首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study was conducted to evaluate the effect of long-term irrigation of sewage contaminated with heavy metals like Cd, Cr, Cu and Pb on microbial and biochemical parameters of soils of West Bengal, India. The microbial parameters included microbial biomass carbon (MBC), microbial metabolic quotient; the biochemical parameters included fluorescein diacetate hydrolyzing activity, beta-glucosidase, urease, phosphatase, and aryl sulphatase activities. A sequential extraction technique was used to quantify water soluble, exchangeable, carbonate bound, Fe/Mn-oxide bound, organically bound, and residual metal fractions. Metal concentrations in the two most labile fractions (i.e., water soluble and exchangeable fractions) were generally low. Total metal concentrations at each site seemed to be associated with soil amorphous Fe and Al minerals. The MBC and the enzymes studied were significantly and negatively correlated with water soluble and exchangeable metals but not significantly correlated with other forms, indicating that water soluble and exchangeable forms exerted a strong inhibitory effect on the soil microbial and biochemical parameters. It was concluded that irrigating soils with metal contaminated sewage seemed to damage soil quality in the long term.  相似文献   

2.
Knowledge of trace element concentrations and mobility is important in the ecotoxicological assessment of contaminated soils. We analysed soil pore water under field conditions to provide new insights into the mobility of residual contaminants in the surface 50cm of a highly contaminated woodland soil. Cadmium and Zn were highly mobile in the acidic soil, concentrations increasing with depth in soil pore water, showing considerable downward mobility. High levels of surface organic matter restricted the solubility of Cu, Pb and Sb, with highest concentrations being found close to the surface. Dissolved organic carbon in pore water had a strong influence on mobility of Cu, Zn, Pb and Sb. Elevated As had moved from the organic surface horizons but was largely immobilised in deeper layers and associated with Fe and Al oxides. The measured differential mobility of pollutants in the present study is highly relevant to protection of groundwater and other receptors.  相似文献   

3.
Relation of enhanced Pb solubility to Fe partitioning in soils   总被引:2,自引:0,他引:2  
It is well documented that Pb solubility may be related to Fe chemistry in soils and enhanced Pb solubility may occur under certain reducing conditions; however, quantification of such relationships is unavailable. Based on metal classification, Pb (II) and Fe (II) are similar in some chemical characteristics. Thus, competition between Pb and Fe for ligands in soils may be important in determining Pb solubility. In this paper, Pb solubility was examined in a sandy soil after spiking with Pb and incubating for 40 days under water-flooded or non-water-flooded conditions. Solution chemistry in soil columns was adjusted using different concentrations of NaCl, CaCl(2) and deionized water of varying pH before incubation. The results showed that Pb solubility in the soil was not correlated well with pH, dissolved organic C or aqueous Fe concentrations. However, an index of Fe partition behavior using the ratio of aqueous Fe to sorbed Fe was related to Pb solubility. Enhanced Pb solubility occurred only when the index was < approximately 2 kg l(-1). The index can be a simple measure of Fe's ability to compete with Pb for ligands in solution. The ability of Fe to compete with Pb decreases as the index decreases and as the ratio approached its minimum, substantial increases in Pb solubility will be expected. In general, the index was not sensitive to changes in solution chemistry. A similar trend was observed using one data set published in the literature.  相似文献   

4.
To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota.  相似文献   

5.
Clemente R  Bernal MP 《Chemosphere》2006,64(8):1264-1273
The effects of humic acids (HAs) extracted from two different organic materials on the distribution of heavy metals and on organic-C mineralisation in two contaminated soils were studied in incubation experiments. Humic acids isolated from a mature compost (HAC) and a commercial Spaghnum peat (HAP) were added to an acid soil (pH 3.4; 966 mg kg(-1) Zn and 9,229 mg kg(-1) Pb as main contaminants) and to a calcareous soil (pH 7.7; 2,602 mg kg(-1) Zn and 1,572 mg kg(-1) Pb as main contaminants) at a rate of 1.1g organic-C added per 100g soil. The mineralisation of organic-C was determined by the CO(2) released during the experiment. After 2, 8 and 28 weeks of incubation the heavy metals of the soils were fractionated by a sequential extraction procedure. After 28 weeks of incubation, the mineralisation of the organic-C added was rather low in the soils studied (<8% of TOC in the acid soil; <10% of TOC in the calcareous soil). Both humic acids caused significant Zn and Pb immobilisation (increased proportion of the residual fraction, extractable only with aqua regia) in the acid soil, while Cu and Fe were slightly mobilised (increased concentrations extractable with 0.1M CaCl(2) and/or 0.5M NaOH). In the calcareous soil there were lesser effects, and at the end of the experiment only the fraction mainly related to carbonates (EDTA-extractable) was significantly increased for Zn and decreased for Fe in the humic acids treated samples. However, HA-metal interactions provoked the flocculation of these substances, as suggested by the association of the humic acids with the sand fraction of the soil. These results indicate that humic acid-rich materials can be useful amendments for soil remediation involving stabilisation, although a concomitant slight mobilisation of Zn, Pb and Cu can be provoked in acid soils.  相似文献   

