首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sound pressure levels and the spectral structure of the advertisement calls of five species of frogs from the South American temperate austral forest were analyzed. Males of Eupsophus emiliopugini, Batrachyla antartandica and B. leptopus call from the ground in bogs, while males of Hylorina sylvatica and Pleurodema thaul call from the water surface in marshes. Calling males of the species from bogs and marshes spaced at average distances that were shorter and longer than 2 m, respectively. The properties of these habitats for sound propagation were evaluated by broadcasting pure tones, broadband noise and tape-recorded advertisement calls of the three species from bogs and of H. sylvatica. Excess attenuation and spectral degradation were higher for calls broadcast in bogs than in the marsh. The calls of B.␣antartandica and B. leptopus, with dominant frequencies of about 2 kHz, were more affected than those of E.␣emiliopugini and H. sylvatica, with dominant frequencies below 1.5 kHz. These results show the lack of an optimal relationship between properties of habitats for sound transmission and the spectral structure of these anuran calls. Body size imposes an important constraint on call spectra and propagation, which frogs counteract by distribution patterns and auditory capabilities. Received: 18 April 1997 / Accepted after revision: 15 February 1998  相似文献   

2.
3.
The role of disturbance and climate factors in determining the forest carbon balance was investigated at a Japanese cypress forest in central Japan with eddy flux measurements, tree-ring analyses, and a terrestrial biosphere model. The forest was established as a plantation after intermittent harvesting and replanting between 1959 and 1977, and acted as a strong carbon sink of approximately 500 g C m−2 year−1 for the measurement years between 2001 and 2007. A terrestrial biosphere model, BIOME-BGC, was validated using the eddy flux data at daily to interannual timescales, and the tree-ring width data at interannual to decadal timescales. According to the model simulation, during the observation period 270 ± 55 g C m−2 year−1 was additionally sequestered due to the indirect effects of the harvesting and planting, whereas the increase of CO2 concentration and the change in climate increased the sink of 110 ± 40 and 30 ± 80 g C m−2 year−1, respectively. The model simulation shows that the forest is now recovering from harvesting, and that harvesting is a more important determinant of the current carbon sink than either interannual climate anomalies or increased atmospheric CO2 concentration. We found that harvesting with long rotation length could be effective management activity in order to increase carbon sequestration, if the harvested timber is converted into products with long lifecycles.  相似文献   

4.
Protecting biodiversity has become a major goal in managing coastal forests in the Pacific Northwest--an area in which human activities have had a significant influence on landscape change. A complex pattern of public and private forest ownership, combined with new regulations for each owner group, raises questions about how well and how efficiently these policies achieve their biodiversity goals. To develop a deeper understanding of the aggregate effect of forest policies, we simulated forest structures, timber production, and socioeconomic conditions over time for the mixture of private and public lands in the 2.3-million-ha Coast Range Physiographic Province of Oregon. To make these projections, we recognized both vegetative complexity at the stand level and spatial complexity at the landscape level. We focused on the two major factors influencing landscape change in the forests of the Coast Range: (1) land use, especially development for houses and cities, and (2) forest management, especially clearcutting. Our simulations of current policy suggest major changes in land use on the margins of the Coast Range, a divergence in forest structure among the different owners, an increase in old-growth forests, and a continuing loss of the structural elements associated with diverse young forests. Our simulations also suggest that current harvest levels can be approximately maintained, with the harvest coming almost entirely from private lands. A policy alternative that retained live trees for wildlife would increase remnant structures but at a cost to landowners (5-7% reduction in timber production). Another alternative that precluded thinning of plantations on federal land would significantly reduce the area of very large diameter (>75 cm dbh) conifer forests 100 years into the future  相似文献   

