共查询到20条相似文献,搜索用时 62 毫秒
1.
通过构建空气阴极型双室微生物燃料电池,研究了以500 mg/L苯胺作为唯一燃料以及苯胺和不同底物共基质时MFC对苯胺的降解特性及MFC的产电性能。结果表明,在外电阻1000Ω,以500 mg/L苯胺为唯一燃料以及500 mg/L苯胺分别和500 mg/L乙酸钠,葡萄糖和可溶性淀粉作为共同基时的MFC运行周期分别为3、3.4、4.6和5 d;最大输出电压分别为273、450、428和380 mV;输出功率分别为142、225、201和160 mW/m2。苯胺去除率分别为68%、85.8%、71%和65%。内阻分别为931、524、564和751Ω,COD去除率分别为68%、85%、72%和65%。库伦效率分别为1.8%、7.9%、6.6%和4.5%。MFC可以使用苯胺作为唯一燃料,且当添加的基质不同时,MFC产电性能以及苯胺降解状况有所不同。利用MFC可以使苯胺高效快速降解的同时实现稳定的电压输出。 相似文献
2.
构建了双室微生物燃料电池(MFC),并应用于污水BOD的检测。优化了MFC型BOD传感器的检测条件,分析了传感器进行污水BOD检测的特征。结果表明,以A2/O污水处理工艺中厌氧段污泥进行接种,双室MFC型BOD传感器2周内完成启动,所产电流达到稳定。传感器的最佳检测条件为外接电阻500Ω,添加缓冲溶液并维持待测水样pH为7.0,添加35 mg/L的L-半胱氨酸作为吸氧剂维持阳极室厌氧环境,阴极室富氧水流量为20 mL/min。利用MFC产生的电流峰值准确检测污水水样BOD浓度,传感器检测范围为10~50 mg/L,检测时间小于3 h;利用MFC产生的电荷量准确检测污水水样BOD浓度,检测范围为10~100 mg/L,检测时间小于10 h。利用MFC电流峰值和电荷量检测污水水样BOD浓度,偏差均小于15%,传感器运行稳定,寿命较长。 相似文献
3.
微生物燃料电池(MFC)的阳极对提高MFC产电性能有至关重要的影响。利用竹炭比表面积大、吸附能力强等特性,将其作为"三合一"膜电极MFC的阳极填充材料,通过增大阳极比表面积来提高其产电能力。实验结果表明,加入竹炭至阳极室后,MFC最高输出电压(外接电阻1 000Ω时)由0.280V增大到0.387V,提高了38.2%,并且输出电压更加稳定;而最大功率密度也由原来的0.22W/m3增大到1.42W/m3,同时内阻降低了80.85%(由235Ω降为45Ω);库仑效率由15.0%增大到25.6%。说明MFC阳极室填充竹炭可以显著促进MFC的产电性能。 相似文献
4.
在高650 mm、有效容积1 280 mL的液固厌氧流化床单室无膜空气阴极微生物燃料电池(MFC)中,研究了燃料电池串并联产电和有机污水处理性能,同时考察了电极面积、活性炭装填体积、温度等因素对产电性能的影响。结果表明,将燃料电池串联,总电压等于3个单级电池的电压之和,约为2 100 mV,最大功率为0.12 mW,而单级电池最大功率为0.05 mW。并联时,输出电压为800 mV,和单级电池输出电压大体相当,而电流为单级电流的2倍。阳极面积增加1倍,产电量增大了30%;电压随活性炭装填体积的增大而增大;温度为40℃时,燃料电池的产电性能最好。 相似文献
5.
研究以碳纤维毡为阳极,采用不同的表面改性方式对微生物燃料电池(MFC)产电效率的影响,并通过塔菲尔曲线(Tafel)和慢速扫描循环伏安法(SSCV)研究了碳纤维毡表面经不同改性处理后作为阳极的电化学行为。结果表明.碳纤维毡经丙酮浸泡(CZ—C)和热处理(CZ-H)后,最大输出功率从763mW/m2上升到896mW/m2,提高了17%;电化学测试证实碳纤维毡热处理后阳极交换电流密度提高,且氧化峰电位正移、峰电流增大。 相似文献
6.
