首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Shallow rocky habitats in SW Apulia (SE Italy, Mediterranean Sea) were surveyed in late spring 2002 to assess distribution patterns of sea urchins (Paracentrotus lividus and Arbacia lixula) and barren habitats (coralline barrens and bare substrates) in rocky reefs impacted by the destructive fishery of the rock-boring date-mussel Lithophaga lithophaga. Sea urchin density, test size-structure and biomass, and the percent cover of barrens were evaluated at four locations (5–6 km apart from each other), two heavily impacted by the date-mussel fishery and two controls. Sea urchin density and barren habitat cover were assessed at two and three sites (100–300 m apart), respectively, within each location. Sea urchin biomass was evaluated only at the scale of locations. Average density of P. lividus did not significantly change between impacted locations and controls, whereas A. lixula showed a greater density at the impacted locations. Distribution patterns of A. lixula, in addition, differed at the spatial scale of a few metres between impacted locations and controls, being generally more aggregated at the controls. The size-frequency distribution (test diameter) of P. lividus showed a mode at 3–4 cm at the impacted locations compared to a mode at 2–3 cm in the controls. The size-frequency of A. lixula was bimodal at the damaged locations (with modes at 1–2 and 4–5 cm, respectively) and unimodal (with the mode at 4–5 cm) at the controls. Average biomass of both sea urchins (P. lividus and A. lixula) was two- to fourfold greater at the impacted locations (~600 g wet wt m–2) than at the controls (150–250 g wet wt m–2). Barren habitats had a far greater average cover (mainly of macroalgae) at the impacted locations (from 79% to 96%) than at control locations (from 7% to 21%). These results show that the date-mussel fishery may have the potential to affect distribution patterns of sea urchins and to greatly enhance the percent cover of barren grounds in shallow Mediterranean rocky reefs.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

2.
Fabio Bulleri 《Marine Biology》2013,160(9):2493-2501
The role played by the urchins, Paracentrotus lividus and Arbacia lixula, in the formation and persistence of barren areas dominated by encrusting coralline macroalgae is yet to be fully elucidated. This study, carried out in the NW Mediterranean (43° 30′N, 10° 20′E) between February 2005 and April 2006, investigated how the loss or density decrease in one or both urchin species influences the recovery of erect macroalgal stands (dominated by filamentous forms) at the margins of barren areas. At a depth of 4–6 m, three barren patches were assigned to each of the following treatments: (1) control (natural densities of A. lixula and P. lividus); (2) 50 % of the natural density of A. lixula and natural density of P. lividus; (3) total removal of A. lixula and natural density of P. lividus; (4) 50 % of the natural density of P. lividus and natural density of A. lixula; (5) total removal of P. lividus and natural density of A. lixula; (6) 50 % of the natural densities of both A. lixula and P. lividus; (7) total removal of both A. lixula and P. lividus. The effects of the herbivore treatments were evaluated either in the presence or the absence of encrusting corallines. The partial or total removal of A. lixula, P. lividus or both favored the proliferation of filamentous macroalgae at the margins of barren patches. The presence of encrusting corallines reduced the development of these macroalgae. The results of this study suggest that a moderate decrease in the density of just one of the two species can decrease the ability of the herbivore assemblage to control the proliferation of filamentous macroalgae at the margins of barren patches. The extent of barren areas appears, therefore, to be regulated by the outcome of density-dependent interactions between the two species of sea urchins.  相似文献   

3.
Recent ecological studies have shown a strong relation between temperature, echinoids and their grazing effects on macro-algal communities. In this study, we speculate that climate warming may result in an increasingly favourable environment for the reproduction and development of the sea urchin Arbacia lixula. The relationship between increased A. lixula density and the extent of barren grounds in the Mediterranean Sea is also discussed.  相似文献   