5.
Data points intensively sampling 46 North American biomes were used to predict the geographic distribution of biomes from climate variables using the Random Forests classification tree. Techniques were incorporated to accommodate a large number of classes and to predict the future occurrence of climates beyond the contemporary climatic range of the biomes. Errors of prediction from the statistical model averaged 3.7%, but for individual biomes, ranged from 0% to 21.5%. In validating the ability of the model to identify climates without analogs, 78% of 1528 locations outside North America and 81% of land area of the Caribbean Islands were predicted to have no analogs among the 46 biomes. Biome climates were projected into the future according to low and high greenhouse gas emission scenarios of three General Circulation Models for three periods, the decades surrounding 2030, 2060, and 2090. Prominent in the projections were (1) expansion of climates suitable for the tropical dry deciduous forests of Mexico, (2) expansion of climates typifying desertscrub biomes of western USA and northern Mexico, (3) stability of climates typifying the evergreen-deciduous forests of eastern USA, and (4) northward expansion of climates suited to temperate forests, Great Plains grasslands, and montane forests to the detriment of taiga and tundra climates. Maps indicating either poor agreement among projections or climates without contemporary analogs identify geographic areas where land management programs would be most equivocal. Concentrating efforts and resources where projections are more certain can assure land managers a greater likelihood of success.  相似文献   

6.
江苏省植被NPP时空特征及气候因素的影响   总被引:3,自引:0,他引:3  
王琳  景元书  李琨 《生态环境》2010,19(11):2529-2533
利用2000—2006年的EOS/MODIS卫星遥感资料,对江苏省植被净初级生产力(NPP)时空特征及气候变化对其影响进行分析。在ArcGIS软件中,建立线性回归方程获得NPP的变化斜率,分析7 a间各像元NPP的空间变化趋势。计算各像元的NPP数值与气候要素的线性相关系数,为定量阐述气候变化对植被生长的影响提供依据。结果表明,江苏省植被NPP 7 a平均值为506.6 g.m-2.a-1(以C计),比全国同期NPP数值高出约40%。NPP表现出明显的年际变化,2004年植被年均NPP最大为530.6 g.m-2.a-1(以C计),2000年最小,为481.1 g.m-2.a-1(以C计)。空间分布上NPP表现为东南高于西北,沿海高于内陆。2000—2006年江苏省有76%的区域植被NPP表现为显著增加,仅江苏南部少数区域表现出减少的趋势。除苏南少数区域外,气候因素控制着NPP的时空变化规律。其中气温的升高和太阳辐射的增加促进NPP提高,而降水量的增加引起NPP的降低。  相似文献   

7.
In the Loess Plateau of China, soil water has three ecological properties: high infiltration capacity, high storage capacity and availability to deep plant roots. Soil desiccation is the most serious problem for forest vegetation in the Loess Plateau. Arid soils are the result of intensified soil desiccation caused by disturbances in plant succession, which constitute the ecological foundation of soil water. The negative effects of the arid soil layer on surface water infiltration for recharging underground water are discussed in terms of ecological hydrology. The arid soil layer disrupts the link between surface water and underground water and prevents vertical precipitation infiltration from supplementing underground water. Forest vegetation has a significant runoff-retaining efficiency that reduces total runoff from forest areas leading to low surface and ground runoff which affect the water cycle on a watershed scale.  相似文献   

8.
Coastal dunes are increasingly at risk due to pressures deriving from global climate change, sea level rise, recreation and development. The consequences of the “coastal squeeze” in which dunes are placed, such as erosion and the loss of critical ecosystem services, are usually followed by expensive restoration and protection measures, many of which are unsuccessful. Due to the poor understanding and acknowledgement of the key attributes of coastal dunes in decision making processes, it is essential to provide scientific data on the impacts of human interference on coastal dunes so as to inform executives and guide them towards a sustainable management of the coastal zone. The aim of this study was to investigate the impact of five different levels of infrastructure development on the vegetation community structure of coastal dunes in Jeffreys Bay, South Africa. The effects of infrastructure development on dune vegetation were quantified by measuring the richness, diversity, cover, height and composition of plant species. With an increase in infrastructure development a significant decrease in dune width, average species richness and height of the plants occurred, accompanied by a shift in plant community composition. The foredunes that were backed immediately by infrastructure presented significantly greater species richness, diversity, cover and height compared with the foredunes abutted by primary dunes. This study demonstrated that coastal dunes are environments which are sensitive to varying levels of human impact. Informed and comprehensive management planning of these environments is therefore imperative for the restoration and maintenance of remnant dunes and for the conservation of undeveloped coastal dunes.  相似文献   

