首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Antarctic fur seals (Arctocephalus gazella) are major secondary consumers in the Southern Ocean, placing them in potential competition with commercial fisheries and requiring research to understand their seasonal habitat use. Using the data obtained during 14 shipboard surveys sampled on a fixed grid (150 K km2) during mid- to late summer, I quantified the spatial distribution and intra-seasonal variability of fur seal sightings relative to distance to land and hydrographic boundaries. I test the hypothesis that fur seals display an increase in their at-sea abundance during mid- to late summer near the Antarctic Peninsula as they prepare to take up wintering grounds. I also test whether abundances of their potential prey, krill and myctophids, exhibit intra-seasonal variability. During midsummer, high-abundance areas are located near major breeding colonies; however, during late summer, there is an order-of-magnitude increase in fur seal abundance, coinciding with an increase in the number of high-abundance areas located in Bransfield Strait. Coincidently, abundance of Euphausia superba decreased and the myctophid Electrona antarctica increased between mid- and late-summer surveys. High-abundance areas of fur seals are not associated with the southern Antarctic Circumpolar Current front but are concentrated within 100 km from land, potentially indicating the location of haul out and important coastal habitat use areas. The dynamic increase in the number and location of high-abundance areas during late summer represents a considerable amount of mammalian predators entering the Antarctic Peninsula marine ecosystem. This information is important for understanding the seasonal impact of fur seals on regional marine food webs and their potential interaction with the autumn–winter krill fishery.  相似文献   

2.
We conducted two ship-based surveys of the nearshore ecosystem north of Livingston Island, Antarctica during 2–10 February 2005. Between the two surveys, a low-pressure system (963 mbar) passed through the area providing the opportunity to measure ecosystem parameters before and after a near gale. A ship-based multiple-frequency acoustic-backscatter survey was used to assess the distribution and relative abundance of Antarctic krill (Euphausia superba). Net tows, hydrographic profiles, and meteorological data were collected to measure biological and physical processes that might affect the krill population. During the survey, the distribution and behavior of several krill predators [chinstrap penguins (Pygoscelis antarctica), cape petrels (Daption capense), and Antarctic fur seals (Arctocephalus gazella)] were measured from the vessel by visual observations. The survey encompassed an area of roughly 2,500 km2, containing two submarine canyons with one to the west and one to the east of Cape Shirreff, which had different abundances of krill and predators. Several aspects of the nearshore ecosystem changed after the near gale including: hydrography of the upper 100 m of the water column, phytoplankton biomass, the abundance and distribution of krill, and the distribution of some krill predators. Differences in these parameters were also measured between the two canyons. These changes in the physical and biological environment during the survey period are quantified and show that the ecosystem exhibited significant changes over relatively short spatial (tens of kilometers) and time (tens of hours) scales.  相似文献   

3.
Antarctic fur seals Arctocephalus gazella and macaroni penguins Eudyptes chrysolophus are the two main land-based krill Euphausia superba consumers in the northern Scotia Sea. Using a combination of concurrent at-sea (predator observations, net hauls and multi-frequency acoustics), and land-based (animal tracking and diet analysis) techniques, we examined variability in the foraging ecology of these sympatric top predators during the austral summer and autumn of 2004. Krill availability derived from acoustic surveys was low during summer, increasing in autumn. During the breeding season, krill occurred in 80% of fur seal diet samples, with fish remains in 37% of samples. Penguin diets contained the highest proportion of fish in over 20 years of routine monitoring (46% by mass; particularly the myctophid Electrona antarctica), with krill (33%) and amphipods (Themisto gaudichaudii; 21%) also occurring. When constrained by the need to return and feed their offspring both predator species foraged to the northwest of South Georgia, consistent with an area of high macrozooplankton biomass, but fur seals were apparently more successful at exploiting krill. When unconstrained by chick-rearing (during March) penguins foraged close to the Shag Rocks shelf-break, probably exploiting the high daytime biomass of fish in this area. Penguins and seals are able to respond differently to periods of reduced krill abundance (in terms of variability in diet and foraging behaviour), without detriment to the breeding success of either species. This highlights the importance of myctophid fish as an alternative trophic pathway for land-based predators in the Scotia Sea ecosystem.  相似文献   

