首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Boreal forests play an important role in the global balance of energy and CO2. Our previous study of elaborate eddy covariance observations in a Siberian boreal larch forest, conducted both above the forest canopy and at the forest floor, revealed a significant contribution of latent heat flux (LE) from the cowberry understory to the whole ecosystem LE. Thus, in the present study, we examined what factors control the partitioning of whole ecosystem LE and CO2 flux into the understory and overstory vegetation, using detailed leaf-level physiology (for both understory and overstory vegetation) and soil respiration property measurements as well as a multilayer soil-vegetation-atmosphere transfer (SVAT) model. The modeling results showed that the larch overstory's leaf area index (LAI) and vertical profile of leaf photosynthetic capacity were major factors determining the flux partitioning in this boreal forest ecosystem. This is unlike other forest ecosystems that tend to have dense LAI. We concluded that control of the larch overstory's LAI had a relationship with both the coexistence of the larch with the cowberry understory and with the water resources available to the total forest ecosystem.  相似文献   

2.
Theimer TC  Gehring CA  Green PT  Connell JH 《Ecology》2011,92(8):1637-1647
Although birds and mammals play important roles in several mechanisms hypothesized to maintain plant diversity in species-rich habitats, there have been few long-term, community-level tests of their importance. We excluded terrestrial birds and mammals from fourteen 6 x 7.5 m plots in Australian primary tropical rain forest and compared recruitment and survival of tree seedlings annually over the subsequent seven years to that on nearby open plots. We re-censused a subset of the plots after 13 years of vertebrate exclusion to test for longer-term effects. After two years of exclusion, seedling abundance was significantly higher (74%) on exclosure plots and remained so at each subsequent census. Richness was significantly higher on exclosure plots from 1998 to 2003, but in 2009 richness no longer differed, and rarefied species richness was higher in the presence of vertebrates. Shannon's diversity and Pielou's evenness did not differ in any year. Vertebrates marginally increased density-dependent mortality and recruitment limitation, but neither effect was great enough to increase richness or diversity on open plots relative to exclosure plots. Terrestrial vertebrates significantly altered seedling community composition, having particularly strong impacts on members of the Lauraceae. Overall, our results highlight that interactions between terrestrial vertebrates and tropical tree recruitment may not translate into strong community-level effects on diversity, especially over the short-term, despite significant impacts on individual species that result in altered species composition.  相似文献   

3.
Kudo G  Ida TY  Tani T 《Ecology》2008,89(2):321-331
Light availability in the understory of deciduous forests changes drastically within the growing season due to the foliage dynamics of canopy trees. Because flowering phenology, photosynthetic characteristics, and fruiting success respond to such strong seasonality in light availability, we hypothesized that understory plants in such ecosystems should describe distinct phenological groups or syndromes where "syndrome" is defined only as a set of characteristics that co-occur. To identify these phenological syndromes, we studied the flowering phenology, fruit or seed set, and photosynthetic characteristics for 18 perennial understory herbaceous species that differed in reproductive strategy over eight years in a deciduous forest in northern Japan. Three phenological groups emerged from this study: (1) spring bloomers, flowering and fruiting before the completion of canopy closure; (2) early-summer bloomers, flowering during the progress of canopy closure and fruiting after canopy closure; and (3) late-summer bloomers, flowering and fruiting after canopy closure. The spring bloomers had high photosynthetic rates and high fruiting abilities, but the flowering time varied considerably among years due to yearly fluctuations of snowmelt date. Bumble bee-pollinated species of spring bloomers showed variable seed-set success, while fly-pollinated species showed relatively stable seed sets over the years. The early-summer bloomers showed low fruiting abilities irrespective of pollination success, reflecting severe resource limitation with decelerating light availability during fruit development. Although the late-summer bloomers showed low photosynthetic rates under low-light conditions, high fruit-set success was attained if pollination was sufficient. These results support our hypothesis that phenological syndromes may be found in deciduous forest understory plants. Given that reproductive success of bee-pollinated spring bloomers is highly susceptible to seasonal fluctuation, climate change may have its strongest impacts on this group.  相似文献   

