首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
针对湿法成型工艺硫磺粉尘进行燃烧爆炸特性参数测试,对目数范围介于16~35目,35~60目,60~80目,80~100目,100~120目,120~160目,160~200目,200目筛下八组硫磺粉尘的:粉尘层着火温度、粉尘云最低着火温度、粉尘云最小点火能以及爆炸下限四个参数进行了测试,确定了不同粒径分组硫磺粉尘的燃烧爆炸参数。为硫磺湿法成型系统硫磺粉尘浓度监控标准的制定提供依据。  相似文献   

2.
为探索瓦斯爆炸过程中温度变化规律,基于球形爆炸实验,研究不同初始瓦斯浓度条件下爆炸温度及爆炸温度与爆炸压力之间的相互作用关系。结果表明:随初始瓦斯浓度升高,在6.5%(低浓度)、9.5%(当量浓度)、12%(高浓度)时出现爆炸温度极大值,分别为995,932,1 153 K;爆炸过程中温度延迟时间及升温时间与初始瓦斯浓度曲线均呈U型变化,当初始瓦斯浓度约为9.5%(当量浓度)时,温度延迟时间及升温时间变化较小;当初始瓦斯浓度在爆炸上限浓度(16%)和下限浓度(5%)附近时,受瓦斯浓度影响变化较大;初始瓦斯浓度在9.5%时,瓦斯爆炸过程中的压力波促进火焰燃烧波的反向传播,出现二次升温现象。研究结果可为完善瓦斯爆炸温度变化机理、提高灾害防控技术提供依据。  相似文献   

3.
研究初始温度对可燃气体爆炸下限的影响规律,运用阿累尼乌斯定律,可得出温度与化学反应速度之间的关系式,从而得出简化的温度和爆炸极限影响的模型。利用该模型对5种烷烃在不同温度下的爆炸下限实验值进行拟合相关度比较,所得爆炸下限模型平均拟合相关系数达到0.995 5。结果表明,该简化模型具有较强的可靠性。  相似文献   

4.
为了研究橡胶粉尘的爆炸特性以及惰性粉体对橡胶粉尘的抑爆,用20 L球形爆炸装置测试橡胶粉尘的爆炸特性,分析粉尘浓度和粒径对橡胶粉尘爆炸压力(pmax)和爆炸指数(Kst)的影响,并且探究聚磷酸铵、磷酸二氢铵、碳酸钙和碳酸氢钠4种不同惰性粉体对橡胶粉尘的抑爆效果及不同粒径的聚磷酸铵对橡胶粉尘爆炸压力的影响。结果表明:在爆炸极限范围内,橡胶粉尘的爆炸压力随粉尘质量浓度增加先增大后减小;橡胶粉尘粒径越小,其爆炸后果越严重;聚磷酸铵对橡胶粉尘的抑爆效果相对较好;且在一定质量浓度范围内粒径越小,抑爆效果越好。  相似文献   

5.
萘酐的某些物化性质。用GR-3500型氧弹式量热计测定萘酐的燃烧热。用来作为标准热值物质的苯甲酸纯度为99.5%、氧纯度99.6%,取苯甲酸燃烧热为6324卡/克,标定仪器量热系统的水当量为3426.6克。萘酐的燃烧热的测定结果为6261卡/克,从《CRC Handbook of chemistry and physics》中查到萘酐的α晶态燃烧热为6960卡/克、β晶态燃烧热力为6995.4卡/克、摩尔质量为158.16克/摩、熔点为146℃、密度为1.45g/cm^3。  相似文献   

6.
为研究硬脂酸粉尘的爆炸特性,采用20 L球型爆炸仪对4个粒径范围的硬脂酸粉尘进行粉尘爆炸试验研究。结果表明:一定浓度范围内增大粉尘浓度能够提升硬脂酸粉尘的爆炸能量和燃烧速率。增大粉尘浓度,爆炸猛烈度先增强后减弱;减小粉尘粒径,能增强爆炸猛烈度和敏感度。粒径小于58 μm粉尘的爆炸猛烈度和敏感度最大,浓度500 g/m3时,该粉尘有最大爆炸压力1.12 MPa和最大升压速率142.00 MPa/s。  相似文献   

7.
为了解橡胶粉尘的爆炸危险性,采用20 L球爆炸测试装置对常温常压下、粒径75μm以下的橡胶粉尘在质量浓度50~700 g/m3范围内的爆炸特性进行试验研究,测定其最大爆炸压力及爆炸指数随质量浓度的变化规律,进而对其爆炸危险性程度进行分级。结果表明:橡胶粉尘质量浓度为300 g/m3时,爆炸压力达到最大值0.49MPa;在橡胶粉尘质量浓度为250 g/m3时,爆炸指数达到最大值5.04MPa·m/s,根据ISO 6184粉尘爆炸烈度等级分级标准,其粉尘爆炸危险性分级为St-1级。  相似文献   