9.
This article describes a new forest management module (FMM) that explicitly simulates forest stand growth and management within a process-based global vegetation model (GVM) called ORCHIDEE. The net primary productivity simulated by ORCHIDEE is used as an input to the FMM. The FMM then calculates stand and management characteristics such as stand density, tree size distribution, tree growth, the timing and intensity of thinnings and clear-cuts, wood extraction and litter generated after thinning. Some of these variables are then fed back to ORCHIDEE. These computations are made possible with a distribution-based modelling of individual tree size. The model derives natural mortality from the relative density index (rdi), a competition index based on tree size and stand density. Based on the common forestry management principle of avoiding natural mortality, a set of rules is defined to calculate the recurrent intensity and frequency of forestry operations during the stand lifetime. The new-coupled model is called ORCHIDEE-FM (forest management).The general behaviour of ORCHIDEE-FM is analysed for a broadleaf forest in north-eastern France. Flux simulation throughout a forest rotation compare well with the literature values, both in absolute values and dynamics.Results from ORCHIDEE-FM highlight the impact of forest management on ecosystem C-cycling, both in terms of carbon fluxes and stocks. In particular, the average net ecosystem productivity (NEP) of 225 gC m−2 year−1 is close to the biome average of 311 gC m−2 year−1. The NEP of the “unmanaged” case is 40% lower, leading us to conclude that management explains 40% of the cumulated carbon sink over 150 years. A sensitivity analysis reveals 4 major avenues for improvement: a better determination of initial conditions, an improved allocation scheme to explain age-related decline in productivity, and an increased specificity of both the self-thinning curve and the biomass-diameter allometry.  相似文献   

10.
近20年天津地区植被变化及其对气候变化的响应   总被引:4,自引:0,他引:4  
刘德义  傅宁  范锦龙 《生态环境》2008,17(2):798-801
植被与气候变化的相互关系在全球或区域尺度上得到了证明.研究特定地区植被动态变化及其与气候变化的关系,找出影响植被变化的  相似文献   

11.
Brzostek ER  Finzi AC 《Ecology》2011,92(4):892-902
Temperature and substrate availability constrain the activity of the extracellular enzymes that decompose and release nutrients from soil organic matter (SOM). Proteolytic enzymes are the primary class of enzymes involved in the depolymerization of nitrogen (N) from proteinaceous components of SOM, and their activity affects the rate of N cycling in forest soils. The objectives of this study were to determine whether and how temperature and substrate availability affect the activity of proteolytic enzymes in temperate forest soils, and whether the activity of proteolytic enzymes and other enzymes involved in the acquisition of N (i.e., chitinolytic and ligninolytic enzymes) differs between trees species that form associations with either ectomycorrhizal or arbuscular mycorrhizal fungi. Temperature limitation of proteolytic enzyme activity was observed only early in the growing season when soil temperatures in the field were near 4 degrees C. Substrate limitation to proteolytic activity persisted well into the growing season. Ligninolytic enzyme activity was higher in soils dominated by ectomycorrhizal associated tree species. In contrast, the activity of proteolytic and chitinolytic enzymes did not differ, but there were differences between mycorrhizal association in the control of roots on enzyme activity. Roots of ectomycorrhizal species but not those of arbuscular mycorrhizal species exerted significant control over proteolytic, chitinolytic, and ligninolytic enzyme activity; the absence of ectomycorrhizal fine roots reduced the activity of all three enzymes. These results suggest that climate warming in the absence of increases in substrate availability may have a modest effect on soil-N cycling, and that global changes that alter belowground carbon allocation by trees are likely to have a larger effect on nitrogen cycling in stands dominated by ectomycorrhizal fungi.  相似文献   

