首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A stable isotope tracer technique was used to evaluate the relative importance of particulates and water as respective sources of cadmium (Cd) uptake in the freshwater isopod Asellus racovitzai (Isopoda, Crustacea). 113Cd(NO3)2 was applied to the sediment at a nominal concentration of 20.0 ng g-1, and 114Cd(NO3)2 was added to the overlying water (nominal concentration of 4.4 ng g-1), in the same test systems. Asellids added were either free-ranging on the sediment surface, where they were exposed to both particulate and water sources of Cd, or were enclosed in dialysis 'tubes', 10 cm above the sediment surface, and were therefore exposed to Cd in water only. By analysis of both isotopes, uptake vectors could be determined simultaneously. After 7 days of exposure, average 114Cd concentrations in 'free' asellids were 15.6 +/- 2.0 micrograms/g, compared with 10.4 +/- 1.8 micrograms/g in 'tube'-held asellids (P < 0.05), i.e. at least 60% of accumulated 114Cd was from water. Furthermore, water-spiked 114Cd was accumulated in asellids to tissue concentrations that were more than four-times greater than sediment-spiked 113Cd. When the sediment organic content was increased (20% peat moss), total Cd concentrations in both overlying water and asellids were significantly lower (P < 0.01), compared with the mineral sediment treatments, and Cd accumulation in tube and free asellids was similar. This study shows that water is an important vector of Cd accumulation in A. racovitzai, and factors that lower Cd concentrations in solution (such as increased organic content of sediment), decrease Cd bioaccumulation.  相似文献   

2.
To determine changes in metal distribution, bioavailability and toxicity with sediment depth, two 20-cm-long replicate cores were collected from a lake historically subjected to the influence of metal mining and smelting activity. The vertical distribution of Pb, Cd and Cu in sediment was similar for all three metals, with the surface layers showing enrichment and the deeper (pre-industrial) layers showing lower concentrations. Toxicity of each sediment core section was determined in laboratory tests with the freshwater amphipod Hyalella azteca. Bioavailable metal in each sediment slice was estimated from metal concentrations in overlying water in these toxicity tests and, for Cd, also from metal bioaccumulation. The profile for Cd in tissue was comparable to Cd in sediment and overlying water, but relative Cd bioavailability from sediment increased with sediment depth. Survival increased with increasing sediment depth, suggesting that surface sediments were probably less or non-toxic before industrialization.  相似文献   

3.
Peng SH  Wang WX  Li X  Yen YF 《Chemosphere》2004,57(8):839-851
We quantified the concentrations and distributions of metals (Cd, Cr, Cu, Ni, Pb, and Zn) in the sediments of Tuen Mun River, Hong Kong. The potential bioavailability of metals was assessed with a biomimetic extraction method using the sipunculan gut juices. The sediments were characterized by relatively high concentrations of trace metals. Field collected sediments were highly anoxic and the ratio of simultaneously extractable metal (sigmaSEM) to acid volatile sulfide (AVS) was much less than one in these sediments. The majority (>67%) of Cd, Pb, and Zn were bound to AVS, thus their concentrations in the sediment porewater were low. In contrast, Ni was little bound to AVS due to its lower ratios of SEM-Ni to total Ni concentrations. For Cu, relatively high concentrations in the sediment porewater was found, and total organic carbon, AVS and other resistant sulfide phase were the controlling factors for sedimentary Cu partitioning. Net metal adsorption from gut juices to anoxic sediments was observed in metal extraction experiments, suggesting that AVS determined the bioaccumulation and potential bioavailability of most metals in these sediments. Extraction of metals from the oxidized sediments by the gut juices was mainly attributed to metal redistribution from AVS to other geochemical phases. The gut juices were the most effective solvent or extractant than the simple electrolyte solution [I (NaNO(3)) = 0.01 M] and the natural overlying water. Cd was more easily extracted from the oxidized sediments than Zn that tended to have a stronger binding affinity with Fe-Mn oxide, clay and organic matter. The application of partial removal techniques in metal extraction experiments further demonstrated the differential controls of various sediment geochemical phases in affecting metal bioavailability, with the order of TOC > Fe-Mn oxides > carbonate.  相似文献   

