首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements collected using five real-time continuous airborne particle monitors were compared to measurements made using reference filter-based samplers at Bakersfield, CA, between December 2, 1998, and January 31, 1999. The purpose of this analysis was to evaluate the suitability of each instrument for use in a real-time continuous monitoring network designed to measure the mass of airborne particles with an aerodynamic diam less than 2.5 microns (PM2.5) under wintertime conditions in the southern San Joaquin Valley. Measurements of airborne particulate mass made with a beta attenuation monitor (BAM), an integrating nephelometer, and a continuous aerosol mass monitor (CAMM) were found to correlate well with reference measurements made with a filter-based sampler. A Dusttrak aerosol sampler overestimated airborne particle concentrations by a factor of approximately 3 throughout the study. Measurements of airborne particulate matter made with a tapered element oscillating microbalance (TEOM) were found to be lower than the reference filter-based measurements by an amount approximately equal to the concentration of NH4NO3 observed to be present in the airborne particles. The performance of the Dusttrak sampler and the integrating nephelometer was affected by the size distribution of airborne particulate matter. The performance of the BAM, the integrating nephelometer, the CAMM, the Dusttrak sampler, and the TEOM was not strongly affected by temperature, relative humidity, wind speed, or wind direction within the range of conditions encountered in the current study. Based on instrument performance, the BAM, the integrating nephelometer, and the CAMM appear to be suitable candidates for deployment in a real-time continuous PM2.5 monitoring network in central California for the range of winter conditions and aerosol composition encountered during the study.  相似文献   

2.
ABSTRACT

Measurements collected using five real-time continuous airborne particle monitors were compared to measurements made using reference filter-based samplers at Bakers-field, CA, between December 2, 1998, and January 31, 1999. The purpose of this analysis was to evaluate the suitability of each instrument for use in a real-time continuous monitoring network designed to measure the mass of airborne particles with an aerodynamic diam less than 2.5 μm (PM2.5) under wintertime conditions in the southern San Joaquin Valley. Measurements of airborne particulate mass made with a beta attenuation monitor (BAM), an integrating nephelometer, and a continuous aerosol mass monitor (CAMM) were found to correlate well with reference measurements made with a filter-based sampler. A Dusttrak aerosol sampler overestimated airborne particle concentrations by a factor of ~3 throughout the study. Measurements of airborne particulate matter made with a tapered element oscillating microbalance (TEOM) were found to be lower than the reference filter-based measurements by an amount approximately equal to the concentration of NH4NO3 observed to be present in the airborne particles. The performance of the Dusttrak sampler and the integrating nephelometer was affected by the size distribution of airborne particulate matter. The performance of the BAM, the integrating nephelometer, the CAMM, the Dusttrak sampler, and the TEOM was not strongly affected by temperature, relative humidity, wind speed, or wind direction within the range of conditions encountered in the current study. Based on instrument performance, the BAM, the integrating nephelometer, and the CAMM appear to be suitable candidates for deployment in a real-time continuous PM2.5 monitoring network in central California for the range of winter conditions and aerosol composition encountered during the study.  相似文献   

3.
The University of Arizona and the Pima County Air Pollution Control District conducted a comparison study of the following aerosol samplers: a standard high-volume sampler, a high-volume sampler fitted with a size selective inlet, and a dichotomous virtual impactor. Over sixty samples were collected with the colocated samplers during the first six months of 1981. The concentration (μg/m3) of suspended particulate matter and of sulfate was determined for all the samples, while the concentration of four lithophilic elements (Ca, Fe, Mg, and K) was determined on one third of the samples. Well-defined linear relationships for suspended particulate matter and sulfate were found to exist between each of the three sample collection methods over the concentrafion range encountered in this study. For these samples, there were significant differences in the particulate mass and large particle lithophilic element concentrations collected by each device. However, sulfate values obtained from the three samplers were in excellent agreement with each other. This suggests that the inlet collection efficiency for large particles differs significantly for these three sampling devices. Since the size selective inlet and the dichotomous virtual impactor samplers are each designed for collection of inhalable particles (particles of 15 μm aerodynamic diameter and smaller), they would have been expected to measure approximately equivalent particle mass concentrations. Thus, these differences are important to those interested in selecting a method for measuring airborne particle mass concentrations.  相似文献   