以双室无介体微生物燃料电池构建了BOD检测系统,研究了阴极流量、有机物浓度(BOD)及阳极流量的变化对系统响应信号(电池电压)的影响,并考察了系统响应信号与BOD浓度的对应关系。结果表明:阴极流量在1.5~5mL/min时,阴极流量变化对响应信号具有显著的影响,且响应信号随阴极流量增大而增大;当阴极流量由5 mL/min增加到10 mL/min时,阴极流量变化对响应信号影响不显著。BOD浓度在10~150 mg/L时,响应信号随底物浓度增加而升高,而BOD浓度大于150 mg/L时,BOD浓度变化对响应信号没有显著影响。当BOD浓度较高时,阳极流量变化对响应信号影响不大,但当BOD浓度较低时,阳极流量变化对响应信号有显著影响,且响应信号随阳极流量增大而增加。电池稳态电压与BOD浓度在10~150 mg/L范围内成指数衰减关系,而电池电压的初始变化速率与BOD浓度在50~200 mg/L范围有线性响应。 相似文献
7.
设计了一个典型的双室微生物燃料电池,并考察了在阳极室加入多孔球形颗粒条件下对人工合成污水产电性能的影响。实验发现,加入多孔球形颗粒后,最高电压从不加颗粒的253 mV提高到280 mV,持续产电时间从5.5 d提高到8 d,COD去除率从78%提高到82.6%。进一步的实验发现,加入多孔球形颗粒后,系统内阻从286Ω降低到199.4Ω,最大功率密度从78.6 mW/m2提高到114.3 mW/m2。结果表明,微生物易于在多孔球形颗粒上附着和生长,颗粒通过均匀搅拌与阳极表面产生持续碰撞,有利于胞外电子传递到阳极,这一过程大大减小阳极的内阻,增大电池的输出电压进而增大输出功率,从而显著提高电池的产电性能。 相似文献
8.
9.
温度、pH对微生物燃料电池产电的影响研究 总被引:1,自引:0,他引:1
采用SPSS分析软件,考察了双室微生物燃料电池(MFC)、单室MFC运行过程中,温度、pH与产电性能的相关关系。结果表明,碳纸双室MFC的日均电压与温度、阳极pH均未呈现显著相关关系,而与阴极pH呈极显著相关关系,产电的决定性因素为阴极反应;石墨毡/碳纸双室MFC日均电压与温度未呈现显著相关关系,而与阳极pH、阴极pH均呈极显著相关关系,产电的决定性因素为pH;单室MFC的产电性能受温度的影响较大,而pH对其影响不显著,对于单室MFC的运行调控应主要从温度入手。 相似文献
10.
研究了玉米秸秆生物炭作为微生物燃料电池电极的性能。阳极以S2-为单一电子供体,阴极以NO3-为电子受体,以碳毡为对照电极,考察玉米秸秆生物炭电极用于生物燃料电池同步脱硫反硝化的电化学性能、产电性能以及污染物去除能力,分析了不同硫氮质量浓度比对生物炭电极微生物燃料电池脱氮除硫效率以及输出电能的影响。结果表明,玉米秸秆生物炭电极微生物燃料电池实现了更高的交换电流密度(22.42×10-3 A·cm-2)和更低的电荷转移电阻(4.24Ω)。与碳毡电极相比,玉米秸秆生物炭电极微生物燃料电池最大输出电压和最大功率密度分别提升了18.91%和16.67%。当硫氮比为5:4时,反应器脱硫反硝化和产电能力最佳。阳极室S2-出水质量浓度由120 mg·L-1降至1.08 mg·L-1,去除率为99.1%,其中76.52%转化为SO42--S,阴极室NO3--N去除率... 相似文献
11.
首次构建了以生物质活性炭纤维笼电极为空气阴极的微生物燃料电池(biomass activated carbon fiber cage-shaped air-cathode microbial fuel cell,BACFC-ACMFC),并以厌氧污泥接种,以葡萄糖作为碳源,研究了该MFC在连续运行条件下的产电性能、电池内阻情况和最优运行条件。结果表明:在一个运行周期内,该MFC最佳运行条件为:体积浸没比为50%、pH=8、污泥投加量为1.8 g·L-1。当外接电阻为1 000 Ω时,该MFC最大输出电压为257.89 mV,最大输出功率密度为4 082.99 mW·m-3,电池内阻为419.88 Ω,与目前其他阴极材料的微生物燃料电池相比,该新型生物质活性炭纤维笼空气阴极微生物燃料电池功率密度较高,内阻较低。SEM分析可知,阴极具有较大的比表面积和孔隙率,有利于与氧气的充分接触。在浸入溶液中的半面阴极上发现大量微生物附着,这可能和氧气还原有关。 相似文献
12.
