首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 813 毫秒
1.
ABSTRACT

A comprehensive indoor particle characterization study was conducted in nine Boston-area homes in 1998 in order to characterize sources of PM in indoor environments. State-of-the-art sampling methodologies were used to obtain continuous PM2.5 concentration and size distribution particulate data for both indoor and outdoor air. Study homes, five of which were sampled during two seasons, were monitored over week-long periods. Among other data collected during the extensive monitoring efforts were 24hr elemental/organic carbon (EC/OC) particulate data as well as semi-continuous air exchange rates and time-activity information.

This rich data set shows that indoor particle events tend to be brief, intermittent, and highly variable, thus requiring the use of continuous instrumentation for their characterization. In addition to dramatically increasing indoor PM25 concentrations, these data demonstrate that indoor particle events can significantly alter the size distribution and composition of indoor particles. Source event data demonstrate that the impacts of indoor activities are especially pronounced in the ultrafine (da < 0.1 um) and coarse (2.5 < da < 10 |um) modes. Among the sources of ultrafine particles characterized in this study are indoor ozone/terpene reactions. Furthermore, EC/OC data suggest that organic carbon is a major constituent of particles emitted during indoor source events. Whether exposures to indoor-generated particles, particularly from large short-term peak events, may be associated with adverse health effects will become clearer when biological mechanisms are better known.  相似文献   

2.
A study of carbonaceous aerosol was initiated in Nanchang, a city in eastern China, for the first time. Daily and diurnal (daytime and nighttime) PM2.5 (particulate matter with aerodynamic diameter < or =2.5 microm) samples were collected at an outdoor site and in three different indoor environments (common office, special printing and copying office, and student dormitory) in a campus of Nanchang University during summer 2009 (5-20 June). Daily PM10 (particulate matter with aerodynamic diameter < or =10 microm) samples were collected only at the outdoor site, whereas PM2.5 samples were collected at both indoor and outdoor sites. Loaded PM2.5 and PM10 samples were analyzed for organic and elemental carbon (OC, EC) by thermal/optical reflectance following the Interagency Monitoring of Protected Visual Environments-Advanced (IMPROVE-A) protocol. Ambient mass concentrations of PM10 and PM2.5 in Nanchang were compared with the air quality standards in China and the United States, and revealed high air pollution levels in Nanchang. PM2.5 accounted for about 70% of PM10, but the ratio of OC and EC in PM2.5 to that in PM10 was higher than 80%, which indicated that OC and EC were mainly distributed in the fine particles. The variations of carbonaceous aerosol between daytime and nighttime indicated that OC was released and formed more rapidly in daytime than in nighttime. OC/EC ratios were used to quantify secondary organic carbon (SOC). The differences in SOC and SOC/OC between daytime and nighttime were useful in interpreting the secondary formation mechanism. The results of (1) OC and EC contributions to PM2.5 at indoor sites and the outdoor site; (2) indoor-outdoor correlation of OC and EC; (3) OC-EC correlation; and (4) relative contributions of indoor and outdoor sources to indoor carbonaceous aerosol indicated that OC indoor sources existed in indoor sites, with the highest OC emissions in I2 (the special printing and copying office), and that indoor EC originated from outdoor sources. The distributions of eight carbon fractions in emissions from the printer and copier showed obviously high OC1 (>20%) and OC2 (approximately 30%), and obviously low EC1-OP (a pyrolyzed carbon fraction) (<10%), when compared with other sources.  相似文献   