4.
Sediments from lakes near Rouyn-Noranda, Quebec, contain elevated concentrations of several metals, including Cd, Cu, Pb and Zn. Amphipods, fingernail clams, mayflies and tanytarsid midges were absent, and sediment toxicity was observed in chronic tests with Hyalella in sediments from Lac Dufault, the lake closest to Rouyn-Noranda. Bioaccumulation by Hyalella demonstrated elevated bioavailability of Cd, Co, Cr, Pb and Tl, but only Cd was accumulated to levels close to the toxic threshold. Copper, which is regulated by Hyalella, was not elevated in these amphipods, but it was elevated in overlying water in the toxicity tests. Toxic effects in Lac Dufault sediments are probably caused primarily by Cd, at least in amphipods, with a possible minor contribution from Cu. An integrated assessment, including sediment chemistry, benthic community composition, sediment toxicity, metal bioaccumulation in benthos, and comparison of bioaccumulation and/or overlying water concentrations with threshold effect concentrations, provides the best indication of effects and their cause.  相似文献   

5.
The bioaccumulation of inorganic mercury (HgI) and monomethylmercury (MMHg) by benthic organisms and subsequent trophic transfer couples the benthic and pelagic realms of aquatic systems and provides a mechanism for transfer of sedimentary contaminants to aquatic food chains. Experiments were performed to investigate the bioavailability and bioaccumulation of particle-associated HgI and MMHg by the estuarine amphipod Leptocheirus plumulosus to further understand the controls on bioaccumulation by benthic organisms. HgI and MMHg are particle reactive and have a strong affinity for organic matter, a potential food source for amphipods. Microcosm laboratory experiments were performed to determine the effects of organic matter on Hg bioaccumulation and to determine the major route of Hg uptake (i.e. sediment ingestion, uptake from water/porewater, or uptake from 'food'). Amphipods living in organic-rich sediment spiked with Hg accumulated less Hg than those living in sediments with a lower organic matter content. Feeding had a significant impact on the amount of HgI and MMHg accumulated. Similarly, amphipods living in water with little organic matter accumulated more Hg than those living in water with a greater percentage of organic matter. MMHg was more readily available for uptake than HgI. Experimental results, coupled with results from a bioaccumulation model, suggest that accumulation of HgI and MMHg from sediment cannot be accurately predicted based solely on the total Hg, or even the MMHg, concentration of the sediment, and sediment-based bioaccumulation factors. All routes of exposure need to be considered in determining the accumulation of HgI and MMHg from sediment to benthic invertebrates.  相似文献   

6.
Sediment cores from Richard Lake near Sudbury, Ontario, were sectioned and analyzed for total metal content, plus metal bioavailability and toxicity to Hyalella azteca (after equilibration with oxygenated overlying water). Strong and similar sediment profiles were observed for Cd, Co, Cu and Ni in the sediment. However, these differed from metal bioavailability profiles (bioaccumulation by Hyalella and metals in overlying water). Bioavailability profiles for Cu also differed from those for Cd, Co or Ni. The deepest sediment layers, deposited prior to industrial development, were non-toxic. Sediment toxicity was attributed to Ni dissolution into overlying water. Moreover, differential bioavailability of Ni in surface and deeper sediment layers was observed. This can affect the interpretation of toxicity data for sediments collected by different methods (e.g. core vs. grab samples). Based on Pb-210 dating and trends in Ni in the core, chronic toxicity of surface sediments from Richard Lake might approach non-toxic levels in about 15 years.  相似文献   

7.
Based on a three compartment microcosm-water column, natural sediment,Hexagenia rigida nymphs-an experimental study was set up to compare cadmium (Cd) and methylmercury (MeHg) bioaccumulation by a burrowing mayfly species, after exposure via the water column or the sediment as initial contamination sources. Results from a wide concentration range for each exposure condition revealed very marked differences between the two metals: MeHg was readily accumulated from the two contamination sources, leading to important metal concentrations in the nymphs after the 2 weeks’ exposure; Cd bioaccumulation, on the other hand, was negligible when the metal was added to the water compartment, even though significant transfers were observed from the sediment source. The average Cd concentrations in the nymphs were proportional to the sediment contamination levels. Turbidity measurements in the water column, reflecting the bioturbation activity of the nymphs, revealed that the effect of Cd was significant, but only when the metal was initially added to the sediment. The results are discussed according to the uptake routes and the structural and functional properties of the biological barriers involved (gills and gut).  相似文献   

