首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extraordinary geogenic concentrations of cadmium (Cd) have been reported for some Jamaican soils. However, the bioavailability of the metal in these soils remains unknown. Here, the bioavailability of Cd in selected Jamaican soils was investigated through the determination of total and sequentially extractable concentrations in paired soil–plant (yam; Dioscorea sp.) samples (n?=?24), using neutron activation analysis and atomic absorption spectroscopy as primary analytical techniques. Our results indicate that total soil Cd varied widely (2.2–148.7 mg kg?1), and on average, total extractable Cd accounted for ~55 % of the total soil Cd. The exchangeable and oxidizable species averaged 1.5 and 6.4 % of the total Cd, respectively, and, based on Spearman analysis, are the best predictors of yam Cd. There is also good evidence to suggest that variation in the bioavailability of the metal is in part controlled by the geochemical characteristics of the soils analyzed and is best explained by pH, cation exchange capacity (CEC) and organic matter content (% LOI).  相似文献   

2.
We attempted to develop a protocol for fixing the maximum permissible limit of sludge in agricultural lands based on transfer of metals from sludge-amended soils to human food chain. For this purpose, spinach was grown as a test crop on acid and alkaline soils with graded doses of sludge (0, 1.12, 2.24, 4.48, 8.96, 17.9, 35.8, 71.6, 142 and 285 g kg?1 of soil) in a pot experiment. Biomass yield of spinach was increased due to sludge application in both acid and alkaline soils. Among the chemical extractants, EDTA extracted the highest amount of metals from sludge-amended soil followed by diethylenetriaminepentaacetic acid (DTPA) and CaCl2. Elevated levels of Zn, Cu, Fe, Mn, Ni, Cd and Pb in spinach were observed due to sludge application over control. Application of sludge was more effective in increasing metal content in spinach grown on acid soil than alkaline soil. Solubility-free ion activity model as a function of pH, organic carbon and extractable metal was far more effective in predicting metal uptake by spinach grown on sludge-amended soils as compared to that of chemical extractants. Risk in terms of hazard quotient (HQ) for intake of metals through consumption of spinach by humans grown on sludge-treated soils was computed for different metals separately. In a 90-day pot experiment, safe rates of sludge application were worked out as 4.48 and 71.6 g kg?1 for acid and alkaline soils, respectively.  相似文献   

3.
In order to assess the metal pollution status of agricultural lands of Mandi Bahauuddin receiving industrial wastewater, 35 top soil samples were investigated for the determination of selected metal levels, i.e., Fe, Cu, Cd, Cr, Ca, Ni, and Pb by flame atomic absorption spectroscopy under optimum analytical conditions. The distribution of these metals in different operationally defined chemical fractions was also determined by using the sequential extraction technique. The highest mean total concentration was found for Fe while the least one was observed for Pb. All the studied metals were found to be present at levels much enhanced than national and international standards. Moreover, most of the metals were distributed principally in residual fraction with the exception of Ni which was found to be associated mainly with oxidizable fraction. The significant correlations were observed between Fe-Mn oxide-bound and residual fractions and exchangeable and oxidizable fractions for most of the metals. The highest mobility was exhibited by Ni that evidenced its enhanced bioavailability in the soil. The multivariate statistical analyses in terms of principal component analysis (PCA) and cluster analysis (CA) revealed multiple sources for various geochemical fractions of different metals. CA also revealed that the nonresidual fractions of most of the metals were very closely associated while PCA presented a distinctive behavior of Ca in the soil. It was therefore suggested that in order to avoid the metal contamination arising from industrial wastewater, appropriate remediation strategies must be adopted.  相似文献   

4.
Inorganic aluminum ions, [Al(H2O)6]3+, [Al(OH)(H2O)5]2+, and [Al(OH)2(H2O)4]+, are toxic to a number of crops. The aim of this study was to estimate the danger of soil contamination of bioavailable aluminum and heavy metals forms because of alum sludge which was a by-product of water, and wastewater treatment technology using aluminum coagulant is introduced into the soil. Aluminum and selected heavy metal fractionation was carried out in the post-coagulation sludge collected at a water treatment plant (where aluminum was used as a coagulant), fermented sewage sludge at a municipal wastewater treatment plant (which did not apply aluminum coagulant), and soil from water treatment plant as well as the mixtures of sludge and soil. It has been found that post-coagulation sludge used as natural fertilizer is a secondary source of bioavailable aluminum, especially when aluminum coagulants are used during water and wastewater treatment. The evaluation of applicability of the sludge to very weak acidic and acidic agricultural soils was carried out. The authors shall debate the question whether, in this case, the Regulation of EU and Polish Government on sewage sludge should also take the bioavailable aluminum into account and add to the list of the elements whose allowable contents are limited.  相似文献   