12.
Habitat loss, fragmentation, and degradation have pervasive detrimental effects on tropical forest biodiversity, but the role of the surrounding land use (i.e., matrix) in determining the severity of these impacts remains poorly understood. We surveyed bird species across an interior-edge-matrix gradient to assess the effects of matrix type on biodiversity at 49 different sites with varying levels of landscape fragmentation in the Brazilian Atlantic Forest—a highly threatened biodiversity hotspot. Both area and edge effects were more pronounced in forest patches bordering pasture matrix, whereas patches bordering Eucalyptus plantation maintained compositionally similar bird communities between the edge and the interior and exhibited reduced effects of patch size. These results suggest the type of matrix in which forest fragments are situated can explain a substantial amount of the widely reported variability in biodiversity responses to forest loss and fragmentation.  相似文献   

13.
Dispersal among ecological communities is usually assumed to be random in direction, or to vary in distance or frequency among species. However, a variety of natural systems and types of organisms may experience dispersal that is biased by directional currents or by gravity on hillslopes. We developed a general model for competing species in metacommunities to evaluate the role of directionally biased dispersal on species diversity, abundance, and traits. In parallel, we tested the role of directionally biased dispersal on communities in a microcosm experiment with protists and rotifers. Both the model and experiment independently demonstrated that diversity in local communities was reduced by directionally biased dispersal, especially dispersal that was biased away from disturbed patches. Abundance of species (and composition) in local communities was a product of disturbance intensity but not dispersal directionality. High disturbance selected for species with high intrinsic growth rates and low competitive abilities. Overall, our conclusions about the key role of dispersal directionality in (meta)communities seem robust and general, since they were supported both by the model, which was set in a general framework and not parameterized to fit to a specific system, and by a specific experimental test with microcosms.  相似文献   

14.
Forest productivity is strongly affected by seasonal weather patterns and by natural or anthropogenic disturbances. However weather effects on forest productivity are not currently represented in inventory-based models such as CBM-CFS3 used in national forest C accounting programs. To evaluate different approaches to modelling these effects, a model intercomparison was conducted among CBM-CFS3 and four process models (ecosys, CN-CLASS, Can-IBIS and 3PG) over a 2500 ha landscape in the Oyster River (OR) area of British Columbia, Canada. The process models used local weather data to simulate net primary productivity (NPP), net ecosystem productivity (NEP) and net biome productivity (NBP) from 1920 to 2005. Other inputs used by the process and inventory models were generated from soil, land cover and disturbance records. During a period of intense disturbance from 1928 to 1943, simulated NBP diverged considerably among the models. This divergence was attributed to differences among models in the sizes of detrital and humus C stocks in different soil layers to which a uniform set of soil C transformation coefficients was applied during disturbances. After the disturbance period, divergence in modelled NBP among models was much smaller, and attributed mainly to differences in simulated NPP caused by different approaches to modelling weather effects on productivity. In spite of these differences, age-detrended variation in annual NPP and NEP of closed canopy forest stands was negatively correlated with mean daily maximum air temperature during July-September (Tamax) in all process models (R2 = 0.4-0.6), indicating that these correlations were robust. The negative correlation between Tamax and NEP was attributed to different processes in different models, which were tested by comparing CO2 fluxes from these models with those measured by eddy covariance (EC) under contrasting air temperatures (Ta). The general agreement in sensitivity of annual NPP to Tamax among the process models led to the development of a generalized algorithm for weather effects on NPP of coastal temperate coniferous forests for use in inventory-based models such as CBM-CFS3: NPP′ = NPP − 57.1 (Tamax − 18.6), where NPP and NPP′ are the current and temperature-adjusted annual NPP estimates from the inventory-based model, 18.6 is the long-term mean daily maximum air temperature during July-September, and Tamax is the mean value for the current year. Our analysis indicated that the sensitivity of NPP to Tamax was nonlinear, so that this algorithm should not be extrapolated beyond the conditions of this study. However the process-based methodology to estimate weather effects on NPP and NEP developed in this study is widely applicable to other forest types and may be adopted for other inventory based forest carbon cycle models.  相似文献   