8.
The comparative experimental study of inorganic mercury (HgII), methylmercury (MeHg) and cadmium (Cd) bioaccumulation in the Asiatic clam Corbicula fluminea was based on a 14 days' exposure to the water column or sediment compartments, as initial contamination sources. For each contaminant and exposure source, a five-point concentration range was set up in order to quantify the relationships between the contamination pressure and bioaccumulation capacity, at the whole soft body level and in five organs: gills, mantle, visceral mass, kidney and foot. Hg and Cd bioaccumulation at the whole organism level was proportional to the metal concentrations in the water column or sediment. For similar exposure conditions, the average ratios between the metal concentrations in the bivalves - [MeHg]/[HgII] and [MeHg]/[Cd] - were close to 10 and 5 for the sediment source and 8 and 15 for the water column source. Metal distribution in the five organs revealed strong specificities, according to the different contamination modalities studied: kidney and gills were clearly associated with Cd exposure, mantle and foot with MeHg exposure and the visceral mass with inorganic Hg exposure.  相似文献   

9.
CHUM-AM was used to investigate the behaviours of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in three moorland sub-catchments in Cumbria UK. The principal processes controlling cationic metals are competitive partitioning to soil organic matter, chemical interactions in solution, and chemical weathering. Metal deposition histories were generated by combining measured data for the last 30 years with local lake sediment records. For Ni, Cu, Zn and Cd, default parameters for the interactions with organic matter provided reasonable agreement between simulated and observed present-day soil metal pools and average streamwater concentrations. However, for Pb, the soil binding affinity in the model had to be increased to match the observations. Simulations suggest that weakly-sorbing metals (Ni, Zn, Cd) will respond on timescales of decades to centuries to changes in metal inputs or acidification status. More strongly-sorbing metals (Cu, Pb) will respond over centuries to millennia.  相似文献   

10.
The speciation of heavy metals was measured over a variety of natural and undisturbed water/sediment interfaces. Simultaneously, two benthic species (oligochaete Limnodrilus spp. and the midge Chironomus riparius) were exposed to these sediments. Under occurring redox conditions, free ion activities of trace metals Cd, Cu, Ni, Pb, and Zn were measured with a chelating exchange technique, while geochemical conditions (i.e., redox) remained in tact. Free ion activities were compared with total dissolved concentrations in pore waters and surface waters in order to relate speciation to bioaccumulation. Limnodrilus spp. and C. riparius have accumulation patterns that could be linked to time-dependent exposure concentrations, expressed as chemical speciation, in the surface water and the sediment's pore water. Concentrations of free metal ions in the overlying surface water, rather than in sediment pore water, proved to be the best predictor for uptake. For the first time, measurements are obtained from sediments without disturbing physical-chemical conditions and thus bioavailability, a major restriction of other studies so far.  相似文献   

11.
12.
In this study, we measured trace metals (Cd, Cr, Cu, Ni, Pb, and Zn) in water and sediment from representative sites of Taihu Lake, with focus on the analysis of trace metal accumulation in Corbicula fluminea (bivalve). The results showed that the quality of water in Taihu Lake was generally good and the correlation was not found between Cu bioaccumulation in C. fluminea and the concentration in water and sediment. Thus, using the stable isotope tracer method, we studied Cu uptake from the water phase, the assimilation of Cu from the food phase, and the efflux of Cu in vivo by C. fluminea. The result revealed that this species exhibited a relatively lower efflux rate constant of Cu compared with other zoobenthos species. Using a simple bioenergetics-based kinetic model, Cu concentrations in the C. fluminea were calculated with the measured efflux rate. We put forward a novel method, which was taking the influence of biological kinetic on metal bioaccumulation into account to explain the field survey data.  相似文献   