5.
Perchlorate originates as a contaminant in the environment from its use in solid rocket fuels and munitions. The current US EPA methods for perchlorate determination via ion chromatography using conductivity detection do not include recommendations for the extraction of perchlorate from soil. This study evaluated and identified appropriate conditions for the extraction of perchlorate from clay loam, loamy sand, and sandy soils. Based on the results of this evaluation, soils should be extracted in a dry, ground (mortar and pestle) state with Milli-Q water in a 1 ratio 1 soil ratio water ratio and diluted no more than 5-fold before analysis. When sandy soils were extracted in this manner, the calculated method detection limit was 3.5 microg kg(-1). The findings of this study have aided in the establishment of a standardized extraction method for perchlorate in soil.  相似文献   

6.
Natural and chemically enhanced phytoextraction potentials of maize (Zea mays L.) and sesbania (Sesbania aculeata Willd.) were explored by growing them on two soils contaminated with heavy metals. The soils, Gujranwala (fine, loamy, mixed, hyperthermic Udic Haplustalf) and Pacca (fine, mixed, hyperthermic Ustollic Camborthid), were amended with varying amounts of ethylenediaminetetraacetic acid (EDTA) chelating agent, at 0, 1.25, 2.5, and 5.0 mM kg?1 soil to enhance metal solubility. The EDTA was applied in two split applications at 46 and 60 days after sowing (DAS). The plants were harvested at 75 DAS. Addition of EDTA significantly increased the lead (Pb) and cadmium (Cd) concentrations in roots and shoots, uptake, bioconcentration factor, and phytoextraction rate over the control. Furthermore, addition of EDTA also significantly increased the soluble fractions of Pb and Cd in soil over the controls; the maximum increase of Pb and Cd was 13.1-fold and 3.1-fold, respectively, with addition of 5.0 mM EDTA kg?1soil. Similarly, the maximum Pb and Cd root and shoot concentrations, translocation, bioconcentration, and phytoextraction efficiency were observed at 5.0 mM EDTA kg?1 soil. The results suggest that both crops can successfully be used for phytoremediation of metal-contaminated calcareous soils.  相似文献   

7.
In this study, soil samples were collected from Edirne, Turkey in both summer and winter seasons and subjected to the modified Community Bureau of Reference (BCR) sequential extraction procedure in order to investigate the chemical partitioning of metals in soils and to predict heavy metals uptake by wheat grains which grown at the same soils. The samples were subjected to a three stage extraction procedure proposed by the BCR. The three phases that were separated out in the following order: (1) carbonate, exchangeable, (2) Fe?CMn oxides, and (3) organic matter. Metal concentrations of soil fractions and grain samples were determined by inductively coupled plasma atomic emission spectroscopy. The wheat samples were prepared to analysis using microwave acid digestion procedure. The pseudo-total concentrations of metals were determined after aqua regia digestion. The analytical accuracy of the method was evaluated by using the Standard Reference Materials (BCR 142R Light Sandy Soil, NIST 2711 Montana Soil, and NIST 2704 Buffalo River Sediment). The sum of the metal contents obtained from the modified BCR sequential extraction procedure and pseudo-total metal contents for soil samples were used to calculate recovery values. In order to evaluate the bioavailability of metals, the relationships between the wheat-metal and soil-extractable metal concentrations were compared.  相似文献   