4.
Morpho-functional features potentially involved in defence mechanisms against fish predators (i.e. attachment tenacity, spine length, and test robustness and thickness) have been assessed in two Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula. All four morpho-functional features were significantly and positively related to individual size for both species of sea urchins. Test robustness (i.e. static load needed to break sea urchin tests) was significantly greater for A. lixula (from 3,450 to 15,000 g depending on size) than for P. lividus (1,180–11,180 g). Attachment tenacity (i.e. force needed to dislodge sea urchins from the rocky substrate) was greater in A. lixula (280–3,300 g) than in P. lividus (110–1,450 g), and the difference tended to decrease in relation to smaller sea urchin size. Spine length was greater in A. lixula (1.5–2.9 cm) than in P. lividus (0.5–2.3 cm), but the difference decreased for larger sea urchin size. Test thickness was slightly greater (but not significantly) in A. lixula (0.35–1.10 mm) than in P. lividus (0.12–0.90 mm). These results provide evidence that morpho-functional features of sea urchins could be involved in affecting predation rates by fishes upon P. lividus and A. lixula, with potential implications for the population structure and distribution patterns of the two sea urchins in shallow rocky reefs.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

5.
Sympatric sea urchin species are usually considered to belong to the same grazer guild. Nevertheless, their role in community dynamics may vary due to species-specific morphological traits, feeding preferences and foraging behavior. In the Mediterranean Sea, the two species Paracentrotus lividus and Arbacia lixula co-occur in barren areas. Whereas P. lividus is usually considered responsible for creating a barren ground, the roles of the two sea urchin species in its maintenance are currently unclear. The relative and combined effects of P. lividus and A. lixula on maintaining the benthic community in the barren state were tested experimentally, using orthogonal exclusion of the two species. Results show that exclusion of A. lixula, regardless of the presence of P. lividus, led to a significant decrease in the surface of bare rock and a significant change of the algal assemblages, thus demonstrating the major role of this species in maintaining the barren state.  相似文献   

6.
The sea urchin cardinalfish, Siphamia tubifer (Perciformes: Apogonidae), is unusual among coral reef fishes for its use of bioluminescence, produced by symbiotic bacteria, while foraging at night. As a foundation for understanding the relationship between the symbiosis and the ecology of the fish, this study examined the diel behavior, host urchin preference, site fidelity, and homing of S. tubifer in June and July of 2012 and 2013 at reefs near Sesoko Island, Okinawa, Japan (26°38′N, 127°52′E). After foraging, S. tubifer aggregated in groups among the spines of the longspine sea urchin, Diadema setosum, and the banded sea urchin, Echinothrix calamaris. A preference for D. setosum was evident (P < 0.001), especially by larger individuals (>25 mm standard length, P < 0.01), and choice experiments demonstrated the ability of S. tubifer to recognize and orient to a host urchin and to conspecifics. Tagging studies revealed that S. tubifer exhibits daily fidelity to a host urchin; 43–50 and 26–37 % of tagged individuals were associated with the same urchin after 3 and 7 days. Tagged fish also returned to their site of origin after displacement; by day two, 23–43 and 27–33 % of tagged individuals returned from displacement distances of 1 and 2 km. These results suggest that S. tubifer uses various environmental cues for homing and site fidelity; similar behaviors and cues might be used by larvae for recruitment to settlement sites and for the acquisition of luminous symbiotic bacteria.  相似文献   

7.
We compared densities, distributions and size frequencies of massive corals in the genus Porites on five relatively exposed, mid-shelf reefs (50 km offshore) in the central Great Barrier Reef with those on a sheltered inshore reef (10 km offshore). Data included various transect and mapping studies between 1984 and 1990, estimates of size-dependent damage from the crown-of-thorns starfish Acanthaster planci, estimated densities of herbivorous sea urchins (potential predators of juveniles), and observations of size-specific effects of tropical cyclones. Assemblages of Porites spp. on mid-shelf reefs were dominated by small colonies (2 to 10 cm diam) established either from planula larvae or from small tissue remnants that had survived A. planci predation in the early to mid-1980s. Large colonies (up to 10 m diam) were scarce, except for localized aggregations on terraces at the base of reef slopes (6 to 12 m deep). Extensive space suitable for settlement by coral larvae can be attributed to recurrent cyclones and A. planci outbreaks. Despite low sea urchin predation, the slowly growing Porites juveniles are likely to die from overgrowth by numerous, much faster growing corals. On the sheltered inshore reef, the coral community was dominated by very large (>5 m diam) Porites colonies, several centuries old; recruitment was mainly by fragmentation of large colonies; there was little space available for settlement, and probabilities of juvenile mortality from grazing urchins were high. Differences in settlement and early survival of Porites spp. are exacerbated by different regimes of storm damage. A model is proposed that links wave climate with the size and age reached by corals before dislodgement by storm waves, and which is consistent with observed densities and size-frequency distributions of Porites in sheltered and exposed areas.  相似文献   