3.
Characterization of particulate matter for three sites in Kuwait   总被引:1,自引:0,他引:1  
Many studies have shown strong associations between particulate matter (PM) levels and a variety of health outcomes, leading to changes in air quality standards in many regions, especially the United States and Europe. Kuwait, a desert country located on the Persian Gulf, has a large petroleum industry with associated industrial and urban land uses. It was marked by environmental destruction from the 1990 Iraqi invasion and subsequent oil fires. A detailed particle characterization study was conducted over 12 months in 2004-2005 at three sites simultaneously with an additional 6 months at one of the sites. Two sites were in urban areas (central and southern) and one in a remote desert location (northern). This paper reports the concentrations of particles less than 10 microm in diameter (PM10) and fine PM (PM2.5), as well as fine particle nitrate, sulfate, elemental carbon (EC), organic carbon (OC), and elements measured at the three sites. Mean annual concentrations for PM10 ranged from 66 to 93 microg/m3 across the three sites, exceeding the World Health Organization (WHO) air quality guidelines for PM10 of 20 microg/m3. The arithmetic mean PM2.5 concentrations varied from 38 and 37 microg/m3 at the central and southern sites, respectively, to 31 microg/m3 at the northern site. All sites had mean PM2.5 concentrations more than double the U.S. National Ambient Air Quality Standard (NAAQS) for PM2.5. Coarse particles comprised 50-60% of PM10. The high levels of PM10 and large fraction of coarse particles comprising PM10 are partially explained by the resuspension of dust and soil from the desert crust. However, EC, OC, and most of the elements were significantly higher at the urbanized sites, compared with the more remote northern site, indicating significant pollutant contributions from local mobile and stationary sources. The particulate levels in this study are high enough to generate substantial health impacts and present opportunities for improving public health by reducing airborne PM.  相似文献   

4.
Hourly indoor and outdoor fine particulate matter (PM2.5), organic and elemental carbon (OC and EC, respectively), particle number (PN), ozone (O3), carbon monoxide (CO), and nitrogen oxide (NOx) concentrations were measured at two different retirement communities in the Los Angeles, CA, area as part of the Cardiovascular Health and Air Pollution Study. Site A (group 1 [G1]) was operated from July 6 to August 20, 2005 (phase 1 [P1]) and from October 19 to December 10, 2005 (P2), whereas site B (group 2 [G2]) was operated from August 24 to October 15, 2005 (P1), and from January 4 to February 18, 2006 (P2). Overall, the magnitude of indoor and outdoor measurements was similar, probably because of the major influence of outdoor sources on indoor particle and gas levels. However, G2 showed a substantial increase in indoor OC, PN, and PM2.5 between 6:00 and 9:00 a.m., probably from cooking. The contributions of primary and secondary OC (SOA) to measured outdoor OC were estimated from collected OC and EC concentrations using EC as a tracer of primary combustion-generated OC (i.e., "EC tracer method"). The study average outdoor SOA accounted for 40% of outdoor particulate OC (40-45% in the summer and 32-40% in the winter). Air exchange rates (hr(-1)) and infiltration factors (Finf; dimensionless) at each site were also determined. Estimated Finf and measured particle concentrations were then used in a single compartment mass balance model to assess the contributions of indoor and/or outdoor sources to measured indoor OC, EC, PM2.5, and PN. The average percentage contributions of indoor SOA of outdoor origin to measured indoor OC were approximately 35% (during G1P1 and G1P2) and approximately 45% (for G2P1 and G2P2). On average, 36% (G2P1) to 44% (G1P1) of measured indoor OC was composed of outdoor-generated primary OC.  相似文献   

5.
Concentrations of particulate matter (PM) and carbonaceous particulates in indoor and outdoor air at roadside private households were measured in Osaka, Japan. The particulate samples were collected on filters using a portable AND sampler capable of separating particles into three different size ranges: over 10 microm, 2-10 microm (coarse) and below 2 microm (fine) in aerodynamic diameter. The filters were weighed and then analyzed for elemental carbon (EC) and organic carbon (OC) by thermal oxidation using a CHN CORDER. The results showed that indoor fine PM concentration is considerably affected by fine EC and the fine EC in indoor air is significantly correlated to that in outdoor air, r=0.86 (n=30, p<0.001). A simple estimation from EC content ratio in diesel exhaust particles indicated that about 30% of indoor particulates of less than 10 microm (PM10) were contributed from diesel exhaust. Additionally, the size characteristics of outdoor PM at roadside and background sites were examined using Andersen Cascade Impactors.  相似文献   