4.
In this study, we have examined the relationships between the concentrations of ambient inhalable airborne fungi and pollen with PM10, PM2.5, ozone, organic carbon, selected trace metals (cadmium, copper, lead, and zinc), temperature, and relative humidity. The database was collected in Cincinnati, Ohio, USA, during two consecutive years. Measurements of all environmental variables were performed at the same site continuously 5 days a week except during winter months. The airborne concentrations of biological and non-biological pollutants ranged as follows: total fungi: 184-16 979 spores m(-3); total pollen: 0-6692 pollen m(-3); PM10: 6.70-65.38 microg m(-3); PM2.5: 5.04-45.02 microg m(-3); and ozone: 2.54-64.17 ppb. Higher levels of total inhalable fungi and particulate matter were found during fall and summer months. In contrast, total pollen concentration showed elevated levels in spring. Peak concentrations of ozone were observed during summer and beginning of fall. Our study concluded that several types of inhalable airborne fungi and pollen, particulate matter, and ozone could be positively correlated as a result of the atmospheric temperature influence.  相似文献   

5.
A method was developed to determine the particle collection efficiency of an aerosol sampler by electron microscopy. The determination method measures the absolute concentration of particles and the particle size distribution at the sampler inlet by two aerosol samplers connected in series. Particle samples collected in each sampler were microscopically observed and analyzed by electron microscopy. By this “double-sampler method”, the particle collection efficiencies of the thermal and electrostatic precipitators were determined as a function of particle size. The average particle size ranged from 0.02 to 0.4 μm and mean collection efficiencies were found to be 72 and 79% for the thermal and electrostatic precipitators, respectively.  相似文献   

6.
The extreme particle size range and enormous heterogeneity of airborne biological particles make sampling a significant challenge. Three major sampler types available include gravity devices, impactors and suction samplers. Gravity methods, while most commonly used, are neither qualitatively or quantitatively accurate and of very limited use. Impaction samplers (rotating, centrifugal) accelerate air by rotating the collecting surface or with a fan. Particles are collected from measured volumes of air but these devices preferentially sample particles larger than 10 μm. Suction samplers, which efficiently collect particles of a wide size range from measured volumes of air, include slit samplers, cascade impactors, filtration devices and liquid impingers. Suction samplers can retrieve viable particles by direct impaction on culture media, or by subsequent culture of impinger fluid or filter eluates. Nonviable particles can often be identified by microscopic examination of slides, filters or filtrates of impinger fluids. Immunoassays and biochemical assays can be used with impinger fluid and filter eluates to assess antigen and toxin levels in measured air samples.  相似文献   