13.
Demirak A  Yilmaz F  Tuna AL  Ozdemir N 《Chemosphere》2006,63(9):1451-1458
Concentrations of heavy metals (Cd, Cr, Cu, Pb and Zn) were measured in water, bottom sediment and tissues (muscle and gills) of Leuciscus cephalus from the Dipsiz stream in the Yatagan basin (southwestern Turkey), the site of a thermal power plant. Results for levels in water were compared with national and international water quality guidelines, as well as literature values were reported for streams and rivers. Comparisons were made of metal concentrations in water and sediment with those in the muscle and gills of L. cephalus caught from the Dipsiz stream. We found that there was metal accumulation in the gills compared to the muscle. Concentrations of Cd, Pb, Zn and Cr in the gills were higher than that in the muscle; however, Cu levels were higher in muscle than that in gills. Concentrations of heavy metals in L. cephalus muscle were below the legal limits for human consumption, although Cr, Pb and Zn levels in the gills were above the limits in the fish taken from the Dipsiz stream. On the other hand, no correlation was found between metal concentrations in water and sediment or between metal concentrations in water and muscle and gills of L. cephalus. A positive correlation was found between concentrations of Cu and Zn in the sediment and in fish tissue, whereas there was no relationship between other metal concentrations in the sediment and water, and muscle and gills of L. cephalus. As with water, Pb and Cd concentrations in particular were higher in sediment than that in background levels. The results show that the pollutants from the thermal power plant may be a source of these elements.  相似文献   

14.
Cantwell MG  Burgess RM  King JW 《Chemosphere》2008,73(11):1824-1831
In aquatic systems where metal contaminated sediments are present, the potential exists for metals to be released to the water column when sediment resuspension occurs. The release and partitioning behavior of sediment-bound heavy metals is not well understood during resuspension events. In this study, the release of Cd, Cu, Hg, Ni, Pb and Zn from sediments during resuspension was evaluated using reference sediments with known physical and chemical properties. Sediment treatments with varying quantities of acid volatile sulfide (AVS), total organic carbon (TOC), and different grain size distributions were resuspended under controlled conditions to evaluate their respective effects on dissolved metal concentrations. AVS had the greatest effect on limiting release of dissolved metals, followed by grain size and TOC. Predictions of dissolved concentrations of Cd, Ni, Pb and Zn were developed based on the formulated sediment Σmetal/AVS ratios with Σmetal being the total sediment metal concentration. Predicted values were compared to measured dissolved metal concentrations in contaminated field sediments resuspended under identical operating conditions. Metal concentrations released from the field sediments were low overall, in most cases lower than predicted values, reflecting the importance of other binding phases. Overall, results indicate that for sulfidic sediments, low levels of the study metals are released to the dissolved phase during short-term resuspension.  相似文献   

15.
Fourteen unpolluted Finnish headwater lakes with pH values varying from 4.8 to 7.0 were studied for trace-metal concentrations in water, sediment, aquatic plants (Nuphar luteum L., Sparganium sp.), aquatic insect larvae (Limnophilus sp., Phryganea sp.) and fish (Esox lucius L., Perca fluviatilis L., Coregonus sp., Salvelinus fontinalis L., Salmo trutta L.). Trace-metal deposition was estimated by analysing the snowpack. Non-parametric correlation analysis was carried out between trace metal concentrations in biota and pH, ANC, TOC, CA + Mg concentration in water and a given metal concentration in water and sediment. Bioaccumulation of several trace metals increased with increasing acidity and decreasing ANC in water. This was especially true for Pb and Cd. Aquatic plants were, in general, the best indicator group concerning differences in trace-metal bioaccumulation in lakes with different acidity. There was some evidence that a higher concentration of TOC in water may reduce bioaccumulation of Pb, Cd and Zn in aquatic plants and fish. The copper concentration in sediment was the only background variable explaining Cu concentration in aquatic insects. Multivariate analysis of the whole background data gave comparable preliminary results. Over 80% of the trace metal concentrations in biota of different lakes was explained by the background variables. In general, elevated concentrations of most of these trace metals can be expected to occur in the biota of acidified low calcareous lakes.  相似文献   

16.