6.
Seasonal elemental carbon (EC) and organic carbon (OC) concentration levels in PM2.5 samples collected in Milan (Italy) are presented and discussed, enriching the world-wide database of carbonaceous species in fine particulate matter (PM). High-volume PM2.5 sampling campaigns were performed from August 2002 through December 2003 in downtown Milan at an urban background site. Compared to worldwide average concentrations, in Milan warm-season OC and both warm- and cold-season EC are relatively low; conversely, cold-season OC concentrations are rather high. Consequently, high values for the OC/EC ratio are observed, especially in the winter period. The relation between OC/EC ratio values and wind direction is investigated, pointing out that the highest ratios are associated to winds blowing from those nearby areas where wood consumption for domestic heating is larger. Information on the OC partitioning between its primary and secondary fraction are derived by means of the EC-tracer method and principal component analysis. In the warm-season, OC is mainly of secondary origin, secondary organic aerosol (SOA) accounting for about 84% of the particulate organic matter and 25–28% of the PM2.5 mass. For the cold season the full application of the EC-tracer method was not possible and the primary organic aerosol deriving from traffic could only be estimated. However, principal component analysis (PCA) suggest a prevailing primary origin for OC, thus raising the attention on space heating emissions, and on wood combustion in particular, for air quality control. The role of traffic emissions on PM2.5 concentration levels, as a primary source, are also assessed: EC and primary organic matter from traffic account for a warm-season 30% and a cold-season 7% of the total carbon in PM2.5, that is for about 10% and 6% of PM2.5 mass, respectively. This latter small primary contribution estimated for the cold-season points out that stationary sources, which were not thought to play a significant role on PM concentration levels, may conversely be as much responsible for ambient particulate pollution.  相似文献   

7.
Hourly concentrations of ambient fine particle sulfate and carbonaceous aerosols (elemental carbon [EC], organic carbon [OC], and black carbon [BC]) were measured at the Harvard-U.S. Environmental Protection Agency Supersite in Boston, MA, between January 2007 and October 2008. These hourly concentrations were compared with those made using integrated filter-based measurements over 6-day or 24-hr periods. For sulfate, the two measurement methods showed good agreement. Semicontinuous measurements of EC and OC also agreed (but not as well as for sulfate) with those obtained using 24-hr integrated filter-based and optical BC reference methods. During the study period, 24-hr PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter) concentrations ranged from 1.4 to 37.6 microg/m3, with an average of 9.3 microg/m3. Sulfate as the equivalent of ammonium sulfate accounted for 39.1% of the PM2.5 mass, whereas EC and OC accounted for 4.2 and 35.2%, respectively. Hourly sulfate concentrations showed no distinct diurnal pattern, whereas hourly EC and BC concentrations peaked during the morning rush hour between 7:00 and 9:00 a.m. OC concentrations also exhibited nonpronounced, small peaks during the day, most likely related to traffic, secondary organic aerosol, and local sources, respectively.  相似文献   

8.
As part of a major study to investigate the indoor air quality in residential houses in Singapore, intensive aerosol measurements were made in an apartment in a multistory building for several consecutive days in 2004. The purpose of this work was to identify the major indoor sources of fine airborne particles and to assess their impact on indoor air quality for a typical residential home in an urban area in a densely populated country. Particle number and mass concentrations were measured in three rooms of the home using a real-time particle counter and a low-volume particulate sampler, respectively. Particle number concentrations were found to be elevated on several occasions during the measurements. All of the events of elevated particle concentrations were linked to indoor activities based on house occupant log entries. This enabled identification of the indoor sources that contributed to indoor particle concentrations. Activities such as cooking elevated particle number concentrations < or =2.05 x 10(5) particles/cm3. The fine particles collected on Teflon filter substrates were analyzed for selected ions, trace elements, and metals, as well as elemental and organic carbon (OC) contents. To compare the quality of air between the indoors of the home and the outdoors, measurements were also made outside the home to obtain outdoor samples. The chemical composition of both outdoor and indoor particles was determined. Indoor/outdoor (I/O) ratios suggest that certain chemical constituents of indoor particles, such as chloride, sodium, aluminum, cobalt, copper, iron, manganese, titanium, vanadium, zinc, and elemental carbon, were derived through migration of outdoor particles (I/O <1 or - 1), whereas the levels of others, such as nitrite, nitrate, sulfate, ammonium, cadmium, chromium, nickel, lead, and OC, were largely influenced by the presence of indoor sources (I/O >1).  相似文献   