7.
Motor vehicle emissions usually constitute the most significant source of ultrafine particles (diameter <0.1 microm) in an urban environment, yet little is known about the concentration and size distribution of ultrafine particles in the vicinity of major highways. In the present study, particle number concentration and size distribution in the size range from 6 to 220 nm were measured by a condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS), respectively. Measurements were taken 30, 60, 90, 150, and 300 m downwind, and 300 m upwind, from Interstate 405 at the Los Angeles National Cemetery. At each sampling location, concentrations of CO, black carbon (BC), and particle mass were also measured by a Dasibi CO monitor, an aethalometer, and a DataRam, respectively. The range of average concentration of CO, BC, total particle number, and mass concentration at 30 m was 1.7-2.2 ppm, 3.4-10.0 microg/m3, 1.3-2.0 x 10(5)/cm3, and 30.2-64.6 microg/m3, respectively. For the conditions of these measurements, relative concentrations of CO, BC, and particle number tracked each other well as distance from the freeway increased. Particle number concentration (6-220 nm) decreased exponentially with downwind distance from the freeway. Data showed that both atmospheric dispersion and coagulation contributed to the rapid decrease in particle number concentration and change in particle size distribution with increasing distance from the freeway. Average traffic flow during the sampling periods was 13,900 vehicles/hr. Ninety-three percent of vehicles were gasoline-powered cars or light trucks. The measured number concentration tracked traffic flow well. Thirty meters downwind from the freeway, three distinct ultrafine modes were observed with geometric mean diameters of 13, 27, and 65 nm. The smallest mode, with a peak concentration of 1.6 x 10(5)/cm3, disappeared at distances greater than 90 m from the freeway. Ultrafine particle number concentration measured 300 m downwind from the freeway was indistinguishable from upwind background concentration. These data may be used to estimate exposure to ultrafine particles in the vicinity of major highways.  相似文献   

8.
This paper describes the results of a study to determine the total mass and the mass distribution of atmospheric aerosols, especially that mass associated with particles greater than 10 μm diameter. This study also determined what fraction of the total aerosol mass a standard high-volume air sampler collects and what fraction and size interval settle out on a dust fall plate. A special aerosol sampling system was designed for this study to obtain representative samples of large airborne particles. A suburban sampling site was selected because no local point sources of aerosols existed nearby. Samples were collected under various conditions of wind velocity and direction to obtain measurements on different types of aerosols.

Study measurements show that atmospheric particulate matter has a bimodal mass distribution. Mass associated with large particles mainly ranged from 5 to 100 μm in size, while mass associated with small particles ranged from an estimated 0.03 to 5 μm in size. Combined, these two distributions produced a bimodal mass distribution with a minimum around 5 μm diameter. The high-volume air sampler was found to collect most of the total aerosol mass, not just that fraction normally considered suspended particulate. Dust fall plates did not provide a good or very useful measure of total aerosol mass. The two fundamental processes of aerosol formation, condensation and dispersion appear to account for the formation of a bimodal mass distribution in both natural and anthropogenic aerosols. Particle size distribution measurements frequently are in error because representative samples of large airborne particles are not obtained. Considering this descrepancy, air pollution regulations should specify or be based upon an upper particle size limit.  相似文献   

9.
Karaca F  Alagha O  Ertürk F 《Chemosphere》2005,59(8):1183-1190
Inhalable particulate matter (PM10) has been monitored at several stations by Istanbul Municipality. On the other hand, information about fine fraction aerosols (PM2.5) in Istanbul atmosphere was not reported. In this study, 86 daily aerosol samples were collected between July 2002 and July 2003. The PM10 annual arithmetic mean value of 47.1 microg m(-3), was lower than the Turkish air quality standard of 60 microg m(-3). On the other hand, this value was found higher than the annual European Union air quality PM(10) standard of 40 microg m(-3). Furthermore, the annual mean concentration of PM2.5 20.8 microg m(-3) was found higher than The United States EPA standard of 15 microg m(-3). The statistics and relationships of fine, coarse, and inhalable particles were studied. Cyclic behavior of the monthly average concentrations of PM10 and PM2.5 data were investigated. Several frequency distribution functions were used to fit the measured data. According to Chi-squared and Kolmogorov-Smirnov tests, the frequency distributions of PM2.5 and PM10 data were found to fit Log-logistic functions.  相似文献   