15.
Coale TH  Deveny AJ  Fox LR 《Ecology》2011,92(5):1020-1026
Separate effects of abiotic and biotic factors on the structure and dynamics of ecological communities may be recorded in growth rings of woody plants. We used Ceanothus cuneatus rigidus and Arctostaphylos pumila to tease apart the roles of fire, rain, and herbivores on the histories and community structure of four areas in a coastal mediterranean-type climate in central California with mild winters and mild summers. Ring widths of both species were related to rainfall in two of the areas; heavy deer browsing on Ceanothus overwhelmed the climate signal in the others. Ceanothus germination was more closely related to heavy rainfall, especially during ENSO years, than to fire events. In a related greenhouse experiment that evaluated these observations, the same proportions of new Ceanothus seeds germinated after burning and after receiving regular water for several months, but germination of old seeds responded primarily to the fire treatment. In areas where heavy browsing by mammals reduces recruitment and growth of Ceanothus and increases mortality, the continuance of the Ceanothus population must rely heavily on germination from the persistent seed bank during unusually wet years or after occasional fires. Because Arctostaphylos can produce new stems from underground roots, individual plants may survive and produce seeds until another fire.  相似文献   

16.
17.
Dune slack habitats are highly dependent on the availability of water to support flora and fauna. Typically this is provided by shallow groundwater. This paper describes the seasonal and long term variation in groundwater levels in part of the Sefton coastline between 1972 and 2007. The effects of climate change, vegetation management and coastline realignment on groundwater levels are modelled. The observed annual water table levels rise and fall with an amplitude of 1.5 m, but longer term variations and trends are apparent. A stochastic water balance model was used to describe the changes in water table levels in slack floors in the open dunes and also in areas afforested with pine trees. It was found that the pine trees evaporated 214 mm/year more than open dunes vegetation, resulting in the water table being 0.5–1.0 m lower under the trees than under the open dunes. The effects of climate change on the ground water was simulated using predictions of future climate conditions based on the UKCIP02 medium high emissions scenario. The increase in temperature and change in rainfall patterns will result in a decrease in mean ground water levels by 1.0–1.5 mm in the next 90 years. Typical patterns consist of sequences of 5–10 years of low water table levels interspersed by infrequent sequences consisting of 2–5 years of relatively high or “normal” levels. These results indicate that that flora and fauna that cannot survive a 5–10 year period of water table levels >2.5 m below ground level are unlikely to survive or persist in many slack areas and a change in the ecology of these slack may become inevitable. Other effects of climate change include sea level rise which will result in a gradual rise in water table levels. Coastal erosion will increase the water table gradient to the sea and result in a slight lowering of the ground water levels. Conversely coastal accretion will reverse this process. The spatial distribution of coastal erosion and accretion along the Sefton coastline and its likely impacts on groundwater levels are discussed. The modelling work described in this paper has identified the factors which have the largest effect on groundwater levels in temperate coastal dune systems.  相似文献   

18.
Interaction between flow, transport and vegetation spatial structure   总被引:1,自引:0,他引:1  
This paper summarizes recent advances in vegetation hydrodynamics and uses the new concepts to explore not only how vegetation impacts flow and transport, but also how flow feedbacks can influence vegetation spatial structure. Sparse and dense submerged canopies are defined based on the relative contribution of turbulent stress and canopy drag to the momentum balance. In sparse canopies turbulent stress remains elevated within the canopy and suspended sediment concentration is comparable to that in unvegetated regions. In dense canopies turbulent stress is reduced by canopy drag and suspended sediment concentration is also reduced. Further, for dense canopies, the length-scale of turbulence penetration into the canopy, δ e , is shown to predict both the roughness height and the displacement height of the overflow profile. In a second case study, the relation between flow speed and spatial structure of a seagrass meadow gives insight into the stability of different spatial structures, defined by the area fraction covered by vegetation. In the last case study, a momentum balance suggests that in natural channels the total resistance is set predominantly by the area fraction occupied by vegetation, called the blockage factor, with little direct dependence on the specific canopy morphology.  相似文献   

