml)–1 at the outflow, representing a mean removal efficiency of 96%. Due to the low concentrations of Cd, organochlorine pesticides and PAHs in the stormwater, it was not possible to assess the efficiency of the SIB in removing these contaminants.  相似文献   

12.
Urban and agricultural areas affect the hydraulic patterns as well as the water quality of receiving drainage systems, especially of catchments smaller than 50 km(2). Urban runoff is prone to contamination due to pollutants like pesticides or pharmaceuticals. Agricultural areas are possible sources of nutrient and herbicide contamination for receiving water bodies. The pollution is derived from leaching by subsurface flow, as well as wash-off and erosion caused by surface runoff. In the Luxembourgish Mess River catchment, the pharmaceutical and pesticide concentrations are comparable with those detected by other authors in different river systems worldwide. Some investigated pesticide concentrations infringe current regulations. The maximum allowable concentration for diuron of 1.8 μg l(?-?1) is exceeded fourfold by measured 7.41 μg l(?-?1) in a flood event. The load of dissolved pesticides reaching the stream gauge is primarily determined by the amount applied to the surfaces within the catchment area. Storm water runoff from urban areas causes short-lived but high-pollutant concentrations and moderate loads, whereas moderate concentrations and high loads are representative for agricultural inputs to the drainage system. Dissolved herbicides, sulfonamides, tetracyclines, analgesics and hormones can be used as indicators to investigate runoff generation processes, including inputs from anthropogenic sources. The measurements prove that the influence of kinematic wave effects on the relationship between hydrograph and chemographs should not be neglected in smaller basins. The time lag shows that it is not possible to connect analysed substances of defined samples to the corresponding section of the hydrograph.  相似文献   

13.
Stormwater is one of the last major untapped urban water resources that can be exploited as an alternative water source in Australia. The information in the current Australian Guidelines for Water Recycling relating to stormwater harvesting and reuse only emphasises on a limited number of stormwater quality parameters. In order to supply stormwater as a source for higher value end-uses, a more comprehensive assessment on the potential public health risks has to be undertaken. Owing to the stochastic variations in rainfall, catchment hydrology and also the types of non-point pollution sources that can provide contaminants relating to different anthropogenic activities and catchment land uses, the characterisation of public health risks in stormwater is complex, tedious and not always possible through the conventional detection and analytical methods. In this study, a holistic approach was undertaken to assess the potential public health risks in urban stormwater samples from a medium-density residential catchment. A combined chemical–toxicological assessment was used to characterise the potential health risks arising from chemical contaminants, while a combination of standard culture methods and quantitative polymerase chain reaction (qPCR) methods was used for detection and quantification of faecal indicator bacteria (FIB) and pathogens in urban stormwater. Results showed that the concentration of chemical contaminants and associated toxicity were relatively low when benchmarked against other alternative water sources such as recycled wastewater. However, the concentrations of heavy metals particularly cadmium and lead have exceeded the Australian guideline values, indicating potential public health risks. Also, high numbers of FIB were detected in urban stormwater samples obtained from wet weather events. In addition, qPCR detection of human-related pathogens suggested there are frequent sewage ingressions into the urban stormwater runoff during wet weather events. Further water quality monitoring study will be conducted at different contrasting urban catchments in order to undertake a more comprehensive public health risk assessment for urban stormwater.  相似文献   

14.
Information on the pollution level and the influence of hydrologic regime on the stormwater pollutant loading in tropical urban areas are still scarce. More local data are still required because rainfall and runoff generation processes in tropical environment are very different from the temperate regions. This study investigated the extent of urban runoff pollution in residential, commercial, and industrial catchments in the south of Peninsular Malaysia. Stormwater samples and flow rate data were collected from 51 storm events. Samples were analyzed for total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand, oil and grease (O&G), nitrate nitrogen (NO3-N), nitrite nitrogen, ammonia nitrogen, soluble reactive phosphorus, total phosphorus (TP), and zinc (Zn). It was found that the event mean concentrations (EMCs) of pollutants varied greatly between storm characteristics and land uses. The results revealed that site EMCs for residential catchment were lower than the published data but higher for the commercial and industrial catchments. All rainfall variables were negatively correlated with EMCs of most pollutants except for antecedent dry days (ADD). This study reinforced the earlier findings on the importance of ADD for causing greater EMC values with exceptions for O&G, NO3-N, TP, and Zn. In contrast, the pollutant loadings are influenced primarily by rainfall depth, mean intensity, and max 5-min intensity in all the three catchments. Overall, ADD is an important variable in multiple linear regression models for predicting the EMC values in the tropical urban catchments.  相似文献   

15.
A field monitoring network was set up within the Stamford canal watershed in 1989 to study both the quantitative and qualitative aspects of storm runoff from this urbanised catchment. The data acquisition equipment comprised a continuous recording rain gauge, a water level recorder and an automatic water sampler capable of sampling storm runoff at preset intervals during rainfall events. Water samples were collected after each storm and laboratory tests were carried out on the physical and chemical properties of the storm water. Preliminary findings on the temporal variations of stormwater quality during single storms and the effects of antecedent dry weather period on the quality are presented. The average ranges of some of the significant quality parameters found in the storm runoff were also established. The quality of storm runoff from the catchment under study was found to be of an acceptable level and could potentially be developed as a water catchment area.  相似文献   