8.
The high-energy windward coasts with narrow rocky intertidal regions (Oistens, River Bay) at Barbados, West Indies, had abundant macroscopic algae (mainly Sargassum sp.) and populations of Holothuria glaberrima Selenka and Echinometra lucunter (Linnaeus), while protected ones with a wide rocky intertidal had sparse macroscopic algae and populations of E. lucunter only. The low-energy leeward coasts with wide rocky intertidal regions (Six Men's Bay, Payne's Bay) had no macroscopic algae in the surf zone and populations of E. lucunter only. Numerical densities of E. lucunter were high in all localities; the highest level of 144 m-2 was found at Six Men's Bay; numerical densities of H. glaberrima were high at both Oistens and River Bay, the highest level of 36 m-2 being recorded at River Bay. The caloric density of H. glaberrima at River Bay was 412 kcal m-2. The highest combined density of H. glaberrima and E. lucunter was at Oistens (632 kcal m-2, with 254 kcal m-2 being due to E. lucunter). The highest caloric density of E. lucunter at Six Men's Bay was 482 kcal m-2. Dependence on suspended food probably restricts H. glaberrima to high-energy environments while E. lucunter has an additional food source through its ability to scrape the rock substratum. E. lucunter may be more efficient in catching drift food. Mortality is suggested to be the basis of the failure of E. lucunter to displace H. glaberrima from the high-energy location.  相似文献   

9.
We examined the distribution and abundance of organisms on subtidal rocky reefs at nine sites around the Chatham Islands, a remote group 780 km east of southern New Zealand. We sampled five depth strata ranging from 1 to<16 m to identify spatial patterns in the abundance of algae and invertebrates and to assess their variation within and among sites. This information is used to discuss hypotheses concerning community structure at this remote locality. Several patterns were apparent. The immediate subtidal was occupied by the southern bull kelp Durvillaea spp. A suite of 11 fucalean species were dominant to a depth of 10 m with an average abundance of 28 m-2, while one species, Carpophyllum flexuosum, occurred mostly in deeper water. Only two laminarian species of algae were present at the islands. The indigenous Lessonia tholiformis was abundant at 2.5 to 15 m and was not found in deeper water, while the giant kelp Macrocystis pyrifera was abundant at two sites in 12 to 18 m. The commercially valuable abalone Haliotis iris was extremely abundant in shallow water, with an overall mean of 6 m-2 at 5 m. The sea urchin Evechinus chloroticus was common, but reached high densities only in small (<25 m2) patches. The characteristic urchin-dominated zones reported in kelp beds world-wide were not seen. There was considerable site-to-site variation in the occurrence and abundance of individual species. Some differences between sites were associated with shelter from swell (e.g. M. pyrifera was found only in sheltered sites) and physical habitat (e.g. juvenile H. iris were found only beneath boulders inshore), but much of the variation could not be explained by physical or depth-related factors alone. We hypothesize that the differences in these kelp bed assemblages compared to mainland New Zealand are partially due to the high degree of endemism at the Chatham Islands. Local variation cannot be explained by herbivory, and is most likely the result of the various life-history characteristics of the major habitat-forming species, the large brown algae.  相似文献   

10.
Indirect Benefits of Marine Protected Areas for Juvenile Abalone   总被引:1,自引:0,他引:1  
Abstract: Marine protected areas ( MPAs) designed to provide harvest refugia for red sea urchins (  Strongylocentrotus franciscanus ) offer a unique opportunity to study the indirect effects of urchin fishing on subtidal communities. Sea urchins may provide important cryptic microhabitat for juvenile abalone sheltering beneath urchin spines in shallow habitats worldwide. We investigated the abundance of juvenile (3–90 mm) red abalone, (    Haliotis rufescens ) and the rare flat ( <90 mm) abalone (   H. walallensis ) on protected and fished rocky reefs in California. Abalone abundance surveys were conducted inside 24 × 30 m plots on three protected reefs with red sea urchins present and three fished reefs where red sea urchins were removed by commercial or experimental fishing. Significantly more juvenile abalone were found in 1996 and 1997 on protected reefs with urchins present than on fished reefs ( χ   2 = 188, df = 1, p < 0.001 ). Juvenile red abalone abundance was not correlated with local adult red abalone abundance or habitat rugosity. One-third of the juveniles inside the MPAs were found under the urchins' spine canopy, as were a suite of unfished marine organisms. In the laboratory, juvenile abalone survived better (  χ   2 = 7.31, df = 1, p < 0.01) in crab predation experiments in which red sea urchins were available as shelter. Fishing red urchins reduced structural complexity, potentially decreasing microhabitat available for juvenile abalone. This example demonstrates how MPAs designed for one fished species may help other species, illustrating their usefulness for ecosystem-based fishery management and marine conservation.  相似文献   