9.
Wildfires and prescribed burns are receiving increasing attention as sources of fine particulate matter (PM2.5). The goal of this research project was to understand the impact of mitigation strategies for residences impacted by scheduled prescribed burns and wildfires. Pairs of residences were solicited to have PM2.5 concentrations monitored inside and outside of their houses during four fires. The effect of using air cleaners on indoor PM2.5 was investigated, as well as the effect of keeping windows closed. Appropriately sized air cleaners were provided to one of each pair of residences; occupants of all of the residences were asked to keep windows shut and minimize opening of exterior doors. Additionally, residents were asked to record all of the activities that may be a source of particulate matter, such as cooking and cleaning. Measurements were made during one prescribed burn and three wildfires during the 2002 fire season. Outdoor 24-hr average PM2.5 concentrations ranging from 6 to 38 microg/m3 were measured during the fires, compared with levels of 2-5 microg/m3 during background measurements when no fires were burning. During the fires, PM2.5 was < 3 microg/m3 inside all of the houses with air cleaners installed. This corresponds with a decrease of 63-88% in homes with the air cleaners operating when compared with homes without air cleaners. In the homes without the air cleaners, measured indoor concentrations were 58-100% of the concentrations measured outdoors.  相似文献   

10.
In China, the areas that are undergoing rapid urban growth are faced with increasingly more complicated air pollution problems. Sources of air pollution need to be identified and their contributions quantified. In this study, PM2.5 (particulate matter with aerodynamic diameters < or =2.5 microm), PM2.5-10 (particulate matter with aerodynamic diameters 2.5-10 microm), organic carbon (OC), and elemental carbon (EC) concentrations were measured from April to July 2009 at four selected areas in Xiamen (the downtown area, an industrial park, a suburb, and one remote site). The contributions of carbonaceous aerosols to PM2.5 and PM2.5-10 were 20-30% and 10-20%, respectively, indicating that finer particles contained more carbonaceous aerosols. The EC concentrations in PM2.5 at the downtown, industrial, suburb, and remote sites were 2.16 +/- 0.61, 2.05 +/- 0.45, 1.69 +/- 0.54, and 0.65 +/- 0.43 microg m-3, respectively, showing a decrease from the urban and industrial hotspots to the surrounding areas. These data show that carbonaceous aerosols emitted from the combustion of fossil fuels in urban and industrial hotspots influence air quality at the regional scale. Higher levels of PM2.5 and PM2.5-10 were observed at the suburb site compared to the urban and industrial sites. Peak EC concentrations in PM2.5 were observed during the morning and evening rush hours. However, peak PM2.5 levels at the suburb site were observed around noon, which coincides with construction work hours, instead of the morning and evening rush hours when emissions from combustion dominated. These findings indicate that both fuel combustion and construction have exacerbated air pollution in coastal and urban areas in China.  相似文献   

11.
The objectives of this study were to examine the use of carbon fractions to identify particulate matter (PM) sources, especially traffic-related carbonaceous particle sources, and to estimate their contributions to the particle mass concentrations. In recent studies, positive matrix factorization (PMF) was applied to ambient fine PM (PM2.5) compositional data sets of 24-hr integrated samples including eight individual carbon fractions collected at three monitoring sites in the eastern United States: Atlanta, GA, Washington, DC, and Brigantine, NJ. Particulate carbon was analyzed using the Interagency Monitoring of Protected Visual Environments/Thermal Optical Reflectance method that divides carbon into four organic carbons (OC): pyrolized OC and three elemental carbon (EC) fractions. In contrast to earlier PMF studies that included only the total OC and EC concentrations, gasoline emissions could be distinguished from diesel emissions based on the differences in the abundances of the carbon fractions between the two sources. The compositional profiles for these two major source types show similarities among the three sites. Temperature-resolved carbon fractions also enhanced separations of carbon-rich secondary sulfate aerosols. Potential source contribution function analyses show the potential source areas and pathways of sulfate-rich secondary aerosols, especially the regional influences of the biogenic, as well as anthropogenic secondary aerosol. This study indicates that temperature-resolved carbon fractions can be used to enhance the source apportionment of ambient PM2.5.  相似文献   