8.
Lead is a highly toxic element and forms stable compounds with phosphate, which is commonly used to immobilize Pb in soils. However, few studies have monitored the long-term stability of immobilized Pb, which is a critical factor in determining the effectiveness of the in situ stabilization technique. Both soluble and insoluble phosphate compounds were tested for Pb immobilization, and its subsequent mobility and bioavailability in a contaminated soil from a shooting range. Adding tricalcium phosphate, hydroxyapatite, rock phosphate and potassium dihydrogen phosphate reduced the concentration of ammonium-nitrate-extractable Pb in the contaminated soil by 78.6%, 48.3%, 40.5% and 80.1%, respectively. Insoluble phosphate amendments significantly reduced leached Pb concentration from the column while soluble potassium dihydrogen phosphate compound increased P and Pb concentrations in the leachate. Rock phosphate reduced Pb accumulation in earthworms by 21.9% compared to earthworms in the control treatment. The long-term stability of immobilized Pb was evaluated after 2 years' incubation of the contaminated soil with rock phosphate or soluble phosphate compounds. Bioavailable Pb concentration as measured by simple bioavailability extraction test (SBET) showed the long-term stability of immobilized Pb by P amendments. Therefore, Pb immobilization using phosphate compounds is an effective remediation technique for Pb-contaminated soils.  相似文献   

9.
The traditional approach for predicting the risk of hydrophobic organic contaminants (HOCs) in sediment is to relate organic carbon normalized sediment concentrations to body residues or toxic effects to organisms. However, due to the multiple variables controlling bioavailability, this method has limitations. A matrix independent method of predicting bioavailability needs to be used in order to be universally applicable. Both chemical activity (freely dissolved chemical concentrations) measured by solid-phase microextraction (SPME) and bioaccessibility (rapidly desorbing fraction) estimated by Tenax extraction have been developed to predict bioavailability of sediment-associated HOCs. The objectives of this review are to summarize a number of studies using matrix-SPME or Tenax extraction to estimate bioavailability and/or toxicity of different classes of HOCs and evaluate the strengths and weakness of these two techniques. Although the two chemical techniques assess different components of the matrix, estimates obtained from both techniques have been correlated to organism body residues. The advantages of SPME fibers are their applicability for use in situ and their potential usage for a wide array of contaminants by selection of appropriate coatings. Single time-point Tenax extraction, however, is more time- and labor-effective. Tenax extraction also has lower detection limits, making it more applicable for highly toxic contaminants. This review also calls for additional research to evaluate the role of sequestrated contaminants and ingestion of sediment particles by organisms on HOC bioavailability. The use of performance reference compounds to reduce SPME sampling time and linking chemical based bioavailability estimates to toxicological endpoints are essential to expand the applications of these methods.  相似文献   

10.
The technique of diffusive gradients in thin film (DGT) has been shown to be a promising tool to assess zinc (Zn) bioavailability in soils, but there exists considerable debate on its suitability. In this study, Zn bioavailability was systematically investigated in wheat- and maize-grown soils using this technique and seven traditional methods, including soil solution concentration and six widely used single-step extraction methods (HAc, EDTA, NaAc, NH4Ac, CaCl2, and MgCl2). The concentrations of Zn in the shoots and roots of these two plant species increased continuously with increasing additions of Zn to the soils, accompanied by significant decreases in shoot biomass and root biomass at Zn concentrations greater than 400 mg kg?1 for maize and 800 mg kg?1 for wheat. Zinc uptake and accumulation was higher in maize roots than in wheat roots. Both the concentrations of bioavailable Zn measured by DGT (C DGT) and soil solutions (C sol) increased linearly with increasing additions of Zn to the soils, while no strong linear relationships were observed for the extraction methods. Higher concentrations of extractable Zn, lower values of C sol, and larger values of R (i.e., the ratio of C DGT to C sol) were observed in maize-grown soils compared with those of wheat-grown soils, while the values of C DGT between the two plants were similar. These findings demonstrate that there likely exists a stronger resupply of Zn from the soil solid phases in maize-grown soils to satisfy a higher Zn uptake and accumulation in this plant. Linear correlation analyses showed that C DGT had the highest correlation coefficients with plant Zn concentrations compared with other traditional methods, implying that the DGT technique is more sensitive and robust in reflecting Zn bioavailability in soils to plants.  相似文献   