16.
Total sediment concentrations of Cd, Cu, Pb, Zn, As, and Hg obtained from the Ankobra, Sakumo II, and Volta estuaries in Ghana were used to generate contaminant probability density distributions and species sensitivity distributions in AQUARISK. Results of the tier 1 assessment showed Cu, Cd, Zn, and Pb were not of concern in the Ankobra as their measured values and the 99th percentile of the fitted distributions were lower than the SQG low-trigger values. Mercury (Hg) and As were however, identified to be of concern in this estuary. In the Sakumo II estuary, Cu, Cd, Pb, and Hg have been identified to be of concern because their concentrations are higher than the SQG low-trigger values. Hg has been identified as the only metal of concern in the Volta estuary. The total proportion of species likely to be affected by the combined concentration of Cd, Cu, and Zn measured from Ankobra, Sakumo II, and Volta were 14%, 16%, and 12%, respectively, according to the Bur III distributional analysis of the ecotoxicology data. The measured median sediment concentrations of As and Hg in the Ankobra estuary greatly exceeded the median sediment concentration targets to achieve a 5% or less exceedence of the SQG low value. Similarly, in the Sakumo II estuary, the measured median sediment concentrations of Cu, Pb, and Hg greatly exceeded the median sediment concentration targets to achieve a 5% or less exceedence of the SQG low. For the Volta estuary however, other metals except Hg fall below the target values.  相似文献   

17.
为了解饶河入鄱阳湖湖口重金属污染状况,在鄱阳湖饶河入湖段设置了3个采样点,用原子吸收分光光度计对沉积物进行了重金属Cu、Pb、Zn的测定,分析了这3种元素在各采样点的形态分布特征.结果表明:饶河人鄱阳湖口处沉积物中Cu、Pb、Zn的污染较为严重,呈现出复合污染的趋势.该区域沉积物中3种元素的分布受水流的影响较大,其形态...  相似文献   

18.
The activity of six extracellular enzymes involved in the degradation of dissolved organic carbon compounds was measured in two highly urbanised and two minimally impacted streams east of Melbourne, Australia, using 4-methylumbelliferyl-substrates. Small-scale temporal variation in enzyme activity was determined by repeatedly sampling the same point in the water column, while the effect of flow was determined by sampling in regions of higher and lower flow in both stream types. Replicate samples showed that enzyme activity was not significantly different over small (minutes) time scales. On five of six sampling occasions the enzyme activity was unaffected by flow. On one sampling occasion in a minimally disturbed stream, the difference between the high- and low-flow regions was statistically significant (ANOSIM, Global R= 0.78, P= 0.03). Enzyme activity profiles (activities of the suite of enzymes) of the streams in urbanised catchments were different to those in minimally disturbed catchments. The measurements made in four different streams showed high reproducibility over short time periods (minutes) which lends greater credibility to analogous spatial studies. Although these results determined that small-scale temporal variability was not significant, and that the effects of flow were generally minimal, it is recommended that spatial and temporal variability in the stream be at least considered before any studies measuring extracellular enzyme activity in stream waters are carried out. Such an approach will lead to conclusions from measurements that are not likely to be confounded by variables such as flow rate or time.  相似文献   

19.
In view of their crucial role in water and solute transport, enhanced monitoring of agricultural subsurface drain tile systems is important for adequate water quality management. However, existing monitoring techniques for flow and contaminant loads from tile drains are expensive and labour intensive. The aim of this study was to develop a cost-effective and simple method for monitoring loads from tile drains. The Flowcap is a modified Sutro weir (MSW) unit that can be attached to the outlet of tile drains. It is capable of registering total flow, contaminant loads and flow-averaged concentrations. The MSW builds on a modern passive sampling technique that responds to hydraulic pressure and measures average concentrations over time (days to months) for various substances. Mounting the samplers in the MSW allowed a flow-proportional part of the drainage to be sampled. Laboratory testing yielded high linear correlation between the accumulated sampler flow, q total, and accumulated drainage flow, Q total (r 2?>?0.96). The slope of these correlations was used to calculate the total drainage discharge from the sampled volume, and therefore contaminant load. A calibration of the MSW under controlled laboratory condition was needed before interpretation of the monitoring results was possible. The MSW does not require a shed, electricity, or maintenance. This enables large-scale monitoring of contaminant loads via tile drains, which can improve contaminant transport models and yield valuable information for the selection and evaluation of mitigation options to improve water quality. Results from this type of monitoring can provide data for the evaluation and optimisation of best management practices in agriculture in order to produce the highest yield without water quality and recipient surface waters being compromised.  相似文献   

20.
The Screening Level Concentration (SLC) approach was used to derive Lowest Effect Level (LEL) and Severe Effect Level (SEL) concentrations for nine metals (As, Cr, Cu, Pb, Mo, Ni, Se, U and V) and three radionuclides (226Ra, 210Pb, and 210Po) released to the aquatic environment during the mining and milling of uranium ore. This method was chosen because it allowed for the best use of the considerable historical and current data collected for diverse purposes in the uranium mining and milling regions of Canada (20,606 data points used in the analysis). Except for Cr, all the LELs derived in this study using the weighted method and published sediment quality guidelines (SQGs) were highly reliable (> 85%) in predicting sites unimpacted by uranium mining/milling defined as sites where reductions in the abundance and species richness of benthic invertebrate communities were < 20%. The derived SEL values and corresponding published SQGs (with the exception of Ni) were not reliable predictors (≤60%) of severe impacts on benthic invertebrate communities when severe impacts are defined as a reduction in abundance and species richness ≥40%. Most of the severely impacted sites had sediment contaminant concentrations well below the SEL values. It is concluded that LELs derived using the weighted method can reliably be used in ecological risk assessments as concentrations below which adverse effects on benthic invertebrate communities are not expected. In contrast, it is recommended that SELs not be used in assessments of uranium mining/milling activities as concentrations above which adverse effects are anticipated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号