11.
Grazing sea urchins can reduce kelp abundance and therefore strongly affect kelp forest community structure. Despite the ecological importance of sea urchins, direct field studies on the role that urchin predators play in shaping urchin populations are rare for southern California. We conducted surveys and manipulative experiments within kelp forests near San Diego, CA, (32–51′28″N, 117–16′00″W) from 2006 to 2009 to determine whether predators such as sheephead (Semicossyphus pulcher) and spiny lobsters (Panulirus interruptus) may be linked to purple urchin (Strongylocentrotus purpuratus) and red urchin (Strongylocentrotus franciscanus) distribution and habitat use, as well as purple urchin density-dependent mortality. Purple urchins were less dense and more cryptic inside a local marine protected area (MPA) that contained high predator abundance than in nearby heavily fished areas, whereas red urchins rarely were found outside the MPA. Urchin proportional mortality was inversely density dependent during the day when sheephead were active, despite fish aggregations in plots of high urchin density, but was density independent during the night when lobsters were active. Urchin mortality was reduced under understory algal cover during the day, but not during the night. Examining whether urchin mortality from predation is density dependent and how habitat complexity influences this relationship is imperative because behavioral changes and increases in urchin populations can have vast ecological and economic consequences in kelp forest communities.  相似文献   

12.
Settlement into the benthic habitat may be an important process in regulating sea urchin abundance, which potentially modifies the structure of benthic communities. Strong settlement events may increase sea urchin abundance beyond a certain threshold, leading to the formation of coralline barrens (overgrazed communities with a dominance of encrusting coralline algae). To understand the role of settlement in regulating sea urchin populations we first need to determine settlement variability. Temporal variation in settlement of the sea urchin Paracentrotus lividus was monitored at three sites in the Medes Islands, NW Mediterranean, during three settlement seasons (March 1998 through October 2000). Spatial variation in settlement was studied in 1999 at 50 sites along a gradient of exposures to waves and currents, inside and outside the archipelago, and separated by distances from tens to thousands of meters. Bathymetric distribution of settlement was also studied in 2000 at six sites at 5, 10, 15 and 20 m depths. Settlement of P. lividus occurred in a single annual peak within 3 weeks in May–June. Differences in settlement between years were more than two orders of magnitude. Spatial variability was found at all scales investigated, showing strong patchiness at the smallest spatial scales (tens of meters). Sea urchins settled preferentially at depths between 5 and 10 m. Substratum type, level of protection, and adult population densities were not significant in determining settlement. However, settlement was found to be related to the degree of exposure to waves and currents, indicating that physical processes are very important at the spatial scales investigated. This greatly variable settlement is a necessary, although not sufficient, condition to create gradients of adult P. lividus abundance. Further studies should be designed to investigate the interaction between settlement strength and post-settlement mortality.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

13.
In coastal habitats, wave exposure influences several aspects of the life history of marine organisms. Here, we assess how hydrodynamic conditions can generate variation in density, size structure and microhabitat usage of Paracentrotus lividus and whether these effects are consistent between regions that are markedly different for oceanic climate, such as the coasts of SW Portugal and NW Italy. The abundance of P. lividus was ~4 times higher in SW Portugal than in NW Italy, but within each region, there was no effect of wave exposure. In SW Portugal, higher urchin abundances were found at shallower depths, while no effect of depth on urchin abundance emerged in NW Italy. Most of the variation in urchin abundance occurred at small spatial scales (metres), and our results suggest that habitat complexity, that is, the presence of cracks and crevices, is an important determinant of patterns of distribution of this species. The population in NW Italy was characterized by a unimodal size distribution, with a higher proportion of medium-sized individuals. In contrast, in SW Portugal, smaller individuals represented a large proportion of the populations. Size structure varied between exposed and sheltered habitats in SW Portugal, suggesting that the proportion of individuals from different size cohorts may vary along wave-exposure gradients as a result of direct or indirect effects of hydrodynamic forces. In SW Portugal, most urchins occurred in burrows, while in NW Italy, urchins were mainly observed in crevices. These results suggest that creating/occupying burrows might be an adaptive behaviour that allows sea urchins to better withstand stressful hydrodynamic conditions and, therefore, are more common on exposed Atlantic coasts. Overall, our study suggests that the effects of hydrodynamic forces on sea urchin populations are context dependent and vary according to background oceanic climate.  相似文献   