4.
Kumar S  Stohlgren TJ  Chong GW 《Ecology》2006,87(12):3186-3199
Spatial heterogeneity may have differential effects on the distribution of native and nonnative plant species richness. We examined the effects of spatial heterogeneity on native and nonnative plant species richness distributions in the central part of Rocky Mountain National Park, Colorado, USA. Spatial heterogeneity around vegetation plots was characterized using landscape metrics, environmental/topographic variables (slope, aspect, elevation, and distance from stream or river), and soil variables (nitrogen, clay, and sand). The landscape metrics represented five components of landscape heterogeneity and were measured at four spatial extents (within varying radii of 120, 240, 480, and 960 m) using the FRAGSTATS landscape pattern analysis program. Akaike's Information Criterion adjusted for small sample size (AICc) was used to select the best models from a set of multiple linear regression models developed for native and nonnative plant species richness at four spatial extents and three levels of ecological hierarchy (i.e., landscape, land cover, and community). Both native and nonnative plant species richness were positively correlated with edge density, Simpson's diversity index and interspersion/juxtaposition index, and were negatively correlated with mean patch size. The amount of variation explained at four spatial extents and three hierarchical levels ranged from 30% to 70%. At the landscape level, the best models explained 43% of the variation in native plant species richness and 70% of the variation in nonnative plant species richness (240-m extent). In general, the amount of variation explained was always higher for nonnative plant species richness, and the inclusion of landscape metrics always significantly improved the models. The best models explained 66% of the variation in nonnative plant species richness for both the conifer land cover type and lodgepole pine community. The relative influence of the components of spatial heterogeneity differed for native and nonnative plant species richness and varied with the spatial extent of analysis and levels of ecological hierarchy. The study offers an approach to quantify spatial heterogeneity to improve models of plant biodiversity. The results demonstrate that ecologists must recognize the importance of spatial heterogeneity in managing native and nonnative plant species.  相似文献   

5.
Renne IJ  Tracy BF  Colonna IA 《Ecology》2006,87(9):2264-2277
There is an emerging recognition that invasibility is not an intrinsic community trait, but is a condition that fluctuates from interactions between environmental forces and residential characters. Elucidating the spatiotemporal complexities of invasion requires inclusion of multiple, ecologically variable factors within communities of differing structure. Water and nutrient amendments, disturbance, and local composition affect grassland invasibility but no study has simultaneously integrated these, despite evidence that they frequently interact. Using a split-plot factorial design, we tested the effects of these factors on the invasibility of C3 pasture communities by smooth pigweed Amaranthus hybridus L., a problematic C4 forb. We sowed seeds and transplanted 3-week old seedlings of A. hybridus into plots containing monocultures and mixtures of varying composition, subjected plots to water, soil disturbance, and synthetic bovine urine (SBU) treatments, and measured A. hybridus emergence, recruitment, and growth rate. Following SBU addition, transplanted seedling growth increased in all plots but differed among legume and nonlegume monocultures and mixtures of these plant types. However, SBU decreased the number and recruitment rate of emerged seedlings because high residential growth reduced light availability. Nutrient pulses can therefore have strong but opposing effects on invasibility, depending on when they coincide with particular life history stages of an invader. Indeed, in SBU-treated plots, small differences in height of transplanted seedlings early on produced large differences in their final biomass. All facilitative effects of small-scale disturbance on invasion success diminished when productivity-promoting factors were present, suggesting that disturbance patch size is important. Precipitation-induced invasion resistance of C3 pastures by a C4 invader was partly supported. In grazed grasslands, these biotic and environmental factors vary across scales and interact in complex ways to affect invasibility, thus a dynamic patch mosaic of differential invasion resistance likely occurs in single fields. We propose that disturbance patch size, grazing intensity, soil resource availability, and resident composition are inextricably linked to grassland invasions and comment on the utility of community attributes as reliable predictors of invasibility. Lastly, we suggest temporal as well as spatial coincidences of multiple invasion facilitators dictate the window of opportunity for invasion.  相似文献   