4.
Variability in the Southern Ocean is frequently reflected in changes in the abundance of Antarctic krill Euphausia superba and subsequent effects on dependent predators. However, the nature and consequences of changes in krill population dynamics that accompany fluctuations in its abundance are essentially unknown. A conceptual model, developed from quantitative measures of krill length in the diet of predators at South Georgia from 1991 to 1997, allowed predictions to be made about the abundance and population structure of krill in 1998 and the consequences for predators. Consistent with model predictions, in 1998 there was a serial change in krill population structure, low krill biomass and low reproductive performance of predators. The change in the modal size of krill, from 56 mm in December to 42 mm in March, was apparently a result of the transport of krill into the region. This is the first occasion when the future status and structure of the krill population at South Georgia has been successfully predicted. By representing local krill population dynamics, which may also reflect large-scale physical and biological processes, predators have a potential key role as indicators of environmental variation in the Southern Ocean at a range of spatial scales. Received: 6 March 1999 / Accepted: 3 September 1999  相似文献   

5.
Mid-ocean ridges are common features of the world’s oceans but there is a lack of understanding as to how their presence affects overlying pelagic biota. The Mid-Atlantic Ridge (MAR) is a dominant feature of the Atlantic Ocean. Here, we examined data on euphausiid distribution and abundance arising from several international research programmes and from the continuous plankton recorder. We used a generalized additive model (GAM) framework to explore spatial patterns of variability in euphausiid distribution on, and at either side of, the MAR from 60°N to 55°S in conjunction with variability in a suite of biological, physical and environmental parameters. Euphausiid species abundance peaked in mid-latitudes and was significantly higher on the ridge than in adjacent waters, but the ridge did not influence numerical abundance significantly. Sea surface temperature (SST) was the most important single factor influencing both euphausiid numerical abundance and species abundance. Increases in sea surface height variance, a proxy for mixing, increased the numerical abundance of euphausiids. GAM predictions of variability in species abundance as a function of SST and depth of the mixed layer were consistent with present theories, which suggest that pelagic niche availability is related to the thermal structure of the near surface water: more deeply-mixed water contained higher euphausiid biodiversity. In addition to exposing present distributional patterns, the GAM framework enables responses to potential future and past environmental variability including temperature change to be explored.  相似文献   

6.
Many species of baleen whales were hunted to near extinction in the Southern Hemisphere. The recovery of these populations will be affected by the availability of krill, a major dietary component, in the Southern Ocean. We combine a novel energetics model for baleen whales with a state dependent foraging model to explore the impacts of an expanding krill fishery on baleen whales. We parameterize the model for blue whales, but with simple modifications it could be applied to most baleen whales. We predict that an expanding fishery will have a small but significant impact on the blue whale population through decreased birth rates. However, spreading the catch limit throughout the range of krill can reduce these effects. In addition, whales may be able to reduce these impacts through adaptive changes in foraging behavior. The relationship between krill abundance and blue whale foraging and reproductive success is nonlinear, such that larger reductions in krill biomass, potentially following a loss of sea ice due to climate change, could have a much larger negative impact on the recovery of blue whales.  相似文献   

7.
Activity patterns of animals often relate to environmental variables such as food availability and predation pressure. Technological advances are providing us with new tools to monitor and better understand these activity patterns. We used animal-attached data loggers recording acceleration and depth to compare activity patterns and vertical habitat use of whale sharks (Rhincodon typus) at Ningaloo Reef, Western Australia. Whale sharks showed a moderate reverse diel vertical migration but exhibited a clear crepuscular pattern in locomotory activity. Peak activity occurred at sunset, whereas vertical movement peaked prior to this. Typical ram surface filter feeding could be identified and occurred primarily during sunset and the first hours of night. At such times, direct observations indicated whale sharks were feeding on tropical krill swarms. Kinematic analysis of postural data and data from vertical movement suggests that whale sharks at Ningaloo spend ~8 min per day actively ram surface filter feeding. Considering the high biomass present in krill schools, it is estimated that whale sharks at Ningaloo have a similar energy intake as those at other aggregation sites. Diel patterns in activity and diving behaviour suggest that whale sharks have tuned their diving behaviour in anticipation of the formation of these high-density patches which appear to only be periodically, but predictably available at sunset. Our results confirm that diel patterns in vertical habitat selection and vertical movements do not necessarily reflect patterns in activity and foraging behaviour. Direct quantification of activity and behaviour is required in gaining accurate representation of diel activity patterns.  相似文献   

