共查询到19条相似文献,搜索用时 46 毫秒
1.
厌氧反应器中絮状污泥成核过程研究 总被引:2,自引:1,他引:2
采用本课题组建立的定量方法研究了中温内循环厌氧反应器中絮状污泥的成核过程.经过85 d,污泥平均粒径由47.8 μm增至96.1 μm,成核过程基本完成.成核过程中的污泥平均粒径与成核时间线性相关性显著,相关系数达到0.989 3,污泥粒径的平均增长速率为0.58 μm/d.污泥含核率从第1 d的7.6%增长至第 85 d的36.1%.含核率的增长速率波动较大,经历了快-慢-较快3个阶段.试验过程中,污泥ECP含量与污泥含核率的增长速率明显正相关,表明ECP可能是污泥成核速率波动的原因.随成核进行污泥活性呈上升趋势,而污泥沉降性能的改善并不明显.上述定量方法以及研究结果均有利于在反应器层面了解污泥颗粒化机制. 相似文献
2.
厌氧反应器中污泥迅速颗粒化研究 总被引:2,自引:0,他引:2
以实验室规模的厌氧膨胀污泥床反应器(简称EGSB)内的活性污泥为研究对象,主要讨论影响活性污泥迅速颗粒化的因素,以加快絮状污泥的颗粒化进程。采用对比的实验方法,分别在反应器内加入小球藻和活性炭为载体进行对照实验。结果表明,小球藻和活性炭的加入在迅速提高COD去除率,污泥粒径增大和增强颗粒污泥沉降性方面有明显优势,胞外多聚物的含量均比接种时和对照实验中的相关数据有明显增加,颗粒污泥表面以产甲烷丝状菌和杆状菌为主。小球藻和活性炭的加入有助于加快活性污泥的颗粒化进程。 相似文献
3.
基于不同接种污泥复合型厌氧氨氧化反应器的快速启动特征 总被引:1,自引:3,他引:1
为获得快速启动厌氧氨氧化的最佳污泥源及厌氧氨氧化颗粒污泥的快速形成工艺,采用本实验室自主研发复合型CAMBR反应器(厌氧折流板反应器(ABR)+膜生物反应器(MBR),分别接种厌氧颗粒污泥(R1)和絮状反硝化污泥(R2),考察不同接种污泥的厌氧氨氧化启动特征和颗粒化程度.结果表明,R1与R2反应器分别耗时45 d和60 d均成功快速启动厌氧氨氧化,其启动过程均可分为活性停滞期、活性提高期、活性稳定期3个阶段,但每个阶段氮素的去除规律略有不同,稳定运行期内,R1和R2反应器内NH_4~+-N和NO-2-N的平均去除率均高达95%以上;此外,R1反应器中形成了直径0.8~1.6mm为主的厌氧氨氧化红色颗粒污泥,R2反应器则以不规则块状和絮状为主,颗粒化程度较低,两个反应器内均可观察到红色颗粒污泥上浮现象;稳定运行期内NH_4~+-N、NO-2-N和NO_3~--N之间的定量关系分析表明:R1反应器内可能存在着硝酸盐型厌氧氨氧化,致使NH_4~+-N过量转化,R2反应器内则为典型亚硝酸盐型厌氧氨氧化. 相似文献
4.
厌氧升流式污泥层反应器在较高的COD容积负荷和水力负荷下稳定运行的关键是要有良好的固液分离,而固液分离的必要条件是污泥的沉降速度大于混合液在三相分离器的沉降区的最小断面上的向上流速。通过小型装置的试验表明,污泥的沉降速度与污泥的性状和浓度有关,使反应器内的污泥颗粒化能改善污泥沉降性、提高固液分离效果,使反应器能在相当高的COD容积负荷(20—30kgCOD/m~3·d)和水力负荷(0.8m~3/m~2·h)下稳定运行。本文叙述了厌氧升流式污泥层反应器内的污泥颗粒化过程,并简要地讨论了培养颗粒污泥的基本条件。 相似文献
5.