The rapid development of coastal aquaculture in recent decades has led to excessive discharge of organic matter and nutrients into surrounding waters, which could result in eutrophication and potentially affect metal cycling. In our study, the influence of algal organic matter on metal accumulation was examined in three coastal sediment cores taken from a tropical region, Hainan Island, China. Overall, metal pollution adjacent to aquaculture ponds remained at low levels on the coast, except Zn, Cd, and Sn were moderately to highly enriched in the Dongjiao sediments. The δ13C values and the atomic C/N ratios indicated a major contribution of phytoplankton to sedimentary organic matter at the Dongjiao site. Moreover, both the algae-derived organic matter and effluent nitrogen were significantly associated with the enriched Zn, Cd, and Sn, suggesting that nutrient-induced phytoplankton growth and its organic matter may act as a “biological pump” to enhance the accumulation of metals. Wastewater treatment for aquaculture ponds should include the control of algal organic matter.

  相似文献   

17.
Chen CW  Kao CM  Chen CF  Dong CD 《Chemosphere》2007,66(8):1431-1440
The distribution, enrichment, and accumulation of heavy metals in the sediments, especially those at the vicinity of tributary estuaries of Kaohsiung Harbor, Taiwan were investigated. Sediment samples from six locations in the Kaohsiung Harbor were collected quarterly in the period from 2002 to 2005 and characterized for metal content (e.g., Hg, Pb, Cd, Cr, Cu, Zn and Al), water content, organic matter, total nitrogen, total phosphorous, total grease, and grain size. Results showed that metal concentrations varied from 0.58 mg kg(-1) for Cd to 596 mg kg(-1) for Zn. Metal concentrations at the vicinity of river mouths were higher than those at other locations. All heavy metals studied, except Cr, had relatively high enrichment factors and geo-accumulation indices in the estuaries. Moreover, metal concentrations correlated closely to the physical-chemical properties of the sediments, which strongly suggested the influence of industrial and municipal wastewaters discharged from the neighboring industrial parks and river basins. Results would help develop strategies for pollution control and sediment remediation of Kaohsiung Harbor.  相似文献   

18.
Simulation modelling with CHUM-AM was carried out to investigate the accumulation and release of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in six moorland catchments, five with organic-rich soils, one with calcareous brown earths, in the Pennine chain of northern England. The model considers two soil layers and a third layer of weathering mineral matter, and operates on a yearly timestep, driven by deposition scenarios covering the period 1400-2010. The principal processes controlling heavy metals are competitive solid-solution partitioning of solutes, chemical interactions in solution, and chemical weathering. Agreement between observed and simulated soil metal pools and surface water concentrations for recent years was generally satisfactory, the results confirming that most contemporary soil metal is from atmospheric pollution. Metals in catchments with organic-rich soils show some mobility, especially under more acid conditions, but the calcareous mineral soils have retained nearly all anthropogenic metal inputs. Complexation by dissolved organic matter and co-transport accounts for up to 80% of the Cu in surface waters.  相似文献   

19.
The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way.  相似文献   

20.
The accumulation of two mercury compounds--HgCl(2) and CH(3)HgCl--by Hexagenia rigida (burrowing mayfly nymphs) from contaminated sediments was investigated experimentally. Three exposure periods were selected: 7, 14 and 28 days. Results reveal a high capacity of this species for Hg accumulation and considerable differences between the two chemical forms of the metal. Thus, the amount of total mercury accumulated after 28 days' exposure would be 60 times greater for the organic form if the two compounds were initially added to the sediment in the same concentrations. No significant growth inhibition appears for the different experimental conditions studied. Data treatment at the organism level showed a positive linear correlation between the fresh weight and Hg content in the nymphs; this was especially marked when the exposure time was relatively long and Hg was in the form of CH(3)HgCl. The study of mercury distribution in the organs of Hexagenia rigida (gills and gut) and the examination of results obtained in similar experimental conditions after contamination of the nymphs via the water column showed the importance of the trophic route, via ingested sediment, for the bioaccumulation of the metal initially introduced into the sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号