8.
To better understand the feeding and reproductive ecology of euphausiids (krill) in different ocean environments, lipid classes and individual lipid components of four different species of euphausiids from Northeast Pacific (temperate species) and Southern Ocean (Antarctic species) were analyzed in animals from multiple life stages and seasons. The dominant krill species in the Northeast Pacific Euphausia pacifica and Thysanoessa spinifera, were compared to the two major Antarctic species, Euphausia superba and E. crystallorophias. Analysis comprised total lipid and lipid classes together with individual fatty acid and sterol composition in adults, juveniles, and larvae. Antarctic krill had much higher lipid content than their temperate relatives (10–50 and 5–20% of dry mass for Antarctic and temperate species, respectively) with significant seasonal variations observed. Phospholipids were the dominant lipid class in both temperate krill species, while neutral storage lipids (wax esters and triacylglycerols for E. crystallorophias and E. superba, respectively) were the major lipid class in Antarctic krill and accounted for up to 40% of the total lipid content. Important fatty acids, specifically 16:0, 18:1ω9, 20:5ω3, and 22:6ω3, were detected in all four krill species, with minor differences between species and seasons. Detailed lipid profiles suggest that krill alter their lipid composition with life stage and season. In particular, larval Antarctic krill appear to utilize alternate food resources (i.e., sea-ice associated organisms) during austral winter in contrast to juveniles and adults (i.e., seston and copepods). Lipid dynamics in krill among krill in both systems appear closely linked to their life cycle and environmental conditions including food availability, and can provide a more complete comparative ecology of euphausiids in these environmentally distinct systems.  相似文献   

9.
The effect of different light regimes on the development of sexual maturity and body composition (carbon, nitrogen, lipid and protein) of Antarctic krill, Euphausia superba, was studied over 12 weeks under laboratory conditions. Krill were exposed to light-cycle regimes of variable intensity to simulate Southern Ocean summer, autumn and winter conditions, respectively using: (1) continuous light (LL; 200 lux max), (2) 12-h light and 12-h darkness (LD 12:12; 50 lux max), and (3) continuous darkness (DD). The sexual maturity of female and male krill exposed to LL and LD 12:12 showed an accelerated succession of external maturity stages during the experimental period, while krill exposed to continuous darkness showed no changes in external maturity during the course of the study. Changes in the maturity development of krill between the different light regimes are reflected in changes in body composition. Krill exposed to LL and LD 12:12 showed an increase in lipid utilization, indicating that the development of external maturation may be fuelled preferentially by lipid reserves. In contrast, values of total lipid content of krill held under continuous darkness indicated an unchanged lipid catabolism during the course of the study. Thus, the maturity development of krill was affected either directly or indirectly by the different simulated light conditions. Based on these results, and observations on the effects of simulated light regimes on feeding and metabolic rates of krill available from a previous study, we suggest that the Antarctic light regime is an essential cue governing the seasonal cycle of krill physiology and maturity, and highlight the importance of this environmental factor in the life history of krill.  相似文献   

10.
Are penguins and seals in competition for Antarctic krill at South Georgia?   总被引:5,自引:0,他引:5  
The Antarctic fur seal (Arctocephalus gazella) and macaroni penguin (Eudyptes chrysolophus) are sympatric top predators that occur in the Southern Ocean around South Georgia where they are, respectively, the main mammal and bird consumers of Antarctic krill (Euphausia superba). In recent years the population of fur seals has increased, whereas that of macaroni penguins has declined. Both species feed on krill of similar size ranges, dive to similar depths and are restricted in their foraging range at least while provisioning their offspring. In this study we test the hypothesis that the increased fur seal population at South Georgia may have resulted in greater competition for the prey of macaroni penguins, leading to the decline in their population. We used: (1) satellite-tracking data to investigate the spatial separation of the Bird Island populations of these two species whilst at sea during the breeding seasons of 1999 and 2000 and (2) diet data to assess potential changes in their trophic niches between 1989 and 2000. Foraging ranges of the two species showed considerable overlap in both years, but the concentrations of foraging activity were significantly segregated spatially. The size of krill taken by both species was very similar, but over the last 12 years the prevalence of krill in their diets has diverged, with nowadays less krill in the diet of macaroni penguins than in that of Antarctic fur seals. Despite a significant degree of segregation in spatial resource use by the study populations, it is likely that the South Georgia populations of Antarctic fur seal and macaroni penguin exploit the same krill population during their breeding season. For explaining the opposing population trends of the two species, the relative contributions of independent differential response to interannual variation in krill availability and of interspecies competition cannot be resolved with available evidence. The likely competitive advantage of Antarctic fur seals will be enhanced as their population continues to increase, particularly in years of krill scarcity.  相似文献   