6.
Use of sequential extraction to assess metal partitioning in soils   总被引:12,自引:0,他引:12  
The state of heavy metal pollution and the mobility of Cd, Cu, Ni, Cr, Pb and Zn were studied in three texturally different agricultural soil profiles near a Cu-Ni smelter in Harjavalta, Finland. The pseudo-total concentrations were determined by an aqua regia procedure. Metals were also determined after division into four fractions by sequential extraction with (1) acetic acid (exchangeable and specifically adsorbed metals), (2) a reducing agent (bound to Fe/Mn hydroxides), (3) an oxidizing agent (bound to soil organic matter) and (4) aqua regia (bound to mineral structures). Fallout from the smelter has increased the concentrations of Cd, Cu and Ni in the topsoil, where 75-90% of Cd, 49-72% of Cu and 22-52% of Ni occurred in the first two fractions. Slight Pb and Zn pollution was evident as well. High proportions of mobile Cd, Cu and Ni also deeper in the sandy soil, closest to the smelter, indicated some downward movement of metals. The hydroxide-bound fraction of Pb dominated in almost all soils and horizons, while Ni, Cr and Zn mostly occurred in mineral structures. Aqua regia extraction is usefully supplemented with sequential extraction, particularly in less polluted soils and in soils that exhibit substantial textural differences within the profiles.  相似文献   

7.
Application of greenwaste compost to brownfield land is increasingly common in soil and landscape restoration. Previous studies have demonstrated both beneficial and detrimental effects of this material on trace element mobility. A pot experiment with homogenised soil/compost investigated distribution and mobility of trace elements, two years after application of greenwaste compost mulch to shallow soils overlying a former alkali-works contaminated with Pb, Cu and As (∼900, 200 and 500 mg kg−1, respectively). Compost mulch increased organic carbon and Fe in soil pore water, which in turn increased As and Sb mobilization; this enhanced uptake by lettuce and sunflower. A very small proportion of the total soil trace element pool was in readily-exchangeable form (<0.01% As, <0.001% other trace elements), but the effect of compost on behaviour of metals was variable and ambiguous. It is concluded that greenwaste compost should be applied with caution to multi-element contaminated soils.  相似文献   

8.
Zhang MK  Xu JM 《Chemosphere》2003,50(6):733-738
Solute transport of elements in soils depends on the soil structural and hydraulic properties, and it is controlled by sorption and diffusion, which both limit the mobility and distribution of elements in soils. This study was conducted to compare lead (Pb), copper (Cu) and zinc (Zn) concentrations between ped exteriors and interiors of some contaminated soils. The results show that the differences of the heavy metals between exteriors and interiors decreased in the order clayey soil, clayey loam soil, loam soil. For same soils, the differences decreased from Pb to Cu to Zn. The differences in readily extractable concentrations of the three metals between ped exteriors and interiors were much larger than the differences in their total metals, this may indicate that extractable metals were more recently deposited. The higher Pb and Cu concentrations in the ped exteriors than interiors may additionally be explained by anthropogenic input, movement and downward through preferential flow.  相似文献   