14.
Outbreaks of disease in herbivorous sea urchins have led to ecosystem phase shifts from urchin barrens to kelp beds (forests) on temperate rocky reefs, and from coral to macroalgal-dominated reefs in the tropics. We analyzed temporal patterns in epizootics that cause mass mortality of sea urchins, and consequent phase shifts, based on published records over a 42-year period (1970–2012). We found no evidence for a general increase in disease outbreaks among seven species of ecologically important and intensively studied sea urchins. Periodic waves of recurrent amoebic disease of Strongylocentrotus droebachiensis in Nova Scotia coincide with periods when the system was in a barrens state and appear to have increased in frequency. In contrast, following a major epizootic that decimated Diadema antillarum throughout the Caribbean in 1983, subsequent outbreaks of disease were highly localized and none have been reported since 1991. Epizootics of Strongylocentrotus in the NW Atlantic and NE Pacific, and Paracentrotus and Diadema in the eastern Atlantic, have been linked to climate change and overfishing of sea urchin predators. The spatial extent of recurrent disease outbreaks in these species, and the frequency of phase shifts associated with these epizootics, has decreased over time due to the expansion of the macroalgal state and its stabilization through positive feedback mechanisms. Longitudinal studies to monitor disease outbreaks in sea urchin populations and improved techniques to identify causative agents are needed to assess changes in the frequency and extent of epizootics, which can profoundly affect the structure and functioning of coastal marine ecosystems.  相似文献   

15.
Sonnenholzner JI  Lafferty KD  Ladah LB 《Ecology》2011,92(12):2276-2284
In the Galápagos Islands, two eulimid snails parasitize the common pencil sea urchin, Eucidaris galapagensis. Past work in the Galápagos suggests that fishing reduces lobster and fish densities and, due to this relaxation of predation pressure, indirectly increases urchin densities, creating the potential for complex indirect interactions between fishing and parasitic snails. To measure indirect effects of fishing on these parasitic snails, we investigated the spatial relationships among urchins, parasitic snails, commensal crabs, and large urchin predators (hogfish and lobsters). Parasitic snails had higher densities at sites where urchins were abundant, probably due to increased resource availability. Commensal crabs that shelter under urchin spines, particularly the endemic Mithrax nodosus, preyed on the parasitic snails in aquaria, and snails were less abundant at field sites where these crabs were common. In aquaria, hogfish and lobsters readily ate crabs, but crabs were protected from predation under urchin spines, leading to a facultative mutualism between commensal crabs and urchins. In the field, fishing appeared to indirectly increase the abundance of urchins and their commensal crabs by reducing predation pressure from fish and lobsters. Fished sites had fewer snails per urchin, probably due to increased predation from commensal crabs. However, because fished sites also tended to have more urchins, there was no significant net effect of fishing on the number of snails per square meter. These results suggest that fishing can have complex indirect effects on parasites by altering food webs.  相似文献   

16.
Abstract:  We surveyed shallow, rocky reefs in southwestern Apulia (Mediterranean Sea) to assess the effects on coastal fish assemblages of the date mussel (  Lithophaga lithophaga ) fishery, an illegal practice that strips the rocky reef bare. We visually sampled fish four times over 15 months at three locations, one affected by date-mussel fishery and two controls. The fish assemblage at the affected location differed significantly from those at the control locations over all sampling times. Herbivorous fishes, sparids, and labrids (genus Symphodus ) contributed most to the differences between the affected location and controls. Lower densities of Symphodus spp. were observed at the affected location, whereas detritivorous fishes were recorded exclusively at control sites. Small serranids and sparids showed temporal trends that differed between the affected location and the control locations. Our results suggest that the date-mussel fishery affects fish assemblages chiefly through reduction of arborescent macroalgae (contributing to habitat complexity and primary production) and emphasize the need for more effective policing against this destructive practice.  相似文献   