11.
The spatial distribution patterns of krill, seabirds (penguin, petrel and albatross), fur seals and baleen whales were mapped in nearshore waters (<50 km from land) to investigate their habitat selection within two adjacent submarine canyons near Livingston Island, Antarctica. Three shipboard surveys were conducted (February 2005–2007), and an echosounder was used to measure the distribution and abundance of krill while simultaneously conducting visual surveys to map seabird and marine mammals. Using a multispecies approach, we test the hypothesis that spatial organization of krill and top predators co-vary according to fine-scale changes in bathymetry in the nearshore marine environment. GAMs are used to examine the effect of sea depth, slope and distance to isobaths on the spatial distribution and abundance of krill and predators. Spatial distribution patterns of krill and predators relate to fine-scale (1–10 km) changes in bathymetry and exhibit cross-shelf gradients in abundance. Krill were concentrated along the shelf-break and abundant within both submarine canyons. Predators exhibited different preferences for locations within the submarine canyon system that relates to their foraging behavior. Penguins concentrated closer to shore and within the head of the east submarine canyon immediately adjacent to a breeding colony. Whales were also concentrated over the head of the east canyon (overlapping with penguins), whereas albatrosses and fur seals were concentrated in the west canyon. Fur seals also showed preference for steep slopes and were concentrated along the shelf-break. Petrels exhibited peaks in abundance throughout both submarine canyons. Owing to their orientation, size and proximity to the coastline, submarine canyons provide important habitat heterogeneity for krill and a variety of predators. This study highlights the multispecies approach for studying spatial ecology of top predators and krill and has implications for marine spatial management of the Scotia Sea.  相似文献   

12.
We created a Bayesian hierarchical model (BHM) to investigate ecosystem relationships between the physical ecosystem (sea ice extent), a prey measure (krill density), predator behaviors (diving and foraging effort of female Antarctic fur seals, Arctocephalus gazella, with pups) and predator characteristics (mass of maternal fur seals and pups). We collected data on Antarctic fur seals from 1987/1988 to 1994/1995 at Seal Island, Antarctica. The BHM allowed us to link together predators and prey into a model that uses all the data efficiently and accounts for major sources of uncertainty. Based on the literature, we made hypotheses about the relationships in the model, which we compared with the model outcome after fitting the BHM. For each BHM parameter, we calculated the mean of the posterior density and the 95% credible interval. Our model confirmed others' findings that increased sea ice was related to increased krill density. Higher krill density led to reduced dive intensity of maternal fur seals, as measured by dive depth and duration, and to less time spent foraging by maternal fur seals. Heavier maternal fur seals and lower maternal foraging effort resulted in heavier pups at 22 d. No relationship was found between krill density and maternal mass, or between maternal mass and foraging effort on pup growth rates between 22 and 85 days of age. Maternal mass may have reflected environmental conditions prior to the pup provisioning season, rather than summer prey densities. Maternal mass and foraging effort were not related to pup growth rates between 22 and 85 d, possibly indicating that food was not limiting, food sources other than krill were being used, or differences occurred before pups reached age 22 d.  相似文献   