9.
Phosphorus-bearing materials have been widely applied in immobilization of heavy metals in contaminated soils. However, the study on the stability of the initially P-induced immobilized metals in the contaminated soils is far limited. This work was conducted to evaluate the mobility of Pb, Cu, and Zn in two contrasting contaminated soils amended with phosphate rock tailing (PR) and triple superphosphate fertilizer (TSP), and their combination (P?+?T) under simulated landfill and rainfall conditions. The main objective was to determine the stability of heavy metals in the P-treated contaminated soils in response to the changing environment conditions. The soils were amended with the P-bearing materials at a 2:1 molar ratio of P to metals. After equilibrated for 2 weeks, the soils were evaluated with the leaching procedures. The batch-based toxicity characteristic leaching procedure (TCLP) was conducted to determine the leachability of heavy metals from both untreated and P-treated soils under simulated landfill condition. The column-based synthetic precipitation leaching procedure (SPLP) were undertaken to measure the downward migration of metals from untreated and P-treated soils under simulated rainfall condition. Leachability of Pb, Cu, and Zn in the TCLP extract followed the order of Zn?>?Cu?>?Pb in both soils, with the organic-C- and clay-poor soil showing higher metal leachability than the organic-C- and clay-rich soil. All three P treatments reduced leachability of Pb, Cu, and Zn by up to 89.2, 24.4, and 34.3 %, respectively, compared to the untreated soil, and TSP revealed more effectiveness followed by P?+?T and then PR. The column experiments showed that Zn had the highest downward migration upon 10 pore volumes of SPLP leaching, followed by Pb and then Cu in both soils. However, migration of Pb and Zn to subsoil and leachate were inhibited in the P-treated soil, while Cu in the leachate was enhanced by P treatment in the organic-C-rich soil. More than 73 % P in the amendments remained in the upper 0–10 cm soil layers. However, leaching of P from soluble TSP was significant with 24.3 % of P migrated in the leachate in the organic-C-poor soil. The mobility of heavy metals in the P-treated soil varies with nature of P sources, heavy metals, and soils. Caution should be taken on the multi-metal stabilization since the P amendment may immobilize some metals while promoting others’ mobility. Also, attention should be paid to the high leaching of P from soluble P amendments since it may pose the risk of excessive P-induced eutrophication.  相似文献   

10.
Ettler V  Vanek A  Mihaljevic M  Bezdicka P 《Chemosphere》2005,58(10):1449-1459
The concentration trends and chemical fractionation of Pb was studied in eight tilled and forest soil profiles heavily polluted by Pb metallurgy in the Pribram district, Czech Republic. The highest Pb concentrations were observed in surface and subsurface horizons attaining 35,300 mg kg-1 in forest soils and 1233 mg kg-1 in tilled soils. Total Pb concentrations were one order of magnitude lower in tilled soil due to intensive ploughing and annual crop off-take. The results of the Tessier sequential extraction procedure showed the preferential binding of Pb in forest soils to operationally-defined exchangeable positions and soil organic matter (oxidisable fraction). The Pb exchangeable fraction is thought to correspond to weak electrostatic binding on the functional groups of organic matter. In tilled soil, Pb is predominantly bound to operationally-defined Fe and Mn oxides (reducible fraction). A comparison with the background Pb concentration values showed a strong contamination even in mineral horizons IIC and confirmed a strong vertical mobility of Pb within the soil profiles. The calculated mobility factors (MF) showed that up to 72% of Pb is mobile and bioavailable in forest soils. In contrast, the bioavailability of Pb in tilled soils was significantly lower as the MF accounted for up to 30%. In the most polluted horizon of forest soil profile, the X-ray powder diffraction (XRPD) analysis confirmed the presence of anglesite (PbSO4), derived likely from the smelter emissions.  相似文献   

11.
The distribution and mobility of heavy metals in the soils of two contaminated sites in Piedmont (Italy) was investigated, evaluating the horizontal and vertical profiles of 15 metals, namely Al, Cd, Cu, Cr, Fe. La, Mn, Ni, Pb, Sc, Ti, V, Y, Zn and Zr. The concentrations in the most polluted areas of the sites were higher than the acceptable limits reported in Italian and Dutch legislations for soil reclamation. Chemometric elaboration of the results by pattern recognition techniques allowed us to identify groups of samples with similar characteristics and to find correlations among the variables. The pollutant mobility was studied by extraction with water, dilute acetic acid and EDTA and by applying Tessier's procedure. The fraction of mobile species, which potentially is the most harmful for the environment, was found to be higher than the one normally present in unpolluted soils, where heavy metals are, to a higher extent, strongly bound to the matrix.  相似文献   