6.
7.
8.
为了快速启动厌氧反应器,该文自主研发了由光合细菌、芽孢杆菌、酵母菌、乳酸菌组合而成的复合菌剂YDEM2。分别在间歇进水和连续进水的条件下,研究了YDEM2对厌氧反应器的启动效果。结果发现:接种YDEM2的厌氧反应器启动效果明显优于未接种的对照。连续进水反应器中,在19.3 kg/(m3·d)(以COD计)容积负荷下,接种YDEM2的反应器COD去除率稳定达到95%以上的启动时间,由未接种的47 d缩短到36 d,VSS/TSS达到70%的时间由50 d缩短到36 d,并且在厌氧反应器快速启动过程中培养出性能良好的颗粒污泥。表明YDEM2可促进厌氧反应器的启动,在实际工程中具有一定的推广应用价值。 相似文献
9.
厌氧氨氧化工艺启动周期过长,在实际应用推广中受到制约。为缩短厌氧氨氧化工艺启动时间,提高启动成功率,试验分别通过将两种来源的污泥分别接种在两个相同类型的UASB反应器,以及将相同污泥分别接种在不同类型反应器的方法,对厌氧氨氧化工艺启动阶段进行试验研究,探索能够缩短工艺启动周期、提高工艺启动成功率的有效措施。结果表明,增加机械搅拌装置、提高接种污泥的浓度及厌氧氨氧化菌落丰度指数,可以有效提高厌氧氨氧化反应器的耐浓度、耐负荷冲击性能,有利于厌氧氨氧化工艺的启动。 相似文献
10.
11.
12.
厌氧-水解反应器稳定运行的试验研究 总被引:11,自引:1,他引:11
采用造纸废水对厌氧水-水解反应器的启动、运行进行试验研究。结果表明,当MLVSS在15g/L左右,COD容积负荷为1.45kg/(m^3·d),水力负荷为2.0m^3/(m^2·h),水国停留时间为4h,污泥颗粒化程度较高,反应器运行效果稳定可靠。 相似文献
13.
不同接种污泥ABR厌氧氨氧化的启动特征 总被引:1,自引:9,他引:1
采用两套相同的厌氧折流板反应器(ABR),分别接种厌氧絮状/颗粒污泥的混合污泥(R1)以及厌氧絮状污泥(R2).采用人工配水配制NH+4-N、NO-2-N负荷54.5~68.0 g·(m3·d)-1,在温度30~35℃,HRT为26 h,p H值7.5±0.5条件下,经过120 d、125 d分别成功启动厌氧氨氧化反应.两个反应器在氮素去除规律上基本相似,均经历了菌体水解期、活性停滞期、活性提高期和稳定运行期等4个阶段.在稳定运行期间,R1、R2反应器中NH+4-N、NO-2-N的平均去除率都高达90%以上,且NH+4-N、NO-2-N的平均去除负荷为57.3~67.9 g·(m3·d)-1,R1在NH+4-N的去除负荷上略高于R2.值得一提的是,90%以上的氮素都在ABR反应器的第一格室被去除.同时,随着水流的方向,污泥的颜色逐渐由少量红棕色、黄褐色向黑色转变,这与氮素去除规律一致.由此表明,接种污泥的不同并未造成ABR厌氧氨氧化反应器的启动规律和污染物去除特征有明显差异. 相似文献
14.
15.