13.
Benthic epifauna in three areas of the northern North Sea was studied from 1999 to 2007 to investigate the effect of temperature changes on community structure and species abundance and biomass. Abundance and/or biomass of 16 epifauna species was significantly correlated with temperature anomalies of the mean sea surface temperature (SST) from 1971 to 2000. The response of species to SST changes was different in the study areas depending on species life history and, most likely on food supply, which in turn is strongly influenced by the timing and duration of primary production and regional hydrographical conditions (e.g. stratification). Also, changes in community structure were obvious in the three areas between 2002 and 2003 coinciding with high temperature anomalies and SST. On the other hand, these changes were mainly caused by the variability in abundance of dominant species and altogether no clear trends in community structure were found. In contrast to epifauna communities in the shallow southern North Sea temperature changes in the northern North Sea affected only single epifauna species until now.  相似文献   

14.
An effect of the very patchy distribution of Antarctic krill (Euphausia superba Dana) in various forms of aggregation is that a single swarm may not provide an unbiased estimate of population parameters such as mean length of krill in the local area. Here, we analyse the number of samples required to estimate the characteristics of a local population as precisely as if there were no differences between krill swarms in terms of their biological composition. Krill were intensively sampled over different spatial and temporal scales around South Georgia in 1981 and 1982, and in the Bransfield Strait in 1985. These varied from replicate hauls at a single station over 24 h and repeat sampling in restricted areas over periods of 6 to 14 d to regional surveys around South Georgia and in the Bransfield Strait. Various biological characteristics were measured such as length, maturity, moult stage and feeding state. Depending upon the biological characteristic examined and the area covered by the sampling programme, the number of samples needed to obtain the same degree of precision as would be found in the absence of heterogeneity varied from 3 to > 80 samples. This has important implications for the design of net-sampling programme for monitoring krill populations.  相似文献   

15.
Despite an increase in northern shrimp (Pandalus borealis) female biomass in the past years, the recruitment of the offshore population north and northeast of Iceland has remained very low. In this study, the influence of abiotic and biotic factors was studied in relation to shrimp recruitment. Two factors, cod (Gadus morhua) abundance and summer sea surface temperature (SST), were found to have a negative effect on offshore shrimp recruitment, explaining 71 % of the observed variation. Both cod abundance and temperature on the offshore shrimp grounds have increased in the past years, while recruitment has decreased and been at historically low levels since 2005. No significant relationship was found between recruitment and spawning biomass, indicating that recruitment variability is mainly driven by other factors. Cod abundance and summer SST are likely to affect different life stages of shrimp, as SST influences shrimp during its planktonic phase while cod abundance influences the demersal stage.  相似文献   

16.
Antarctic krill, Euphausia superba Dana, a major component in the southern ocean food web, typically occur in aggregations that range from small, discrete swarms and schools through to layers and superswarms that extend horizontally for several kilometres. A large Longhurst–Hardy plankton recorder has been used to obtain high-resolution serial samples from within two layers (up to 4 km in length) that were found near Elephant Island, north of the Antarctic Peninsula. Krill length, sex and maturity stage, net and acoustic estimates of number density are shown to vary significantly within these large layers. The variation occurring within a single layer is comparable with that occurring in a set of 38 swarms sampled contemporaneously with the layers. Thus, unlike a krill swarm, a whole krill layer may account for a substantial amount of the variation in the local krill population, although individual parts of the layer cannot be considered in this way. The layers play an important role in the ecology of the krill within the area. Firstly, these large layers may contain a significant proportion of the biomass within an area. Secondly, the structure of the layers gives some insight into the ways in which krill swarm formation and dispersal may be occurring. Received: 28 March 1997 / Accepted: 3 December 1997  相似文献   

17.
A novel approach was used to estimate the heterotrophic carbon component in the diet of the Antarctic krill Euphausia superba. Over 200 specimens from seven samples collected in the Lazarev Sea (January 1993 and 1995), at the Antarctic Polar Front (January 1993), and around South Georgia (February/March 1994) were dissected, and the total carbon content of their stomachs was estimated with a CHN-analyser. Gut-pigment contents were also measured by the gut-fluorescence technique in specimens collected at the same time, and the equivalent amount of their gut carbon was then subtracted from the total organic carbon content of guts from the same samples. The remaining carbon was assumed to originate entirely from heterotrophic food sources. This heterotrophic component accounted for a substantial proportion of the total food consumed by Antarctic krill, ranging from 17.4 to 98.9% of the mass of the gut contents (mean = 78.8% ± 21.2 SD). The results make an important contribution to the elucidation of the energy budget of krill and its daily carbon ration. With a few exceptions, previous estimates were largely calculated from a solely autotrophic carbon source, and were unable to account for the metabolic requirements of E. superba. Krill plays an important role in Antarctic food webs, as it often constitutes ≃50% of the total biomass of the zooplankton, and produces fast-sinking, dense faecal pellets which are important in the vertical transport of organic carbon from the euphotic layer to the deep ocean. High consumption rates of smaller heterotrophic organisms by krill suggest that this large microphage may be more important than previously believed in re-packaging micro- and mesozooplankton into a longer-lasting and more easily sequestered carbon pool. Received: 26 October 1998 / Accepted: 14 October 1999  相似文献   