17.
From 1980 through 1983 sea urchin mass mortalities were at least 245 000 t. The habitat released to seaweed is expected to support a standing crop of 1.8 million tons and an annual production of 7 million tons. An extensive survey of 2 900 km of Nova Scotia shoreline revealed that 511 km2 of habitat (rock bottom less than 15 m deep) was available to seaweeds. Areas most exposed to ocean swells bordered 26% of the shoreline length but included 82% of the seaweed habitat. Before mass mortalities, seaweed refuges from sea urchin grazing included very sheltered habitats, very exposed habitats, and boulders set among shifting sand; however, these were less than 10% of the total habitat. In the 1 to 2 years following mass mortalities seaweed cover and occurrence increased significantly for all of five categories of wave exposure and for six of seven algal taxa respectively. In at least three locations the sea urchin population began to recover as a result of larval recruitment but in 1983 was again reduced by disease. Sea urchins appear to lack natural resistance to disease, at least at warm temperatures. In the laboratory all sea urchins collected from the Bay of Fundy, southern Nova Scotia, eastern Newfoundland, and an area recovering from mass mortalities died following exposure to diseased animals. Also, field mortalities included a wide variety of habitats. Interviews of Nova Scotia lobster fishermen revealed that sea urchin mass mortalities have probably occurred before in this century, but infrequently.  相似文献   

18.
The diurnal rhythms of the sea urchin Diadema setosum differ in coral-reef and port populations at Eilat, Israel. In the port basin (built in 1967), predators of D. setosum are not present. The locomotory activity of reef and port sea-urchins was measured in the field, using SCUBA equipment. During the day, reef sea-urchins sit motionless in sheltered areas; at night, they crawl around and search for food. In contrast, port sea-urchins are active during 24 h. The activity pattern of D. setosum seems to depend on the presence or absence of predators. Apparently, the sea urchins which entered the newly-built harbour have adapted to their predatorless environment. It is not known how this fast adaptation came about; possible explanations are discussed.  相似文献   

19.
The techniques used by 9 species of fish (representing 3 families) to capture Diadema sea urchins were observed under water in the Red Sea at Eilat, Israel. Different species displayed different techniques. Fish belonging to the Lethrinidae and Labridae families devoured the entire urchin after capture; Labridae alone were also capable of breaking up large sea urchins by banging them on rocks. The fish did this by shaking its head while holding the urchin in its mouth. Under experimental conditions, fish can distinguish between large and small urchins, and show a preference for the small urchin. The fish also shun contact with some other species of urchins. The trigger fish Balistes fuscus exposed to a dummy sea urchin responds to optical stimuli (body shape and spines); when exposed to a living sea urchin it responds to both optical and behavioural stimuli (movements of the spines). Morphological and ethological preadaptation of the fish to alter its preference for other food is essential before it can develop differentiated capture techniques. The ecological significance of the behaviour of fish in the coral reef ecosystem and the alternating influences in the predator-prey-relationship are discussed.  相似文献   

20.
We studied the reproductive cycle of the sea urchin Arbacia lixula in a subtidal population from northeast Spain over four years using a gonadosomatic index (GSI) and gonad histology. Our results show that the GSI of A. lixula follows a seasonal cycle which peaks in May–July and attains its lowest values in October–November every year. The time course of the GSI matched closely the photoperiod cycle. We also found a remarkable inter-annual variability in the maximum value of GSI, which correlated with mean water temperature during the gonad growth period (winter and spring). Gonad histology was also in agreement with a single gametogenic cycle per year in this species. We explored the application of circular statistics to present and analyse gonadal development data, which allowed us to adequately handle the high intra-individual variability detected, with several developmental stages commonly found within the same gonad. The picture that emerged is one of a gametogenic timing driven by photoperiod, while the amount of reproductive output is determined by temperature. This is coherent with the tropical origin of the species and lends support to recent warnings about an increase in the abundance of this species in the Mediterranean as a result of global warming, with associated increased impact potential in sublittoral communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号