12.
Organic aerosol is the least understood component of ambient fine particulate matter (PM2.5). In this study, organic and elemental carbon (OC and EC) within ambient PM2.5 over a three-year period at a forested site in the North Carolina Piedmont are presented. EC exhibited significant weekday/weekend effects and less significant seasonal effects, in contrast to OC, which showed strong seasonal differences and smaller weekend/weekday effects. Summer OC concentrations are about twice as high as winter concentrations, while EC was somewhat higher in the winter. OC was highly correlated with EC during cool periods when both were controlled by primary combustion sources. This correlation decreased with increasing temperature, reflecting higher contributions from secondary organic aerosol, likely of biogenic origin. PM2.5 radiocarbon data from the site confirms that a large fraction of the carbon in PM2.5 is indeed of biogenic origin, since modern (non-fossil fuel derived) carbon accounted for 80% of the PM2.5 carbon over the course of a year. OC and EC exhibited distinct diurnal profiles, with summertime OC peaking in late evening and declining until midday. During winter, OC peaked during the early morning hours and again declined until midday. Summertime EC peaked during late morning hours except on weekends. Wintertime EC often peaked in late PM or early AM hours due to local residential wood combustion emissions. The highest short term peaks in OC and EC were associated with wildfire events. These data corroborate recent source apportionment studies conducted within 20 km of our site, where oxidation products of isoprene, α-pinene, and β-caryophyllene were identified as important precursors to organic aerosols. A large fraction of the carbon in rural southeastern ambient PM2.5 appears to be of biogenic origin, which is probably difficult to reduce by anthropogenic controls.  相似文献   

13.
Abstract

The impact of outdoor and indoor pollution sources on indoor air quality in Santiago, Chile was investigated. Toward this end, 16 homes were sampled in four sessions. Each session included an outdoor site and four homes using different unvented space heaters (electric or central heating, compressed natural gas, liquefied petroleum gas, and kerosene). Average outdoor fine particulate matter (PM2.5) concentrations were very high (55.9 μg·m-3), and a large fraction of these particles penetrated indoors. PM2.5 and several PM2.5 components (including sulfate, elemental carbon, organic carbon, metals, and polycyclic aromatic hydrocarbons) were elevated in homes using kerosene heaters. Nitrogen dioxide (NO2) and ultrafine particles (UFPs) were higher in homes with combustion heaters as compared with those with electric heaters or central heating. A regression model was used to assess the effect of heater use on continuous indoor PM2.5 concentrations when windows were closed. The model found an impact only for kerosene heaters (45.8 μg m-3).  相似文献   

14.
This paper presents the results of the first reported study on fine particulate matter (PM) chemical composition at Salamanca, a highly industrialized urban area of Central Mexico. Samples were collected at six sites within the urban area during February and March 2003. Several trace elements, organic carbon (OC), elemental carbon (EC), and six ions were analyzed to characterize aerosols. Average concentrations of PM with aerodynamic diameter of less than 10 microm (PM10) and fine PM with aerodynamic diameter of less than 2.5 microm (PM2.5) ranged from 32.2 to 76.6 [g m(-3) and 11.1 to 23.7 microg m(-3), respectively. OC (34%), SO4= (25.1%), EC (12.9%), and geological material (12.5%) were the major components of PM2.5. For PM10 geological material (57.9%), OC (17.3%), and SO4= (9.7%) were the major components. Coarse fraction (PM,, -PM2.5), geological material (81.7%), and OC (8.6%) were the dominant species, which amounted to 90.4%. Correlation analysis showed that sulfate in PM2.5 was present as ammonium sulfate. Sulfate showed a significant spatial variation with higher concentrations to the north resulting from predominantly southwesterly winds above the surface layer and by major SO2 sources that include a power plant and refinery. At the urban site of Cruz Roja it was observed that PM2.5 mass concentrations were similar to the submicron fraction concentrations. Furthermore, the correlation between EC in PM2.5 and EC measured from an aethalometer was r(2) = 0.710. Temporal variations of SO2 and nitrogen oxide were observed during a day when the maximum concentration of PM2.5 was measured, which was associated with emissions from the nearby refinery and power plant. From cascade impactor measurements, the three measured modes of airborne particles corresponded with diameters of 0.32, 1.8, and 5.6 microm.  相似文献   

15.
With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing "true" particulate carbon emission results.  相似文献   

16.
室内空气中颗粒物污染特征研究   总被引:1,自引:0,他引:1  
为获得室内空气颗粒物污染特征,2009年8月18~24日在某单位工作及生活区选取4个室内点和1个室外点进行颗粒物采样和成分分析.结果表明,室内粗颗粒(PM10)符合<室内空气质量标准>(GB/T 18883-2002),而细粒子(PM2.5)的浓度水平较高,表明室内PM2.5的污染较重;室内与室外PM2.5比值显示,P...  相似文献   