颗粒+絮体污泥CANON工艺的启动与SRT影响研究 总被引:1,自引:5,他引:1
为缩短工程应用中CANON工艺的启动时间及指导实际工程排泥控制,利用两个相同规格的SBR反应器接种不同比例厌氧氨氧化(anaerbic ammonium oxidation,ANAMMOX)颗粒污泥,研究了CANNON工艺启动规律与不同絮体SRT对工艺运行的影响.试验过程中,温度控制在30℃±1℃,pH 7~8.结果表明,接种5%和10%ANAMMOX颗粒污泥的两反应器在初始FA浓度大于44 mg·L~(-1)条件下,不利于工艺的快速启动.接种15%和20%ANAMMOX颗粒污泥的两反应器,分别在运行的第46 d和35 d成功启动了CANON工艺.当絮体SRT分别为30 d、90 d和不主动排泥时,系统总氮去除负荷均能维持在0.35kg·(m3·d)-1;定量PCR数据显示,随污泥龄的延长,AOB丰度相对稳定,ANAMMOX菌丰度略有增加,但是NOB丰度显著增加.因此,选择性地排出絮体有利于NOB的淘洗和系统的长期运行稳定性. 相似文献
16.
对折流板厌氧反应器(ABR)处理碱减量印染废水的启动过程进行了实验研究.ABR接种厌氧颗粒污泥,以模拟碱减量印染废水作为启动进水,在温度为32~35℃,进水pH值为7.8~8.3条件下,采用低负荷方式启动ABR.反应器经过了70 d共6个阶段的连续运行后完成启动,实现了对碱减量印染废水的高效稳定运行.稳定运行反应器的平均容积负荷(以COD计)达到1.93 kg·(m3.d)-1,出水pH值7.3左右,COD平均去除率为78%以上.启动后期ABR各隔室功能分区较为明显并且形成了性能良好的厌氧颗粒污泥,相对于启动前期各隔室内颗粒污泥的粒径增大,沉降性能变好,颗粒污泥的f(MLVSS/MLSS)值均达到0.65以上.启动完成后各隔室内的微生物具有较高活性,ABR中厌氧颗粒污泥的平均DHA浓度(以TF计)和平均辅酶F420浓度分别为88.8μ(g·h)-1和0.18μmol·g-1. 相似文献
17.
快速启动厌氧氨氧化工艺 总被引:2,自引:13,他引:2
为研究如何获得厌氧氨氧化的快速启动工艺,采用两种不同水力流态反应器:完全混合式膜生物反应器(MBR)和推流式厌氧折流板反应器(ABR),分别接种絮状硝化污泥,考察其厌氧氨氧化快速启动性能.结果表明:两种反应器均能成功启动厌氧氨氧化,MBR启动周期(90 d)比ABR(111 d)缩短20%;稳定运行期内,MBR总氮(NH_4~+-N+NO_2~--N)平均去除负荷[0.098 kg·(m3·d)-1]也明显高于ABR[0.089 kg·(m3·d)-1];此外,两个反应器中污泥形态差异明显,MBR中污泥呈絮状,而ABR第1隔室中以厌氧氨氧化颗粒污泥为主;NH_4~+-N、NO_2~--N和NO_3~--N之间的定量关系分析表明:相较于ABR,MBR能实现完全的生物截留,使得系统内含有更多种类的脱氮功能菌,有利于氮素的去除.MBR在厌氧氨氧化的快速启动方面表现出更明显的优势. 相似文献
18.
19.
为克服难降解废水厌氧微生物反应器启动初期生物易流失和启动过程缓慢的缺点,将厌氧絮状污泥进行固定化包埋作为厌氧反应器的接种污泥处理有毒难降解的PTA废水,同时考察固定化细菌在厌氧反应器启动过程中的变化特性.结果表明,经过136 d的运行,反应器在COD有机负荷为3 kg.(m3.d)-1,水力停留时间为3~4 d的运行条件下,PTA废水的COD去除率可以达到75%~85%,且系统具有比较好的稳定性和生物量保持能力.另一方面,胞外聚合物(EPS)的变化、产甲烷菌DNA特异性扩增和包埋颗粒的扫描电镜观察结果表明,虽然包埋载体在一定程度上限制了传质速度,但包埋颗粒中的厌氧微生物在微生物相和数量上都仍有显著的变化和增长. 相似文献