6.
In large samples of trees > or = 1 cm dbh (more than 1 million trees and 3000 species), in six lowland tropical forests on three continents, we assigned species with >30 individuals to one of six classes of stature at maturity (SAM). We then compared the proportional representation of understory trees (1-2 cm dbh) among these classes. The understory of the three Asian sites was predominantly composed of the saplings of large-canopy trees whereas the African and American sites were more richly stocked with trees of the smaller SAM classes. Differences in class representation were related to taxonomic families that were present exclusively in one continent or another. Families found in the Asian plots but not in the American plot (e.g., Dipterocarpaceae, Fagaceae) were predominantly species of the largest SAM classes, whereas families exclusive to the American plots (e.g., Melastomataceae sensu stricto, Piperaceae, and Malvaceae [Bombacacoidea]) were predominantly species of small classes. The African plot was similar to Asia in the absence of those American families rich in understory species, while similar to America in lacking the Asian families rich in canopy species. The numerous understory species of Africa were chiefly derived from families shared with Asia and/or America. The ratio of saplings (1-2 cm dbh) to conspecific canopy trees (>40 cm dbh) was lower in American plots than in the Asian plots. Possible explanations for these differences include phenology, moisture and soil fertility regimes, phyletic constraints, and the role of early successional plants in forest development. These results demonstrate that tropical forests that appear similar in tree number, basal area, and the family taxonomy of canopy trees nonetheless differ in ecological structure in ways that may impact the ecology of pollinators, dispersers, and herbivores and might reflect fundamental differences in canopy tree regeneration.  相似文献   

7.
Climate change models for California's Sierra Nevada predict greater inter-annual variability in precipitation over the next 50 years. These increases in precipitation variability coupled with increases in nitrogen deposition from fossil fuel consumption are likely to result in increased productivity levels and significant increases in forest understory fuel loads. Higher understory plant biomass contributes to fuel connectivity and may increase future fire size and severity in the Sierra Nevada. The objective of this research was to develop and test a model to determine how changing precipitation and nitrogen deposition levels affect shrub and herb biomass production, and to determine how often prescribed fire would be needed to counter increasing fuel loads. Model outputs indicate that under an increasing precipitation scenario significant increases in shrub and herb biomass occur that can be counteracted by decreasing the fire return interval to 10 years. Under a scenario with greater inter-annual variability in precipitation and increased nitrogen deposition, implementing fire treatments at an interval equivalent to the historical range of 15–30 years maintains understory vegetation fuel loads at levels comparable to the control.  相似文献   

8.
Riparian habitats are important for the maintenance of regional biodiversity. Many studies have compared bird distributions between riparian and non-riparian habitats but have not established how wide riparian habitats used by birds are, as measured by distance from the nearest stream. We investigated the distribution of understory birds along gradients of distance from streams, soil clay content, and slope in a central Amazonian forest, by mist-netting birds three times in 45 plots. We used nonmetric multidimensional scaling (NMDS) to reduce the dimensionality of species quantitative (abundance) and qualitative (presence-absence) composition to one multivariate axis. Estimates of the width of riparian habitats as indicated by understory birds depended on the community attribute considered, measuring 90 m for species quantitative composition and 140 m for species qualitative composition. Species distributions were correlated with clay content but were independent of slope, while distance from streams was positively correlated with clay content but independent of slope. Clay content affects plant species composition, which in turn, may influence bird species composition. However, distribution patterns of birds in relation to distance from streams are consistent among studies carried out in many different temperate and tropical regions, indicating an effect of distance from streams itself. Protection of riparian habitats is one of the most widely used conservation strategies, and Brazilian environmental legislation mandates the protection of a 30 m wide strip of riparian vegetation on either side of small streams. We show that the protected strip should be much wider and recommend strategies to place other forms of land protection contiguous with riparian areas so that Brazilian environmental legislation better fulfills its role of protecting biodiversity associated with riparian habitats.  相似文献   