11.
Aquatic pollution pose a serious challenge to the scientific community worldwide, since lakes or reservoirs find multifarious use and most often their water is used for drinking, bathing, irrigation, and aquaculture. Nine metals and several physicochemical parameters, from four sampling sites in a tropical lake receiving the discharges from a thermal power plant, a coal mine, and a chlor-alkali industry, were studied from 2004 to 2005. Pertaining to metal pollution, the site most polluted with heavy metals was Belwadah, i.e., waters and sediments had the highest concentration of all the metals examined. The reference site was characterized by the presence of low concentrations of metals in waters and sediments. Following the water quality monitoring, 2-month field phytoremediation experiments were conducted using large enclosures at the discharge point of different polluted sites of the lake. During field phytoremediation experiments using aquatic macrophytes, marked percentage reduction in metals concentrations were recorded. The percentage decrease for different metals was in the range of 25% to 67.90% at Belwadah (with Eichhornia crassipes and Lemna minor), 25% to 77.14% at Dongia nala (with E. crassipes, L. minor and Azolla pinnata), and 25% to 71.42% at Ash pond site of G.B. Pant Sagar (with L. minor and A. pinnata). Preliminary studies of polluted sites are useful for improved microcosm design and for the systematic extrapolation of information from experimental ecosystems to natural ecosystems.  相似文献   

12.
Fractionation and elemental association of Zn, Cd, and Pb in soils near Zn mining areas were studied using a continuous-flow sequential extraction approach. The recently developed sequential extraction procedure not only gave fractional distribution data for evaluation of the mobility or potential environmental impact of the metals, but also the extraction profiles (extractograms) which were used for study of elemental association. In addition, the elemental atomic ratio plot extractogram can be used to demonstrate the degree of anthropogenic contamination. Seventy-nine soil samples were collected in the vicinity of a Zn mine and were fractionated into 4 phases i.e. exchangeable (F1), acid soluble (F2), reducible (F3) and oxidizable (F4) phases. Most samples were contaminated with Zn, Cd and Pb. The reducible phase is the most abundant fraction for Zn and Pb (>50%) while Cd is concentrated in the first 3 extraction steps. The distribution patterns of Cd were obviously affected by soil pH. 55% of Cd appears predominantly in the F1 fraction for acidic soils while in neutral and alkaline soils, it was mostly (70%) found in the F2 + F3 fractions. The extractograms obtained from the continuous-flow extraction system revealed close association between Zn, Cd, Pb and Fe in the acid soluble phase, Cd-Pb and Zn-Fe in the reducible phase for contaminated soils. A correlation study of the 3 metals using a correlation coefficient was also performed to compare the results with the elemental association revealed by the extractograms. Atomic ratio plot extractograms of Zn/Fe, Cd/Fe and Pb/Fe in the reducible phase, where contaminated metals are predominant, can be used to evaluate the degree of anthropogenic contamination. From the elemental atomic ratio plot, it is obvious that the contaminants Cd and Pb are mostly adsorbed on the surface of Fe oxides. Zn, which is present in an approximately 1 ratio 1 ratio with Fe in contaminated soils, does not show a similar trend to that found for Cd and Pb.  相似文献   

13.
Biodegradation has been identified as a major loss process for organic contaminants in soils and, as a result, microbial strategies have been developed for the remediation of contaminated land. Prediction of the biodegradable fraction would be important for determining bioremediation end-points in the clean-up of contaminated land. The aim of this study was to investigate the ability of a cyclodextrin extraction to predict the extent to which polycyclic aromatic hydrocarbons (PAHs) would be degraded microbiologically in field contaminated soils; further testing the robustness and reproducibility of this extraction in chemically complex systems. Dichloromethane and hydroxypropyl-beta-cyclodextrin (HPCD) extractable fractions were measured together with the PAH biodegradable fraction in each of the six field contaminated soils. The amounts of PAHs degraded by the catabolic activity of the indigenous microflora in each of the soils were correlated with HPCD-extractable PAH concentrations. The regressions showed that the amounts of lower molecular weight PAHs extracted by the HPCD were not significantly (P > 0.05) different to the amounts that were degraded. However, higher molecular weight PAHs that were extracted by HPCD did differ significantly (P < 0.05) from the amounts degraded. Although the HPCD extraction did overestimate the microbially degradable fraction of the higher molecular weight PAHs, overall the correlations between the HPCD extractable fraction and the microbially degradable fraction were very close, with mean values of the slope of line for the six soils equalling 1. This study further describes the robust and reproducible nature of the aqueous-based soil extraction technique reliably measuring the extent to which PAHs will be microbially degraded in soil.  相似文献   