10.
Trace element dry deposition fluxes were measured using a smooth, greased, knife-edge surrogate surface (KSS) holding greased Mylar strips in Bursa, Turkey. Sampling program was conducted between October 2002 and June 2003 and 46 dry deposition samples were collected. The average fluxes of crustal metals (Mg, Ca, and Fe) were one to four orders of magnitude higher than the fluxes of anthropogenic metals. Trace element fluxes ranged from 3 (Cd) to 24,230 (Ca) microg m(-2) d(-1). The average trace element dry deposition fluxes measured in this study were similar to those measured in other urban areas. In addition, ambient air samples were also collected simultaneously with flux samples and concentrations of trace elements, collected with a TSP sampler, were between 0.7 and 4900 ng m(-3) for Cd and Ca, respectively. The overall trace element dry deposition velocities, calculated by dividing the fluxes to the particle phase concentrations ranged from 2.3+/-1.7 cm s(-1) (Pb) to 11.1+/-6.4 cm s(-1) (Ni). These values are in good agreement with the values calculated using similar techniques. The anthropogenic and crustal contributions were estimated by employing enrichment factors (EFs) calculated relative to the average crustal composition. Low EFs for dry deposition samples were calculated. This is probably due to contamination of local dust and its important contribution to the collected samples.  相似文献   

11.
Airborne particles are known to cause illness and to influence meteorological phenomena. It is therefore important to monitor their concentrations and to identify them. A challenge is to collect micro and nanoparticles, microorganisms as well as toxic molecules with a device as simple and small as possible to be used easily and everywhere. Electrostatic precipitation is an efficient method to collect all kinds of airborne particles. Furthermore, this method can be miniaturized. A portable, silent, and autonomous air sampler based on this technology is therefore being developed with the final objective to collect very efficiently airborne pathogens such as supermicron bacteria but also submicron viruses. Particles are collected on a dry surface so they may be concentrated afterwards in a small amount of liquid medium to be analyzed. It is shown that nearly 98 % of airborne particles from 10 nm to 3 μm are collected.  相似文献   

12.
Daily particle samples were collected in Santiago, Chile, at four urban locations from January 1, 1989, through December 31, 2001. Both fine PM with da < 2.5 microm (PM2.5) and coarse PM with 2.5 < da < 10 microm (PM2.5-10) were collected using dichotomous samplers. The inhalable particle fraction, PM10, was determined as the sum of fine and coarse concentrations. Wind speed, temperature and relative humidity (RH) were also measured continuously. Average concentrations of PM2.5 for the 1989-2001 period ranged from 38.5 microg/m3 to 53 microg/m3. For PM2.5-10 levels ranged from 35.8-48.2 microg/m3 and for PM10 results were 74.4-101.2 microg/m3 across the four sites. Both annual and daily PM2.5 and PM10 concentration levels exceeded the U.S. National Ambient Air Quality Standards and the European Union concentration limits. Mean PM2.5 levels during the cold season (April through September) were more than twice as high as those observed in the warm season (October through March); whereas coarse particle levels were similar in both seasons. PM concentration trends were investigated using regression models, controlling for site, weekday, month, wind speed, temperature, and RH. Results showed that PM2.5 concentrations decreased substantially, 52% over the 12-year period (1989-2000), whereas PM2.5-10 concentrations increased by approximately 50% in the first 5 years and then decreased by a similar percentage over the following 7 years. These decreases were evident even after controlling for significant climatic effects. These results suggest that the pollution reduction programs developed and implemented by the Comisión Nacional del Medio Ambiente (CONAMA) have been effective in reducing particle levels in the Santiago Metropolitan region. However, particle levels remain high and it is thus imperative that efforts to improve air quality continue.  相似文献   