8.
杨帆  马秋菊 《安全》2020,(4):63-67
碳纤维复合材料是应用于航天、航空领域的高性能材料之一,对于该材料的粉尘爆炸特性还未有相关研究报告。为了研究碳纤维复合材料粉尘的爆炸强度特性,本文采用20L球形粉尘爆炸测试实验系统开展了相关实验研究。实验测得碳纤维复合材料粉尘爆炸下限浓度为50g/m 3,最大爆炸压力为0.48MPa。在测试浓度范围内,最大压力上升速率和爆炸指数均随浓度的增大而变大。另外,在其爆炸强度特性研究的基础上,对产尘车间的环境风险进行了初步辨识,提出了相应的防护措施。本文的研究成果对此类碳纤维复合材料粉尘的工业防护具有实际的指导作用,对于该粉尘的爆炸机理的深入研究也具有一定的参考价值。  相似文献   

9.
粒径对镁粉爆炸特性的影响   总被引:1,自引:1,他引:0  
在简要分析了镁粉爆炸的过程和特性基础上,结合在20 L球型爆炸测试装置中对粒径D50为6,47,104,173 μm镁粉的爆炸特性实验数据,着重分析了粒径对镁粉爆炸特性所产生的影响.实验结果表明,随着粒径的增大,镁粉的爆炸危险性随之减小.  相似文献   

10.
为了探讨城镇燃气爆炸强度与反应初始温度的对应关系,根据工程热力学研究定组分混合气体的基本方法以及阿马格分体积定律将城镇燃气简化为含碳、氢、氧、氮的单一气体,简化其热化学反应方程式及反应终态温度的求解办法.在此基础上采用经典的气体爆炸强度公式计算不同反应初始温度下城镇燃气(体积分数10%)-空气混合气体理论上的最大爆炸压力和最大压力上升速率.结果表明,城镇燃气的最大爆炸压力及最大压力上升速率随初始温度的提高而线性减小,近似成反比例关系.为了验证理论计算所得结论的正确性,采用经典爆炸特性参数测试系统实测了该混合气体对应初始温度下的爆炸强度.实测结果与理论计算结果所得结论基本吻合,且最大爆炸压力的理论值与实测值最大误差为13.95%,最大爆炸压力上升速率的理论值与实测值最大误差为14.52%,满足工程应用(最大误差不超过20%)的需要.该理论计算方法可以近似估算不同初始温度下城镇燃气-空气混合气体的爆炸强度.在爆炸极限范围内城镇燃气的爆炸强度随反应初始温度的增加而线性减少,二者近似成反比例关系.  相似文献   

11.
为研究惰性气体抑制瓦斯爆燃火焰传播特性,在自行搭建的中尺度爆炸激波管道上,采用数据采集系统、压电式传感器、火焰传感器、同步控制系统和激光纹影测试系统,通过对比4种不同喷射压力(0.5,1.5,2.5,3.5 MPa)的实验工况,选用N2做为惰性介质时抑制火焰的传播特性与喷射压力密切相关,火焰传播速度随着喷射压力增加呈现先增加后减弱的趋势。研究结果表明:少量N2在管道中扩散,加剧了未反应预混气体的扰动状态,造成火焰阵面褶皱的卷吸能力增强,进而加速化学反应进程,促进预混气体燃烧;喷射压力为1.5 MPa时,火焰阵面拉升、变形最强,火焰传播速度提高,最高可达到250 m/s;喷射压力为3.5 MPa时,火焰阵面出现明显三维凹陷结构,运动发生明显滞后现象,火焰传播速度大幅度降低至5.4 m/s,惰性气体抑制火焰传播效果明显。  相似文献   

12.
The global increase in the use of, and reliance on, plastics has prompted the demand for acrylonitrile-butadiene-styrene (ABS) resin in various fields. With this increased requirement, numerous failures have occurred in the ABS process. Those incidents, resulting from electrostatic discharge, powder accumulation, heat accumulation, construction sparks, and plant fires, have caused dust fire and explosions.In this study, the ABS resin was gleaned from the site and tested for its explosion parameters, including minimum ignition temperature of dust cloud (MITC), minimum ignition energy (MIE), and minimum explosion concentration (MEC). To improve loss prevention in the manufacturing process, ferric oxide (Fe2O3) as an inert additive was added in the ABS powder. According to the MIE test, Fe2O3 has an apparent inhibiting effect on dust explosion for the ABS dust. With the proportion of Fe2O3 increased from 25 to 50 mass% in ABS, the MIE increased from 67 to 540 mJ. The explosion tests via 20-L apparatus indicated that Fe2O3 mixed with ABS could not increase the MEC significantly. However, the explosion pressure dropped by increasing in the ratio of Fe2O3 in ABS. This inerting strategy of ABS was deemed to substantially lessen the probability and severity of fire and explosion.  相似文献   