14.
Assessment of trace element contents in soils is required in Germany (and other countries) before sewage sludge application on arable soils. The reliability of measured element contents is affected by measurement uncertainty, which consists of components due to (1) sampling, (2) laboratory repeatability (intra-lab) and (3) reproducibility (between-lab). A complete characterization of average trace element contents in field soils should encompass the uncertainty of all these components. The objectives of this study were to elucidate the magnitude and relative proportions of uncertainty components for the metals As, B, Cd, Co, Cr, Mo, Ni, Pb, Tl and Zn in three arable fields of different field-scale heterogeneity, based on a collaborative trial (CT) (standardized procedure) and two sampling proficiency tests (PT) (individual sampling procedure). To obtain reference values and estimates of field-scale heterogeneity, a detailed reference sampling was conducted. Components of uncertainty (sampling person, sampling repetition, laboratory) were estimated by variance component analysis, whereas reproducibility uncertainty was estimated using results from numerous laboratory proficiency tests. Sampling uncertainty in general increased with field-scale heterogeneity; however, total uncertainty was mostly dominated by (total) laboratory uncertainty. Reproducibility analytical uncertainty was on average by a factor of about 3 higher than repeatability uncertainty. Therefore, analysis within one single laboratory and, for heterogeneous fields, a reduction of sampling uncertainty (for instance by larger numbers of sample increments and/or a denser coverage of the field area) would be most effective to reduce total uncertainty. On the other hand, when only intra-laboratory analytical uncertainty was considered, total sampling uncertainty on average prevailed over analytical uncertainty by a factor of 2. Both sampling and laboratory repeatability uncertainty were highly variable depending not only on the analyte but also on the field and the sampling trial. Comparison of PT with CT sampling suggests that standardization of sampling protocols reduces sampling uncertainty, especially for fields of low heterogeneity.  相似文献   

15.
Analytical methods for the determination of trace beryllium in soils are needed so that anthropogenic sources of this element can be distinguished from native (background) levels of beryllium. In this work, a collaborative interlaboratory evaluation of a new extraction and fluorescence-based procedure for determining beryllium in soil samples was carried out to fulfil method validation requirements for ASTM International voluntary consensus standard test methods. A Canadian reference material, CCRMP Till-1 soil, with a background beryllium concentration of 2.4 microg g(-1), was selected for study. This certified reference material (CRM) was spiked and homogenized with varying levels of beryllium oxide in order to give batches of material with beryllium concentrations of 4.36 +/- 0.69, 11.5 +/- 0.7, 124 +/- 7 and 246 +/- 16 microg g(-1) (+/- values are standard deviations). In the interlaboratory study (ILS), which was carried out in accordance with an applicable ASTM International standard practice (ASTM E691), samples of these spiked soils were subjected to extraction in dilute ammonium bifluoride at approximately 90 degrees C for 40 h. Fluorescence measurement of the extracted beryllium was carried out via detection using the high quantum yield fluorophore, hydroxybenzoquinoline sulfonate (HBQS). Interlaboratory precision estimates from six participating laboratories ranged from 0.048 to 0.103 (relative standard deviations) for the five different beryllium concentrations. Pooled bias estimates resulting from this ILS were between -0.049 and 0.177 for the various beryllium levels. These figures of merit support promulgation of the analytical procedure as an ASTM International standard test method.  相似文献   

16.
An analytical method to determine a selection of 27 frequently prescribed and consumed pharmaceuticals in biosolid enriched soils and digested sludges is presented. Using a combination of pressurized liquid extraction, solid phase extraction and liquid chromatography with tandem mass spectrometry, it was possible to detect all analytes in each sample type at the low-sub ng g(-1) level. Solid phase extraction efficiencies were compared for 6 different sorbent types and it was found that Waters Oasis HLB cartridges offered enhanced selectivities with 20 analytes showing final method recoveries > or =60% in both soils and digested sludges. The method was validated for linearity, range, precision and limits of detection in both sample matrices. All analytes were then determined in sludge enriched soils as well as the precursor thermally dried sludge fertilizer produced from a primary wastewater treatment plant. Levels of the antibacterial agent triclosan were found to exceed 20 microg g(-1) in digested sludge and 5 microg g(-1) in thermally dried sludge cake. Significant traces of carbamazepine and warfarin were also detected in the above samples.  相似文献   