12.
Influence of organic acids on the transport of heavy metals in soil   总被引:9,自引:0,他引:9  
Schwab AP  Zhu DS  Banks MK 《Chemosphere》2008,72(6):986-994
Vegetation historically has been an important part of reclamation of sites contaminated with metals, whether the objective was to stabilize the metals or remove them through phytoremediation. Understanding the impact of organic acids typically found in the rhizosphere would contribute to our knowledge of the impact of plants in contaminated environments. Heavy metal transport in soils in the presence of simple organic acids was assessed in two laboratory studies. In the first study, thin layer chromatography (TLC) was used to investigate Zn, Cd, and Pb movement in a sandy loam soil as affected by soluble organic acids in the rhizosphere. Many of these organic acids enhanced heavy metal movement. For organic acid concentrations of 10mM, citric acid had the highest R(f) values (frontal distance moved by metal divided by frontal distance moved by the solution) for Zn, followed by malic, tartaric, fumaric, and glutaric acids. Citric acid also has the highest R(f) value for Cd movement followed by fumaric acid. Citric acid and tartaric acid enhanced Pb transport to the greatest degree. For most organic acids studied, R(f) values followed the trend Zn>Cd>Pb. Citric acid (10mM) increased R(f) values of Zn and Cd by approximately three times relative to water. In the second study, small soil columns were used to test the impact of simple organic acids on Zn, Cd, and Pb leaching in soils. Citric acid greatly enhanced Zn and Cd movement in soils but had little influence on Pb movement. The Zn and Cd in the effluents from columns treated with 10mM citric acid attained influent metal concentrations by the end of the experiment, but effluent metal concentrations were much less than influent concentrations for citrate <10mM. Exchangeable Zn in the soil columns was about 40% of total Zn, and approximately 80% total Cd was in exchangeable form. Nearly all of the Pb retained by the soil columns was exchangeable.  相似文献   

13.
Solubility of lead, zinc and copper added to mineral soils   总被引:25,自引:0,他引:25  
Elevated levels of heavy metals in soils are a result of industrial activities, atmospheric deposition, and the land application of sewage sludges and industrial by-products. Their persistence in the soil environment has created interest in the possible changes in solubility. In this study, total dissolved concentrations of Pb, Zn, and Cu were monitored in seven metal-amended soils (a calcareous and six acid mineral soils). Single metal solutions were added to soils and equilibrated (aged) for 40 days. During the 40 days the soil was allowed to air-dry and was rewetted in cycles of about 5 days. At the end of this reaction period, metal solubility was measured (by atomic absorption spectrometry and direct current plasma spectrometry) at the initial soil pH and at decreased pH values which were induced by addition of small aliquots of acid. As expected, solubility of added Pb, Zn, and Cu increased with a decrease in pH. Furthermore, the results showed that the solubility relationship with pH was similar in all non-calcareous soils. This suggests that metal solubility may be controlled by similar soil components, presumably involving soil characteristics such as pH, organic matter content, and soil mineralogy. For each metal, an approximate pH value was found at which solubility deviated from the solubility of metals when they occur in soils at typical (natural) values. This pH was about (pH+/-0.2): 5.2 for Pb, 6.2 for Zn, and 5.5 for Cu. Thus, pH values below these thresholds may enhance metal mobility, biological availability and toxicity in soils. Metals dissolved at higher pH in the calcareous soil (18.8 g kg(-1) inorganic carbon, initial pH 8.2). In a calcareous soil, a significant fraction of these metals react with carbonates, and decreased pH results in much higher metal dissolution. Yet, metal solubility in soils is not determined by the formation and dissolution of single metal compounds.  相似文献   