9.
Lawton et al. (1998) found, in a highly cited study, that the species richness of 8 taxa each responds differently to anthropogenic disturbance in Cameroon forests. Recent developments in conservation science suggest that net number of species is an insensitive measure of change and that understanding which species are affected by disturbance is more important. It is also recognized that all disturbance types are not equal in their effect on species and that grouping species according to function rather than taxonomy is more informative of responses of biodiversity to change. In a reanalysis of most of the original Cameroon data set (canopy and ground ants, termites, canopy beetles, nematodes, and butterflies), we focused on changes in species and functional composition rather than richness and used a more inclusive measure of forest disturbance based on 4 component drivers of change: years since disturbance, tree cover, soil compaction, and degree of tree removal. Effects of disturbance on compositional change were largely concordant between taxa. Contrary to Lawton et al.’s findings, species richness for most groups did not decline with disturbance level, providing support for the view that trends in species richness at local scales do not reflect the resilience of ecosystems to disturbance. Disturbance affected species composition more strongly than species richness for butterflies, canopy beetles, and litter ants. For these groups, disturbance caused species replacements rather than just species loss. Only termites showed effects of disturbance on species richness but not composition, indicating species loss without replacement. Although disturbance generally caused changes in composition, the strength of this relationship depended on the disturbance driver. Butterflies, litter ants, and nematodes were correlated with amount of tree cover, canopy beetles were most strongly correlated with time since disturbance, and termites were most strongly correlated with degree of soil disturbance. There were moderately divergent responses to disturbance between functional feeding groups. Disturbance was most strongly correlated with compositional differences of herbivores within beetles and nematodes and humus feeders within termites. Our results suggest that consideration of the impact of different forms of disturbance on species and functional composition, rather than on net numbers of species, is important when assessing the impacts of disturbance on biodiversity.  相似文献   

10.
Hale CM  Frelich LE  Reich PB 《Ecology》2006,87(7):1637-1649
European earthworms are colonizing earthworm-free northern hardwood forests across North America. Leading edges of earthworm invasion provide an opportunity to investigate the response of understory plant communities to earthworm invasion and whether the species composition of the earthworm community influences that response. Four sugar maple-dominated forest sites with active earthworm invasions were identified in the Chippewa National Forest in north central Minnesota, USA. In each site, we established a 30 x 150 m sample grid that spanned a visible leading edge of earthworm invasion and sampled earthworm populations and understory vegetation over four years. Across leading edges of earthworm invasion, increasing total earthworm biomass was associated with decreasing diversity and abundance of herbaceous plants in two of four study sites, and the abundance and density of tree seedlings decreased in three of four study sites. Sample points with the most diverse earthworm species assemblage, independent of biomass, had the lowest plant diversity. Changes in understory plant community composition were most affected by increasing biomass of the earthworm species Lumbricus rubellus. Where L. rubellus was absent there was a diverse community of native herbaceous plants, but where L. rubellus biomass reached its maximum, the herbaceous-plant community was dominated by Carex pensylvanica and Arisaema triphyllum and, in some cases, was completely absent. Evidence from these forest sites suggests that earthworm invasion can lead to dramatic changes in the understory community and that the nature of these changes is influenced by the species composition of the invading earthworm community.  相似文献   

11.
The annual cycle of abundance and distribution of the scyphozoan medusae Aurelia aurita, Cyanea lamarckii, C. capillata and Chrysaora hysoscella were studied in the southern North Sea in 2004 and 2005. Three different patterns of seasonal occurrence of medusae were distinguished: (1) the early occurring C. lamarckii (February–August), (2) C. capillata and A. aurita (April–August) and (3) the late appearing C. hysoscella (July/August–September). Cyanea lamarckii was the most frequently encountered species in this study; its highest mean abundance was 1.8 ± 2.7 ind. 100 m−3. The prey spectra of C. lamarckii, C. capillata and C. hysoscella contained several copepod and other crustacean species and thus make them potential competitors with fish larvae. Medusae in this study also consumed fish eggs and larvae, including clupeids, in all months analysed. Although peak spawning of sprat (Sprattus sprattus) coincides with the maximum abundance of medusae (May–June) the relative low abundance of all medusae species in this study makes jellyfish predation unlikely to be a factor controlling sprat recruitment in the time frame investigated.  相似文献   

12.
生物多样性关系到森林生态系统的稳定性及其功能的正常发挥,渐伐可为林下更新创造有利条件,进而对林下植被多样性产生影响。在大兴安岭兴安落叶松(Larixgmelinii(Rupr.)Rupr.)林区,采用空间代替时间的方法,应用Simpson指数、Shannon.Wiener指数和Pielou均匀度指数,以原始林为对照,研究不同林龄草类.兴安落叶松渐伐林下植被物种多样性的变化规律。结果表明:在群落恢复过程中,渐伐林灌木层多桦性指数呈先升高后降低的变化规律,草本层呈“降低→升高→降低”的趋势,且渐伐林在灌木层多样性指数最高的中龄林时期,草本层多样性指数最低;而原始林在生长发育过程中林下植被多样性指数变化规律一致,均呈“升高→降低→升高”的趋势;渐伐林和原始林林下植被多样性指数均在演替中期(中龄林或近熟林)最高,演替前期和后期相对降低。对比灌木层和草本层发现,渐伐林和原始林各龄林的simpson指数和Shannon.Wiener指数均为草本层〉灌木层。与原始林相比较,渐伐后群落各龄林灌木层Simpson指数、Shannon-Wiener指数和均匀性指数及草本层均匀性指数均显著增加,可见渐伐有利于林下植被的发育和多样性的提高。  相似文献   