13.
Ammonium nitrate and semivolatile organic material (SVOM) are significant components of fine particles in urban atmospheres. These components, however, are not properly determined with methods such as the fine particulate matter (PM2.5) Federal Reference Method (FRM) or other single filter samplers because of significant losses of semivolatile material (SVM) from particles collected on the filter during sampling. The R&P tapered element oscillating microbalance (TEOM) monitor also does not measure SVM, because this method heats the sample to remove particle bound water, which also results in evaporation of SVM. Recent advances in monitoring techniques have resulted in samplers for both integrated and continuous measurement of total PM2.5, including the particle concentrator-Brigham Young University organic sampling system (PC-BOSS), the real-time total ambient mass sampler (RAMS), and the R&P filter dynamics measurement system (FDMS) TEOM monitor. Results obtained using these samplers have been compared with those obtained with either a PM2.5 FRM sampler or a TEOM monitor in studies conducted during the past five years. These studies have shown the following: (1) the PC-BOSS, RAMS, and FDMS TEOM are all comparable. Each instrument measures both the nonvolatile material and the SVM. (2) The SVM is not retained on the heated filter of a regular TEOM monitor and is not measured by this sampling technique. (3) Much of the SVM is also lost during sampling from single filter samplers such as the PM2.5 FRM sampler. (4) The amount of SVM lost from single filter samplers can vary from less than one-third of that lost from heated TEOM filters during cold winter conditions to essentially all during warm summer conditions. (5) SVOM can only be reliably collected using an appropriate denuder sampler. (6) A PM2.5 speciation sampler can be easily modified to a denuder sampler with filters that can be analyzed for semivolatile organic carbon (OC), nonvolatile OC, and elemental carbon using existing OC/elemental carbon analytical techniques. The research upon which these statements are based for various urban studies are summarized in this paper.  相似文献   

14.
Abstract

A real-time monitoring methodology to determine diesel fine particles in diesel emissions has been evaluated. The range of particle size captured by the monitor was ~0.1 μm to 1 μm. DustTrak real-time monitors were connected to the dilution tunnel of the vehicle exhaust to measure the emissions during the vehicle tests under both dynamic and steady-state driving conditions, and concentration data were recorded every 5 sec. Test variation of the real-time monitoring among different test days was similar to that measured by traditional filter-based gravi-metric method, whereas the repeatability of the monitor data within the same-day tests was better than that of gravimetric method. Correlations between the two methods were established for different fuels tested on a single light duty vehicle. When the emissions from the reference fuel was used to convert the monitor’s response to diesel fuels, the levels determined by the real-time monitor were consistent with those measured by gravimetric method among different fuels tested. Use of the real-time monitor could provide information on the levels of fine particles that is more relevant to the public health than the total particles.  相似文献   

15.
As part of a major study to investigate the indoor air quality in residential houses in Singapore, intensive aerosol measurements were made in an apartment in a multistory building for several consecutive days in 2004. The purpose of this work was to identify the major indoor sources of fine airborne particles and to assess their impact on indoor air quality for a typical residential home in an urban area in a densely populated country. Particle number and mass concentrations were measured in three rooms of the home using a real-time particle counter and a low-volume particulate sampler, respectively. Particle number concentrations were found to be elevated on several occasions during the measurements. All of the events of elevated particle concentrations were linked to indoor activities based on house occupant log entries. This enabled identification of the indoor sources that contributed to indoor particle concentrations. Activities such as cooking elevated particle number concentrations < or =2.05 x 10(5) particles/cm3. The fine particles collected on Teflon filter substrates were analyzed for selected ions, trace elements, and metals, as well as elemental and organic carbon (OC) contents. To compare the quality of air between the indoors of the home and the outdoors, measurements were also made outside the home to obtain outdoor samples. The chemical composition of both outdoor and indoor particles was determined. Indoor/outdoor (I/O) ratios suggest that certain chemical constituents of indoor particles, such as chloride, sodium, aluminum, cobalt, copper, iron, manganese, titanium, vanadium, zinc, and elemental carbon, were derived through migration of outdoor particles (I/O <1 or - 1), whereas the levels of others, such as nitrite, nitrate, sulfate, ammonium, cadmium, chromium, nickel, lead, and OC, were largely influenced by the presence of indoor sources (I/O >1).  相似文献   