13.
粉尘爆炸特征和预防措施探讨   总被引:2,自引:0,他引:2  
随着现代工业的发展,粉末技术得到了广泛应用,使得粉末产物日益增多.许多粉体加工企业对粉体的相关危害知识没有深刻的认识,这些物质在安全生产、储存、运输和应用过程中,安全管理比较混乱,没有做到很好的防护,缺乏必要的防火防爆设施,再加上操作人员思想上的麻痹大意.粉尘爆炸的危险性大大增加,粉尘爆炸的事故也频繁发生.粉尘爆炸具有很强的破坏力,往往造成重大人员伤亡和严重损失,已经越发成为工业安全不可忽视的重要问题.本文从粉尘爆炸的基本特征出发,论述了粉尘爆炸的机理、条件、特点.根据粉尘爆炸需要的条件,从可燃物、助燃物和点火源三个方面,提出了在实际生产中,预防粉尘爆炸的一些具体措施,以期指导安全生产.  相似文献   

14.
为研究抛光铝粉的爆炸危险和ABC粉体的抑爆特性,在对实验粉体粒径分布进行分析的基础上,采用20 L粉尘爆炸特性实验装置,分别对不同铝粉尘浓度、不同抑爆剂浓度条件下的爆炸特性参数进行测试。研究结果表明:在实验条件下,铝粉的爆炸下限为45 g/m3<C<60 g/m3;随铝粉浓度增加,爆炸烈度呈现出先增强后减弱的变化趋势,在浓度为400 g/m3时爆炸烈度最大。ABC抑爆剂能够有效抑制铝粉爆炸超压和爆炸反应进程,随着惰性粉体浓度的增加,抑制效果愈加明显,爆炸逐渐减弱。当ABC惰性粉体的质量占比增加到50%时,相较单一铝粉爆炸,反应过程时间由72 ms增加至785 ms,爆炸最大压力、最大压力上升速率分别下降了61.7%,89.5%;当ABC粉体质量占比为53%时,铝粉被完全惰化,未发生爆炸。  相似文献   

15.
周西华      王原      李昂      陈猛     《中国安全生产科学技术》2017,13(11):123-128
为研究自制隔爆水幕抑制瓦斯爆炸的有效性,采用大直径瓦斯爆炸试验管道系统,在不同瓦斯浓度和不同水幕流量条件下进行瓦斯爆炸试验,利用数据采集系统测量瓦斯爆炸特性参数并对其变化规律和隔爆效果进行分析。结果表明:瓦斯浓度9.5%时经过隔爆水幕抑制作用,瓦斯爆炸压力峰值由64 kPa下降到39 kPa,衰减了39%;温度峰值由969 K下降到498 K,衰减了49%;速度最大值由136 m/s下降到73 m/s,衰减了15%。虽然隔爆水幕对不同浓度瓦斯产生的爆炸起到良好的抑制效果,但隔爆之后的传播规律依然受到瓦斯浓度影响。隔爆水幕对瓦斯爆炸的抑制效果取决于喷水流量的大小,随着流量的增加,水幕的隔爆效果增强,喷头最佳的工作流量为16.4 L/min。  相似文献   

16.
为了探究不同浓度下的氮气对管道受限空间内油气爆炸的影响作用,通过原油实验管道测得不同油气浓度下的最大爆炸压力值,研究氮气对原油管道爆炸特性的抑制作用。研究结果表明:实验原油管道油气浓度在4.32%~14.25%区间管道油气发生爆炸,在低油气浓度的爆炸区间内,相近油气浓度的爆炸压力等爆炸特性上升较快,高浓度的爆炸区间内,变化较缓慢,在9.23%的油气浓度时爆炸特性变化最明显;在爆炸区间内充入浓度为0%~30%的不同浓度的氮气,随原油管道内氮气浓度的扩充,实验所测得爆炸区间不断压缩,在26%的氮气浓度时几乎不发生油气爆炸,且实验研究的爆炸特性均有所减弱。  相似文献   

17.
为了研究R290制冷剂惰化燃爆特性,采用带搅拌功能和氧浓度在线测定的20L球试验装置,对R290制冷剂进行了极限氧浓度测定。实验测定了丙烷在CO2和N2惰化气氛中的爆炸极限及极限空气浓度LAC,确定丙烷的极限氧浓度LOC;采用三元图爆炸区、丙烷-O2二维图爆炸区和ASTM标准分布图分析了混合气体爆炸区边界的燃爆特征,给出了极限氧浓度的确定方法和边界爆炸压力分布规律。实验结果表明:常温常压下R290的爆炸极限为2.1%~9.6%,CO2惰化气氛中的极限氧浓度为13.3%,对应的丙烷浓度为3.3%;N2惰化气氛中的极限氧浓度为10.8%,对应的丙烷浓度为2.7%。通过对比分析不同CO2和N2浓度下的爆炸区分布特征,表明CO2对丙烷的惰化效果要优于N2,以氮气和二氧化氮体积分数比为1∶2测试惰化气氛保护能力,惰化效果介于同浓度单种惰性气体之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号