13.
三种类型森林林下植物多样性及生物量比较   总被引:4,自引:0,他引:4  
对相同立地条件下海南天然次生林、桉树和马占相思林的林下植物多样性及生物量进行调查,通过比较,灌木植物的物种丰富度S、多样性Simpson指数、Shannon-wiener指数,Margalef指数、均匀度Pielou指数为:天然次生林>桉树人工林>马占相思人工林,方差分析前两者之间差异不显著,后两者之间差异极显著;而草本植物的变化趋势为:桉树人工林>天然次生林>马占相思人工林,方差分析结果前二者间除均匀度Pielou指数差异不显著外,其它多样性指数间差异极显著,后二者间差异不显著.灌木植物地上部分总生物量的变化趋势为:天然次生林>桉树人工林>马占相思人工林,草本植物的变化趋势为:桉树人工林>马占相思人工林>天然次生林.  相似文献   

14.
Holste EK  Kobe RK  Vriesendorp CF 《Ecology》2011,92(9):1828-1838
Plant growth responses to resources may be an important mechanism that influences species' distributions, coexistence, and community structure. Irradiance is considered the most important resource for seedling growth in the understory of wet tropical forests, but multiple soil nutrients and species have yet to be examined simultaneously with irradiance under field conditions. To identify potentially limiting resources, we modeled tree seedling growth as a function of irradiance and soil nutrients across five sites, spanning a soil fertility gradient in old-growth, wet tropical forests at La Selva Biological Station, Costa Rica. We measured an array of soil nutrients including total nitrogen (total N), inorganic N (nitrate [NO3-] and ammonium [NH4+]), phosphate (PO4-), and sum of base cations (SBC; potassium, magnesium, and calcium). Shade in the forest understory did not preclude seedling growth correlations with soil nutrients. Irradiance was a significant predictor of growth in 52% of the species, inorganic N in 54% (NO3- in 32%; NH4+ in 34%), total N in 47%, SBC in 39%, and PO4- in 29%. Overall, growth was correlated with both irradiance and soil nutrients in 45% of species and with soil nutrients only in an additional 48%; rarely was irradiance alone correlated with growth. Contrary to expectations, the magnitudes of growth effects, assessed as the maximum growth response to significant resources for each species, were similar for irradiance and most soil nutrients. Among species whose growth correlated with soil nutrients, the rank importance of nutrient effects was SBC, followed by N (total N, NO3-, and/or NH4+) and PO4-. Species' growth responsiveness (i.e., magnitudes of effect) to irradiance and soil nutrients was negatively correlated with species' shade tolerance (survival under 1% full sun). In this broad survey of species and resources, the nearly ubiquitous effects of soil nutrients on seedling growth challenge the idea that soil nutrients are less important than irradiance in the light-limited understory of wet tropical forests.  相似文献   