14.
Lai HY  Chen ZS 《Chemosphere》2005,60(8):1062-1071
Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from metal-contaminated soils. The soils used in this study were artificially added with different metals including (1) CK: original soil, (2) Cd-treated soil: 10 mg Cd kg(-1), (3) Zn-treated soil: 100 mg Zn kg(-1), (4) Pb-treated soil: 1000 mg Pb kg(-1), (5) Cd-Zn-treated soil: 10 mg Cd kg(-1) and 100 mg Zn kg(-1), (6) Cd-Pb-treated soil: 10 mg Cd kg(-1) and 1000 mg Pb kg(-1), (7) Zn-Pb-treated soil: 100 mg Zn kg(-1) and 1000 mg Pb kg(-1), and (8) Cd-Zn-Pb-treated soil: 10 mg Cd kg(-1), 100 mg Zn kg(-1), and 1000 mg Pb kg(-1). Three concentrations of 2Na-EDTA solutions (0 (control), 2, and 5 mmol kg(-1) soil) were added to the different metals-treated soils to study the influence of applied EDTA on single and combined metals-contaminated soils phytoextraction using rainbow pink. The results showed that the Cd, Zn, Pb, Fe, or Mn concentrations in different metals-treated soil solutions significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). The metal concentrations in different metals-treated soils extracted by deionized water also significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). Because of the high extraction capacity of both 0.005 M DTPA (pH 5.3) and 0.05 M EDTA (pH 7.0), applying EDTA did not significantly increase the Cd, Zn, or Pb concentration in both extracts for most of the treatments. Applying EDTA solutions can significantly increase the Cd and Pb concentrations in the shoots of rainbow pink (p<0.05). However, this was not statistically significant for Zn because of the low Zn concentration added into the contaminated soils. The results from this study indicate that applying 5 mmol EDTA kg(-1) can significantly increase the Cd, Zn, or Pb concentrations both in the soil solution or extracted using deionized water in single or combined metals-contaminated soils, thus increasing the accumulated metals concentrations in rainbow pink shoots. The proposed method worked especially well for Pb (p<0.05). The application of 2 mmol EDTA kg(-1) might too low to enhance the phytoextraction effect when used in silty clay soils.  相似文献   

15.
In situ fixation of metals in soils using bauxite residue: chemical assessment   总被引:24,自引:0,他引:24  
Contamination of soils with heavy metals and metalloids is a widespread problem all over the world. Low cost, non-invasive, in situ technologies are required for remediation processes. We investigated the efficiency of a bauxite residue (red mud) to fix heavy metals in two soils, one contaminated by industrial activities (French soil), and one by sewage sludge applications (UK soil). This Fe-oxide rich material was compared with lime, or beringite, a modified aluminosilicate that has been used for in situ fixation processes. Four different crop species were successively grown in pots. Metal concentrations in the soil pore waters were analyzed during the growing cycles. At the end of the experiment fluxes of heavy metals were measured using a diffusive gradient in thin film technique (DGT). Furthermore, a sequential extraction procedure (SEP) and an acidification test were performed to investigate the mechanisms of metal fixation by different soil amendments. In both soils, the concentrations of metals in the soil pore water and metal fluxes were greatly decreased by the amendments. An application of 2% red mud performed as well as beringite applied at 5%. Increasing soil pH was a common mechanism of action for all the amendments. However, the red mud amendment shifted metals from the exchangeable to the Fe-oxide fraction, and decreased acid extractability of metals. The results suggest that specific chemisorption, and possibly metal diffusion into oxide particles could also be the mechanisms responsible for the fixation of metals by red mud.  相似文献   

16.
In this study I evaluated the effects of complexing agents on the solubility of heavy metals in an incubation experiment up to 56 days when complexing agents were applied as Fe-chelates (Fe-EDDS(S,S), Fe-EDDS(mix), Fe-EDTA and Fe-EDDHA) on calcareous soils at a level sufficient to correct Fe chlorosis (0.1 mmol kg−1). Of these ligands, EDDHA was the most efficient in keeping Fe in water-soluble form, and EDDS increased the solubility of Cu and Zn most, and only EDTA increased the solubility of Cd and Pb. EDTA increased the solubility of Ni steadily during the incubation period, equalling about 5-8% of the added EDTA concentration. [S,S]-EDDS was biodegraded within 56 days, whereas EDDS(mix) was less biodegradable. Ni-chelates were the most recalcitrant against biodegradation. The study shows that even a moderate input of chelates to soil increases the solubility of toxic heavy metals and their risk of leaching.  相似文献   

17.
The application of poultry litter to metal-contaminated soils may influence metal leaching and distribution of metals among soil fractions. Soil columns (one uncontaminated control, one metal-amended, and two metal-contaminated soils) were leached with H2O, CaCl2, EDTA, and poultry litter extract (PLE) solutions. After leaching, the soil samples in the columns were sequentially extracted for water soluble (WS), exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO) and residual (RES) fractions. The OM fraction showed high retention for Zn from the PLE. The EDTA redistributed Zn, Cd and Pb from the EXC, OM and MNO fractions to the WS fraction. The PLE usually solubilized more Zn and Cd from the EXC fraction than CaCl2. Neither PLE nor CaCl2 mobilized Pb. The application of poultry litter on metal-contaminated soils might cause Zn and Cd redistribution from the EXC to the WS fraction and enhance metal mobility.  相似文献   