16.
INTENTION, GOAL, SCOPE, BACKGROUND: As the strong negative health effect of exposure to the inhalable particulate matter PM10 in the urban environment has been confirmed, the study of the mass concentrations, physico-chemical characteristics, sources, as well as spatial and temporal variation of atmospheric aerosol particles becomes very important. OBJECTIVE: This work is a pilot study to assess the concentration level of ambient suspended particulate matter, with an aerodynamic diameter of less than 10 microm, in the Belgrade central urban area. Average daily concentrations of PM10 and PM2.5 have been measured at three representative points in the city between June 2002 and December 2002. The influence of meteorological parameters on PM10 and PM2.5 concentrations was analyzed, and possible pollution sources were identified. METHODS: Suspended particles were collected on Pure Teflon filters by using a Mini-Vol low-volume air sampler (Airmetrics Co., Inc.; 5 l min(-1) flow rate). Particle mass was determined gravimetrically after 48 h of conditioning in a desiccator, in a Class 100 clean room at the temperature T = 20 degrees C and at about 50% constant relative humidity (RH). RESULTS AND DISCUSSION: Analysis of the PM10 data indicated a marked difference between season without heating--(summer; mean value 56 microg m(-3)) and heating season--(winter; mean value 96 microg m3); 62% of samples exceeded the level of 50 microg m(-3). The impact of meteorological factors on PM concentrations was not immediately apparent, but there was a significant negative correlation with the wind speed. CONCLUSIONS: The PM10 and PM2.5 mass concentrations in the Belgrade urban area had high average values (77 microg m(-3) and 61 microg m(-3)) in comparison with other European cities. The main sources of particulate matter were traffic emission, road dust resuspension, and individual heating emissions. When the air masses are coming from the SW direction, the contribution from the Obrenovac power plants is evident. During days of exceptionally severe pollution, in both summer and winter periods, high production of secondary aerosols occurred, as can be seen from an increase in PM2.5 in respect to PM10 mass concentration. RECOMMENDATION AND OUTLOOK: The results obtained gave us the first impression of the concentration level of particulate matter, with an aerodynamic diameter of less than 10 microm, in the Belgrade ambient air. Due to measured high PM mass concentrations, it is obvious that it would be very difficult to meet the EU standards (EEC 1999) by 2010. It is necessary to continue with PM10 and PM2.5 sampling; and after comprehensive analysis which includes the results of chemical and physical characterization of particles, we will be able to recommend effective control measures in order to improve air quality in Belgrade.  相似文献   

17.
The real-time ambient mass sampler (RAMS) is a continuous monitor based on particle concentrator, denuder, drier, and tapered element oscillating microbalance (TEOM) monitor technology. It is designed to measure PM2.5 mass, including the semi-volatile species NH4NO3 and semi-volatile organic material, but not to measure PM2.5 water content. The performance of the RAMS in an urban environment with high humidity was evaluated during the July 1999 NARSTO-Northeast Oxidant and Particles Study (NEOPS) intensive study at the Baxter water treatment plant in Philadelphia, PA. The results obtained with the RAMS were compared to mass measurements made with a TEOM monitor and to constructed mass obtained with a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) sampler designed to determine the chemical composition of fine particles, including the semi-volatile species. An average of 28% of the fine particulate material present during the study was semi-volatile organic material lost from a filter during particle collection, and 1% was NH4NO3 that was also lost from the particles during sampling. The remaining mass was dominantly nonvolatile (NH4)2SO4 (31%) and organic material (37%), with minor amounts of soot, crustal material, and nonvolatile NH4NO3. Comparison of the RAMS and PC-BOSS results indicated that the RAMS correctly monitored for fine particulate mass, including the semivolatile material. In contrast, the heated filter of the TEOM monitor did not measure the semi-volatile material. The comparison of the RAMS and PC-BOSS data had a precision of +/-4.1 microg/m3 (+/-9.6%). The precision of the RAMS data was limited by the uncertainty in the blank correction for the reversible adsorption of water by the charcoal-impregnated cellulose sorbent filter of the RAMS monitor. The precision of the measurement of fine particulate components by the PC-BOSS was +/-6-8%.  相似文献   