15.
Indirect effects of trophic interactions on biodiversity can be large and common, even in complex communities. Previous experiments with dominant understory Piper shrubs in a Costa Rican rain forest revealed that increases in herbivore densities on these shrubs caused widespread seedling mortality as a result of herbivores moving from Piper to seedlings of many different plant genera. We tested components of the Janzen-Connell hypothesis by conducting focused studies on the effects of specialist and generalist Piper herbivores on local seedling diversity. Whereas specialist herbivores are predicted to increase mortality to neighboring seedlings that are closely related to the source plant, true generalists moving from source plants may cause density-dependent mortality of many species, and possibly increase richness if new species replace abundant species that have been thinned by herbivores. Therefore, we hypothesized that seedling richness would be greater in understory control plots created in patches of Piper that had normal densities of generalist herbivores compared to plots from which we removed generalist herbivores manually from all Piper shrubs. After 15 months, generalist-herbivore-removal plots had > 40% fewer seedlings, > 40% fewer species, and 40% greater seedling evenness, on average, than control plots with generalist herbivores intact. Using a complementary approach in unmanipulated plots in four forests, we used path analysis to test for a positive association between seedling diversity and herbivore damage on Piper species. In unmanipulated plots, for both generalist and specialist herbivores, our data were significant fits to the causal model that Piper herbivores decrease evenness and increase plant species richness, corroborating the experimental results. Because herbivores changed how individuals were apportioned among the species and families present (lower evenness), one interpretation of these associations between herbivores on Piper shrubs and local seedling richness is that high seedling mortality in dominant families allowed the colonization or survival of less common species. If interspecific or apparent competition allowed for a relative increase in species richness, then the Janzen-Connell hypothesis may extend its predictions to generalist seedling predators. We speculate that apparent competition may explain some of the deviations from neutral model predictions, especially at small scales.  相似文献   

16.
We investigated macrofaunal species richness and composition in Posidonia oceanica, Cymodocea nodosa and Leaf litter beds within a coastal area of the Gulf of Oristano in proximity of the Cabras lagoon (western Sardinia, Italy). A total of 124 taxa were found, of which 116 were identified at the species level. They were analyzed based on both taxonomic and substrate affinity classification. Presence/absence analysis revealed that P. oceanica, C. nodosa and Leaf litter were all characterized by a conspicuous number of soft-bottom polychaetes (e.g., Prionospio multibranchiata and Ampharete acutifrons) and crustaceans (e.g., Corophium sextonae and Dynamene bidentatus), also known as detritivores. There were also major differences between the three habitats investigated. Consistent with its structural complexity, P. oceanica showed the highest species richness [E(S 50)] and the most diversified macrofaunal assemblages, both in terms of taxonomic groups and taxa associated with different substrates. The two seagrasses, however, showed a similar species composition and differed from Leaf litter for the exclusive presence of hard-bottom species (e.g., the tunicate Phallusia fumigata) and seagrass-associated species (e.g., the polychaete Syllis garciai and the decapod Paguristes syrtensis). In contrast, Leaf litter showed the most differences between the habitats, and was characterized by the bivalves Abra alba and Cerastoderma glaucum, not found in seagrass beds, and by Loripes lacteus and Ruditapes decussatus. Leaf litter also had the highest content of organic matter (26.7% ± 1.4) and total organic carbon (10.3% ± 0.4). Our results confirmed the facilitative role of living seagrasses, in particular P. oceanica, as related to their structural complexity, for numerous species from different substrates (e.g., hard bottom species). This study also showed that leaf litter beds act as a particular environment where sediment instability, leaf breakdown, and organic matter enrichment and decomposition strongly influence animal distribution. Finally, our results highlighted the ecological and trophic importance of seagrass-derived detritus and the associated macroinvertebrate detritivores within seagrass-dominated systems.  相似文献   

17.
Dispersal among ecological communities is usually assumed to be random in direction, or to vary in distance or frequency among species. However, a variety of natural systems and types of organisms may experience dispersal that is biased by directional currents or by gravity on hillslopes. We developed a general model for competing species in metacommunities to evaluate the role of directionally biased dispersal on species diversity, abundance, and traits. In parallel, we tested the role of directionally biased dispersal on communities in a microcosm experiment with protists and rotifers. Both the model and experiment independently demonstrated that diversity in local communities was reduced by directionally biased dispersal, especially dispersal that was biased away from disturbed patches. Abundance of species (and composition) in local communities was a product of disturbance intensity but not dispersal directionality. High disturbance selected for species with high intrinsic growth rates and low competitive abilities. Overall, our conclusions about the key role of dispersal directionality in (meta)communities seem robust and general, since they were supported both by the model, which was set in a general framework and not parameterized to fit to a specific system, and by a specific experimental test with microcosms.  相似文献   