18.
The effectiveness of phosphate treatment for Cd, Cu, Pb, and Zn immobilization in mine waste soils was examined using batch conditions. Application of synthetic hydroxyapatite (HA) and natural phosphate rock (FAP) effectively reduced the heavy metal water solubility generally by about 84-99%. The results showed that HA was slightly superior to FAP for immobilizing heavy metals. The possible mechanisms for heavy metal immobilization in the soil involve both surface complexation of the metal ions on the phosphate grains and partial dissolution of the phosphate amendments and precipitation of heavy metal-containing phosphates. HA and FAP could significantly reduce Cd, Cu, Pb, and Zn availability in terms of water solubility in contaminated soils while minimizing soil acidification and potential risk of eutrophication associated with the application of highly soluble phosphate sources.  相似文献   

19.
This study was carried out to assess the amounts of (i) total Pb in soil, (ii) inorganic Pb species: exchangeable (EXCH), carbonate (CARB), easily reducible (EASR), moderately reducible (MODR), organic matter and sulfides (ORGS), and residual (RESD) bound Pb, and (iii) total organo-lead as alkyllead, in alluvial and lacustrine soils of the Nile delta, Egypt. Wide ranges of soil Pb were found in the alluvial (18.2-1850 microg g(-1)) and the lacustrine (39-1985 microg g(-1)) soils. The topsoil was highly enriched with Pb relative to the subsurface soils, especially in highly contaminated soils. There was no significant relationship between soil type and Pb content. Amounts of soil Pb greater than the background level (14 microg g(-1)) are due to Pb deposited from various anthropogenic activities. The partitioning of soil Pb into different species varied according to the intensity of contamination. It followed the sequence: RESD > ORGS > CARB > MODR > EASR in the slightly contaminated alluvial as well as lacustrine soils. In the highly contaminated soils, it followed the sequence: ORGS > MODR > CARB > EASR > RESD in the alluvial soils, and the sequence: ORGS > CARB > MODR > EASR > RESD in the lacustrine soils. There is high binding capacity of organic matter and sulfides to Pb, especially in the highly contaminated soils. The concentrations of total alkyllead in soils varied markedly and were related to both intensity of contamination and depth in the soil. The subsurface soil (15-30 cm) was highly enriched by alkyllead (means 224 and 353 ng g(-1) in the alluvial and lacustrine soils, respectively) relative to the surface and deeper soils. The proportion of total alkyllead as a percentage of total Pb in the soil was generally very low. It did not exceed 1.6% in the slightly contaminated soils, and 0.6% in the highly contaminated ones.  相似文献   

20.
Halim M  Conte P  Piccolo A 《Chemosphere》2003,52(1):265-275
Effective phytoremediation of soils contaminated by heavy metals depends on their availability to plant uptake that, in turn, may be influenced by either the existing soil humus or an exogenous humic matter. We amended an organic and a mineral soil with an exogenous humic acid (HA) in order to enhance the soil organic carbon (SOC) content by 1% and 2%. The treated soils were further enriched with heavy metals (Cu, Pb, Cd, Zn, Ni) to a concentration of 0, 10, 20, and 40 microg/g for each metal and allowed to age at room temperature for 1 and 2 months. After each period, they were extracted for readily soluble and exchangeable (2.5% acetic acid), plant-available (DTPA, Diethylentriaminepentaacetic acid), and occluded (1 N HNO(3)) metal species. Addition of HA generally reduced the extractability of the soluble and exchangeable forms of metals. This effect was directly related to the amount of added HA and increased with ageing time. Conversely, the potentially plant-available metals extracted with DTPA were generally larger with increasing additions of exogenous HA solutions. This was attributed to the formation of metal-humic complexes, which ensured a temporary bioavailability of metals and prevented their rapid transformation into insoluble species. Extractions with 1 N HNO(3) further indicated that the added metals were present in complexes with HA. The observed effects appeared to also depend on the amount of native SOC and its structural changes with ageing. The results suggest that soil amendments with exogenous humic matter may accelerate the phytoremediation of heavy metals from contaminated soil, while concomitantly prevent their environmental mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号