17.
18.
Measurements of the methane flux and methane concentration profiles in soil air are presented. The flux of methane from the soil is calculated by two methods: a) Direct by placing a static open chamber at the soil surface. b) Indirect, using the 222Rn concentrations profile and the 222Rn flux in the soil surface in parallel with the methane concentration (222Rn calibrated fluxes). The methane flux has been determined in two kinds of soils (sandy and loamy) in the surroundings of Málaga (SPAIN). The directly measured methane fluxes at all investigated sites is higher than methane fluxes derived from Rn calibrated fluxes. Atmospheric methane is consumed by soils, mean direct flux to the atmosphere were - 0.33 g m–2yr-1. The direct methane flux is the same within the measuring error in sandy and loamy soils. The influence of the soil parameters on the methane flux indicates that microbial decomposition of methane is primarily controlled by the transport of methane.  相似文献   

19.
This paper assesses the uptake of persistent organic pollutants (POP's) into plants. In particular, uptake of alpha-endosulfan, beta-endosulfan and endosulfan sulfate from lettuce. The lettuce plants were grown on compost that had previously been contaminated at 10 and 50 microg g(-1) per POP. The soil was slurry spiked by adding the appropriate amount of POP in acetone in an approximate ratio of 1 ratio 2, w/v soil ratio solvent. The solvent was left to evaporate at ambient temperature for 24 hours. Lettuce plants were grown under artificial daylight for 12 hours a day. The influence of soil ageing on the recovery of POP's from spiked soil samples was also assessed. The average recovery of endosulfan compounds from slurry spiked soil (10, 20 and 40 microg g(-1)) was consistent (92.9 +/- 4.4% for n= 9). However, ageing of endosulfan compounds on the slurry spiked soil resulted in lower recoveries (average losses were 12.5% after 14 days ageing of slurry spiked soil). The uptake of POP's was assessed by measuring the amount of endosulfan compounds in roots and leaves from lettuce plants after 10, 20 and 33 days. In addition, control plants grown in uncontaminated soil were monitored and analysed. It was found that endosulfan compounds were present in the roots of all lettuce plants irrespective of soil spike level or age of plant. In the 33 day lettuce plants where the soil was spiked at the highest level (50 microg g(-1)) endosulfan compounds were determined in the leaves. The root to leaf ratio was found to be 3.1 for alpha-endosulfan, 46.0 for beta-endosulfan, and 24.3 for endosulfan sulfate. Spiked lettuce samples were subjected to in vitro gastrointestinal extraction to assess the bioavailability of endosulfan compounds. No detectable endosulfan compounds were determined in the gastric extracts while small quantities (range 0.06-0.12 microg g(-1)) were found in the intestinal extraction. All samples (soil and lettuce) were extracted using pressurised fluid extraction and analysed using gas chromatography with mass selective detection.  相似文献   

20.
The simultaneous extraction of bromide, chloride, fluoride and sulfate was studied in soils, waste- and building materials. Acid, neutral and alkaline extractants were used; 0.01 mol l(-1) H(3)PO(4), milliQ-water and 0.01 mol l(-1) NaOH, respectively. The extracts were analysed by ion chromatography and ion selective electrode. Extracted concentrations were compared with the amount obtained by an alkaline smelt, as an approximation of the total extractable content. The results indicate that there is a significant difference in extraction behaviour between waste- and building materials and soils. Bromide and chloride were in general completely extracted from the former solid materials, but less than 10% and 50%, respectively, from soils. Fluoride is strongly bound in all investigated samples; less than 10% of the total content was extracted with any of the three extractants. The fraction of extracted sulfate varied between 4 and 87% of the total content, and was in general larger in waste- and building materials than in soils. Differences in extracted concentration between the 3 extractants occurred mainly for fluoride and sulfate. Extracted bromide was similar with all three extractants and extracted chloride showed differences for the various soil samples only. Increasing the NaOH concentration up to 1 mol l(-1) resulted mainly in an increase of extracted amount of fluoride and for soils also in extracted amounts of bromide and sulfate. Although, the results show that the composition of the solid material strongly influences the final pH of the extract and the extracted amount of investigated anions, application of Milli-Q water as an extractant might be a very fruitful option within the development of the Dutch Building Materials Decree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号