18.
The resource heterogeneity hypothesis (RHH) is frequently cited in the ecological literature as an important mechanism for maintaining species diversity. The RHH has rarely been evaluated in the context of restoration ecology in which a commonly cited goal is to restore diversity. In this study we focused on the spatial heterogeneity of total inorganic nitrogen (TIN) following restoration treatments in a ponderosa pine (Pinus ponderosa)/Douglas-fir (Pseudotsuga menziesii) forest in western Montana, USA. Our objective was to evaluate relationships between understory species richness and TIN heterogeneity following mechanical thinning (thin-only), prescribed burning (burn-only), and mechanical thinning with prescribed burning (thin/burn) to discern the ecological and management implications of these restoration approaches. We employed a randomized block design, with three 9-ha replicates of each treatment and an untreated control. Within each treatment, we randomly established a 20 x 50 m (1000 m2) plot in which we measured species richness across the entire plot and in 12 1-m(2) quadrats randomly placed within each larger plot. Additionally, we measured TIN from a grid consisting of 112 soil samples (0-5 cm) in each plot and computed standard deviations as a measure of heterogeneity. We found a correlation between the net increase in species richness and the TIN standard deviations one and two years following restoration treatments, supporting RHH. Using nonmetric multidimensional scaling ordination and chi-squared analysis, we found that high and low TIN quadrats contained different understory communities in 2003 and 2004, further supporting RHH. A comparison of restoration treatments demonstrated that thin/burn and burn-only treatments created higher N heterogeneity relative to the control. We also found that within prescribed burn treatments, TIN heterogeneity was positively correlated with fine-fuel consumption, a variable reflecting burn severity. These findings may lead to more informed restoration decisions that consider treatment effects on understory diversity in ponderosa pine/Douglas-fir ecosystems.  相似文献   

19.
In recent decades, the Sal-dominated tropical deciduous forests (TDFs) were experiencing loss of regeneration due to lack of seed germination of native species. To understand this ecological problem, the present study dealt with the spatial and temporal variations in biogeochemical parameters of Sal forest soils. Twenty soil samples were collected from four TDF sites in the Chota Nagpur Plateau, India. The inventories of tree species in three life-cycle stages (seedling, sapling and adult) were carried out in four sites. Site-I (290?stems?ha?1) showed occurrence of only one species (Shorea robusta) without seedling and sapling. The pH of forest soils was acidic to slightly acidic in nature. Seasonal variations in C/N ratio showed rapid mineralization of organic matter in the rainy season. ANOVA revealed that the degree of seasonal variation caused significant difference in pH, soil organic carbon, soil organic matter, total carbon, Al, Fe, Ca, Mg, Mn and P across four sites. The strong correlation of P with pH, Al, Fe, Mg and Mn indicated highly oxidised and exchangeable nature of dry forest soils. Factor analysis of soil parameters revealed that the different combinations of edaphic conditions in different seasons were important in the distribution of the dry tropical forests communities in Chota Nagpur Plateau.  相似文献   

20.
Rates of accumulation, transformation and availability of sediment nitrogen in four mangrove forests of different age and type in southern Thailand were examined in relation to forest net canopy production. Net ammonification (range: 0.3-2.3 mmol N m-2 day-1), nitrification (range: 0-0.7 mmol N m-2 day-1) and nitrogen fixation (range: 0-0.6 mmol N m-2 day-1) in surface sediments equated to <10% of canopy nitrogen demand (range: 7.5-32 mmol N m-2 day-1). By mass balance, we estimated that most of the nitrogen required for tree growth must be derived from root-associated nitrogen fixation and/or mineralisation processes occurring possibly to the maximum depth of live root penetration (75-100 cm). Denitrification, nitrification, rainfall and tidal exchange were comparatively small components of sediment nitrogen flow. Denitrification (range: 0-3.8 mmol N m-2 day-1) removed 3-6% of total nitrogen input at three Rhizophora forests, but removed 23% of total nitrogen input in a high-intertidal Ceriops forest. Nitrogen burial ranged from 4% to 12% of total nitrogen input, with the greatest burial rates in two forests receiving the least tidal inundation. Inputs of nitrogen to the forests were rapid (range: 11-37 mmol N m-2 day-1), likely originating from upstream sources such as agricultural and industrial lands, sewage and shrimp ponds. Our results indicate that ~70% to 90% of the nitrogen supplied to the forest floor is shunted via the ammonium pool to trees to sustain the rapid rates of net canopy production measured in these forests. Differences in plant-sediment nitrogen relations between the forests appeared to be a function of the interaction between intertidal position and stand age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号