18.
The Kittlitz's Murrelet (Brachyramphus brevirostris) is a rare, non-colonial seabird often associated with tidewater glaciers and a recent candidate for listing under the Endangered Species Act. We estimated abundance of Kittlitz's Murrelets across space and time from at-sea surveys along the coast of Alaska (USA) and then used these data to develop spatial models to describe abundance patterns and identify environmental factors affecting abundance. Over a five-week period in the summer of 2005, we recorded 794 Kittlitz's Murrelets, 16 Marbled Murrelets (B. marmoratus), and 70 unidentified murrelets. The overall population estimate (N, mean +/- SE) during the peak period (3-9 July) was 1317 +/- 294 birds, decreasing to 68 +/- 37 by the last survey period (31 July-6 August). Density of Kittlitz's Murrelets was highest in pelagic waters of Taan Fjord (18.6 +/- 7.8 birds/km2, mean +/- SE) during 10-16 July. Spatial models identified consistent "hotspots" of Kittlitz's Murrelets, including several small areas where high densities of murrelets were found throughout the survey period. Of the explanatory variables that we evaluated, tidal current strength influenced murrelet abundance most consistently, with higher abundance associated with strong tidal currents. Simulations based on the empirically derived estimates of variation demonstrated that spatial variation strongly influenced power to detect trend, although power changed little across the threefold difference in the coefficient of variation on detection probability. We include recommendations for monitoring Kittlitz's Murrelets (or other marine species) when there is a high degree of uncertainty about factors affecting abundance, especially spatial variability.  相似文献   

19.
Shifts in the diet of top predators can be linked to changes in environmental conditions. In this study, we tested relationships between environmental variation and seasonal changes in diet of a top predator, the grey-headed albatross Thalassarche chrysostoma, breeding at Bird Island, South Georgia in an austral summer of 1999/2000. Oceanographic conditions in that year around South Georgia were abnormal (i.e. anomalously high sea surface temperature to a relative 19-year long-term mean). The diet of grey-headed albatrosses showed high seasonal variation, shifting from cephalopods (42.9 % by mass) in late February to Antarctic krill Euphausia superba (58.3 %) in late April, and grey-headed albatrosses breeding performance was low (16.8 %). This study shows these albatrosses did not manage to find sufficient alternative prey and highlight the risk to top predators if there is an increase in the frequency or severity of food shortages in Antarctic waters.  相似文献   

20.
Penguins may exhibit plasticity in their diving and foraging behaviors in response to changes in prey availability. Chinstrap penguins are dependent predators of Antarctic krill in the Scotia Sea region, but krill populations have fluctuated in recent years. We examined the diet of chinstrap penguins at Livingston Island, South Shetland Islands, in relation to their diving and foraging behavior using time-depth recorders over six breeding seasons: 2002–2007. When krill were smaller, more chinstrap penguins consumed fish. In these years, chinstrap penguins often exhibited a shift to deep dives after sundown, and then resumed a shallower pattern at sunrise. These night dives were unexpectedly deep (up to 110 m) and mean night dive depths sometimes exceeded those from the daytime. The average size of krill in each year was negatively correlated to mean night dive depths and the proportion of foraging trips taken overnight. Based on these patterns, we suggest that when krill were small, penguins increasingly targeted myctophid fish. The average krill size was negatively correlated to the time chinstrap penguins spent foraging which suggests that foraging on smaller krill and fish incurred a cost: more time was spent at sea foraging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号