17.
Continuous observation of PM2.5 was conducted in Taiyuan, a heavily polluted city in China, during high pollution season from December 2005 to February 2006. The results of this study showed that PM2.5 and carbonaceous species pollution were serious during winter in Taiyuan. The organic carbon (OC) and element carbon (EC) were accounted for 18.6±11.2% and 2.9±1.6% of PM2.5, respectively, which indicated that carbonaceous aerosols were key components for control fine particles pollution in Taiyuan. Coal combustion was a dominant source of OC and EC of PM2.5 in the urban area of Taiyuan during winter. The impact of local and remote particle sources on urban air quality was assessed using PM2.5 concentration rose and 3-day back trajectories of air masses arriving at Taiyuan. The meteorological conditions were found to affect the ambient concentrations of PM2.5, OC, EC and OC/EC ratio.  相似文献   

18.
Carbonaceous components (organic carbon [OC] and elemental carbon [EC]) and optical properties (light absorption and scattering) of fine particulate matter (aerodynamic diameter <2.5 μm; PM2.5) were simultaneously measured at an urban site in Gwangju, Korea, during the winter of 2011. OC was further classified into OC1, OC2, OC3, and OC4, based on a temperature protocol using a Sunset OC/EC analyzer. The average OC and EC concentrations were 5.0 ± 2.5 and 1.7 ± 0.9 μg C m?3, respectively. The average single-scattering albedo (SSA) at a wavelength of 550 nm was 0.58 ± 0.11, suggesting that the aerosols observed in the winter of 2011 had a local warming effect in this area. During the whole sampling period, “stagnant PM” and “long-range transport PM” events were identified. The light absorption coefficient (babs) was higher during the stagnant PM event than during the long-range transport PM event due to the existence of abundant light-absorbing OC during the stagnant PM event. In particular, the OC2 and OC3 concentrations were higher during the stagnant PM event than those during the long-range transport event, suggesting that OC2 and OC3 might be more related to the light-absorbing OC. The light scattering coefficient (bscat) was similar between the events. On average, the mass absorption efficiency attributed to EC (σEC) was 9.6 m2 g?1, whereas the efficiency attributed to OC (σOC) was 1.8 m2 g?1 at λ = 550 nm. Furthermore, the σEC is comparable among the PM event days, but the σOC for the stagnant PM event was significantly higher than that for the long-range transport PM event (1.7 vs. 0.5).

Implications: Optical and thermal properties of carbonaceous aerosol were measured at Gwangju, and carbonaceous aerosol concentration and optical property varied between “stagnant PM” and “long-range transport PM” events. More abundant light absorbing OC was observed during the stagnant PM event.  相似文献   

19.
An intensive sampling of aerosol particles from ground level and 100 m was conducted during a strong pollution episode during the winter in Xi'an, China. Concentrations of water-soluble inorganic ions, carbonaceous compounds, and trace elements were determined to compare the composition of particulate matter (PM) at the two heights. PM mass concentrations were high at both stations: PM10 (PM with aerodynamic diameter < or =10 microm) exceeded the China National Air Quality Standard Class II value on three occasions, and PM2.5 (PM with aerodynamic diameter < or =2.5 microm) exceeded the daily U.S. National Ambient Air Quality Standard more than 10 times. The PM10 organic carbon (OC) and elemental carbon (EC) were slightly lower at the ground than at 100 m, both in terms of concentration and percentage of total mass, but OC and EC in PM2.5 exhibited the opposite pattern. Major ionic species, such as sulfate and nitrate, showed vertical variations similar to the carbonaceous aerosols. High sulfate concentrations indicated that coal combustion dominated the PM mass both at the ground and 100 m. Correlations between K+ and OC and EC at 100 m imply a strong influence from suburban biomass burning, whereas coal combustion and motor vehicle exhaust had a greater influence on the ground PM. Stable atmospheric conditions apparently led to the accumulation of PM, especially at 100 m, and these conditions contributed to the similarities in PM at the two elevations. Low coefficient of divergence (CD) values reflect the similarities in the composition of the aerosol between sites, but higher CDs for fine particles compared with coarse ones were consistent with the differences in emission sources between the ground and 100 m.  相似文献   

20.
To evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM2.5 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated. Personal exposures to PM2.5 mass were not correlated to corresponding home outdoor levels (n = 44, rSpearman (Sp) = 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, rSp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, rSp = 0.53; Br: n = 44, rSp = 0.21) and crustal (Ca: n = 44, rSp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland. We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM2.5 levels may be more appropriate exposure estimates than total personal PM2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号