19.
The ecological consequences of logging have been and remain a focus of considerable debate. In this study, we assessed bird species composition within a logging concession in Central Kalimantan, Indonesian Borneo. Within the study area (approximately 196 km2) a total of 9747 individuals of 177 bird species were recorded. Our goal was to identify associations between species traits and environmental variables. This can help us to understand the causes of disturbance and predict whether species with given traits will persist under changing environmental conditions. Logging, slope position, and a number of habitat structure variables including canopy cover and liana abundance were significantly related to variation in bird composition. In addition to environmental variables, spatial variables also explained a significant amount of variation. However, environmental variables, particularly in relation to logging, were of greater importance in structuring variation in composition. Environmental change following logging appeared to have a pronounced effect on the feeding guild and size class structure but there was little evidence of an effect on restricted range or threatened species although certain threatened species were adversely affected. For example, species such as the terrestrial insectivore Argusianus argus and the hornbill Buceros rhinoceros, both of which are threatened, were rare or absent in recently logged forest. In contrast, undergrowth insectivores such as Orthotomus atrogularis and Trichastoma rostratum were abundant in recently logged forest and rare in unlogged forest. Logging appeared to have the strongest negative effect on hornbills, terrestrial insectivores, and canopy bark-gleaning insectivores while moderately affecting canopy foliage-gleaning insectivores and frugivores, raptors, and large species in general. In contrast, undergrowth insectivores responded positively to logging while most understory guilds showed little pronounced effect. Despite the high species richness of logged forest, logging may still have a negative impact on extant diversity by adversely affecting key ecological guilds. The sensitivity of hornbills in particular to logging disturbance may be expected to alter rainforest dynamics by seriously reducing the effective seed dispersal of associated tree species. However, logged forest represents an increasingly important habitat for most bird species and needs to be protected from further degradation. Biodiversity management within logging concessions should focus on maintaining large areas of unlogged forest and mitigating the adverse effects of logging on sensitive groups of species.  相似文献   

20.
Annually emerging cicadas are a numerically and ecologically dominant species in Southwestern riparian forests. Humans have altered disturbance regimes that structure these forests such that floods are less common and wildfires occur more frequently than was historically the case. Impacts of these changes on primary consumers such as riparian cicadas are unknown. Because cicadas are consumed by a variety of animal species, disturbances that alter timing of their emergence or abundance could have consequences for species at higher trophic levels. We trapped emerging cicadas (Tibicen dealbatus) in burned and unburned riparian forest plots along the Middle Rio Grande in central New Mexico (USA) to determine effects of wildfire and vegetation structure on their density and phenology. We measured vegetation variables and soil temperature at cicada traps and related these variables to variation in emergence density and phenology. We also experimentally heated soil under emergence traps to examine the relationship between soil temperature and emergence phenology. Emergence density was similar in wildfire and unburned plots, though emergence date averaged earlier in wildfire plots and experimentally heated traps. We identified models containing cottonwood proximity (distance from the nearest cottonwood tree) and cottonwood canopy coverage as the most parsimonious explanations of emergence density at each trap. Model selection results were consistent with the literature and field observations that showed that cottonwood trees are an essential resource for T. dealbatus. Cottonwood canopy was also correlated with low soil temperatures, which are associated with later emergence dates. Failure of cottonwoods to reestablish following wildfire could result in cicadas emerging at lower densities and at earlier dates. For cicadas to emerge at densities and times that provide the greatest benefits to birds and other riparian-obligate secondary consumers, riparian forests should be protected from fire, and native vegetation in wildfire sites should be restored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号