18.
In this study, plates for downward flux and upward flux were used to measure atmospheric dry deposition fluxes for particulate mass and polycyclic aromatic hydrocarbons (PAHs) in TERC (Tsukuba), Japan. Ambient particles concentrations were also collected using a high-volume air sampler, and ambient particle size distributions between 0.01 μm and 13.1 μm were measured using a low-pressure cascade impactor to characterise the PAHs levels and dry deposition. The results indicated that the average cumulative fraction of dry deposition flux for particles and PAHs which attached with them was caused by the particle size of greater than 1.2-6.3 μm (97%).  相似文献   

19.
A study was conducted to compare four gravimetric methods of measuring fine particle (PM2.5) concentrations in air: the BGI, Inc. PQ200 Federal Reference Method PM2.5 (FRM) sampler; the Harvard-Marple Impactor (HI); the BGI, Inc. GK2.05 KTL Respirable/Thoracic Cyclone (KTL); and the AirMetrics MiniVol (MiniVol). Pairs of FRM, HI, and KTL samplers and one MiniVol sampler were collocated and 24-hr integrated PM2.5 samples were collected on 21 days from January 6 through April 9, 2000. The mean and standard deviation of PM2.5 levels from the FRM samplers were 13.6 and 6.8 microg/m3, respectively. Significant systematic bias was found between mean concentrations from the FRM and the MiniVol (1.14 microg/m3, p = 0.0007), the HI and the MiniVol (0.85 microg/m3, p = 0.0048), and the KTL and the MiniVol (1.23 microg/m3, p = 0.0078) according to paired t test analyses. Linear regression on all pairwise combinations of the sampler types was used to evaluate measurements made by the samplers. None of the regression intercepts was significantly different from 0, and only two of the regression slopes were significantly different from 1, that for the FRM and the MiniVol [beta1 = 0.91, 95% CI (0.83-0.99)] and that for the KTL and the MiniVol [beta1 = 0.88, 95% CI (0.78-0.98)]. Regression R2 terms were 0.96 or greater between all pairs of samplers, and regression root mean square error terms (RMSE) were 1.65 microg/m3 or less. These results suggest that the MiniVol will underestimate measurements made by the FRM, the HI, and the KTL by an amount proportional to PM2.5 concentration. Nonetheless, these results indicate that all of the sampler types are comparable if approximately 10% variation on the mean levels and on individual measurement levels is considered acceptable and the actual concentration is within the range of this study (5-35 microg/m3).  相似文献   

20.
Particle formation from showering may be attributed to dissolved mineral aerosols remaining after evaporation of micron-sized satellite droplets produced by the showerhead or from splashing of larger shower water droplets on surfaces. Duplicate continuous particle monitors measured particle size distributions in a ventilated residential bathroom under various showering conditions, using a full-size mannequin in the shower to simulate splashing effects during showering. Particle mass concentrations were estimated from measured shower particle number densities and used to develop emission factors for inhalable particles. Emission source strengths of 2.7-41.3 microg/ m3/min were estimated under the various test conditions using residential tap water in Columbus, OH. Calculated fine particulate matter (PM2.5) concentrations in the bathroom reached several hundred micrograms per cubic meter; calculated coarse particulate matter (PM10) levels approached 1000 microg/m3. Rates of particle formation tended to be highest for coarse shower spray settings with direct impact on the mannequin. No consistent effects of water temperature, water pressure, or spray setting on overall emission rates were apparent, although water temperature and spray setting did have an effect when varied within a single shower sampling run. Salt solutions were injected into the source water during some tests to assess the effects of total dissolved solids on particle emission rates. Injection of salts was shown to increase the PM2.5 particle formation rate by approximately one third, on average, for a doubling in tap water-dissolved solids content; PM10 source strengths approximately doubled under these conditions, because very few particles >10 microm were formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号