为了提高厌氧流化床微生物燃料电池(AFB-MFC)的性能,并为双室MFC寻找价廉、易得、无污染的阴极液,在曝气量16~24 L/h、温度(35±2)℃、回流量10.2 L/h、阴极底边距阴极室内底部17.3 cm、外电阻250 Ω、水力停留时间(HRT)14.0~14.9 h以及进水pH 7.81~8.37下,研究了阴极液及底物浓度对系统产电及废水处理性能的影响。结果表明,使用缓冲溶液、阳极室出水和自来水作阴极液时,自来水的产电性能最佳,阴极液种类不影响系统有机基质的去除。以自来水为阴极液时,阴极液pH及电导率随运行时间增加而增加,COD去除率为80.11%~89.29%,输出电压及功率密度开始随运行时间增加而增加,之后稳定在440~452 mV和48.40~51.08 mW/m2之间。增加底物浓度对COD去除率影响不大,而输出电压及功率密度随底物浓度增加而下降;底物COD浓度由3 307.09 mg/L增至9 520 mg/L时,COD去除率在85.77%~94.44%之间,输出电压及功率密度则分别由449 mV和50.40 mW/m2下降至406 mV和41.21 mW/m2。自来水作阴极液可避免二次污染及阴极液对阳极室微生物的影响,并得到高的产电能力。 相似文献
13.
14.
为了获得混合菌群利用木糖进行厌氧发酵产氢的最佳条件,通过批次实验,对中温(35℃)和高温(55℃)下混合菌群利用不同浓度木糖(10~50 g/L)厌氧发酵产氢系统进行了研究。结果表明,35℃下系统累积产氢量和最大氢气产率在底物浓度30 g/L时获得,乙醇和乙酸为主要产氢副产物,但继续提高底物浓度会造成系统VFAs的积累与pH下降,不利于木糖代谢产氢;而55℃下累积产氢量和氢气产率随底物浓度升高持续增长,乙醇为系统主要产氢副产物,VFAs累积量较少。高温下,虽然最大氢气产率和底物木糖降解量比35℃下的低,但有利于获得较为稳定的氢气产量,产氢系统在高底物浓度下也可保持较高的木糖降解率和较为稳定的pH,有利于木糖代谢产氢。 相似文献
15.
不同驯化方式对以苯酚为基质的微生物燃料电池产电性能的影响 总被引:1,自引:0,他引:1
以厌氧污泥作为初始接种体,构建了单室微生物燃料电池(MFCs),考察了梯度驯化、直接驯化和间接驯化3种不同驯化方式对MFC降解苯酚及产电性能的影响。结果表明,MFC在闭路状态下对苯酚的降解速率比MFC在开路状态下的苯酚降解速率加快10%~20%,说明MFC在产电的同时,可加速苯酚的降解。当以600 mg/L的苯酚溶液为单一燃料,反应68 h后,3种驯化方式下的MFC对苯酚降解率都达到90%以上。相对于其他2种驯化方式,梯度驯化条件最有利于MFC产电性能的提高及苯酚的降解,其最大输出功率为31.3 mW/m2,降解速率提高了7%~20%。 相似文献
16.
以河北省典型生物质发电厂生物质锅炉为研究对象,在对其农林生物质燃料组成进行分析的基础上,借助FLUENT软件对生物质锅炉烟气排放特性及SNCR脱硝性能进行数值模拟。结果表明,与单一生物质相比,小麦秸秆、果木枝、树皮3种生物质按照0.3∶0.4∶0.3配比构成的农林混合燃料具有更低的N含量 (0.39%) 。不同生物质燃料燃烧排放的烟气中NO平均质量浓度由高到低依次为小麦秸秆 (503.6 mg∙m-3) >果木枝>树皮>混合燃料 (369.2 mg∙m−3) ;排放的SO2平均质量浓度由高到低依次为小麦秸秆>混合燃料>树皮>果木枝;CO:树皮>小麦秸秆>混合燃料>果木枝;排放的CO2平均质量浓度由高到低依次为混合燃料>果木枝>树皮>小麦秸秆。SNCR脱硝数值模拟得出,将还原剂 (尿素) 喷嘴高度设置在8~11 m、喷嘴数量为10个、反应温度约为900 K、氨氮比为1.5时,SNCR脱硝率最高 (78.7%) 、NO排放浓度最低 (78.7 mg∙m−3) 。本研究结果表明,混配的农林生物质燃料具有更好的燃烧性能,经燃烧产生的NO质量浓度最低,这说明在满足SNCR最佳工艺运行参数条件下,NO更易实现低排放要求。 相似文献
17.
底物初始浓度对光合细菌产氢动力学特性的影响 总被引:1,自引:0,他引:1
实验研究了底物初始浓度对光合细菌产氢动力学特性的影响,并对光合细菌产氢得率和初始底物转化为氢气得率进行比较,分析底物初始浓度对光合细菌产氢代谢的影响,实验发现底物初始浓度为120 mmol/L时最适合光合细菌的产氢代谢,底物初始浓度达到140 mmol/L时,光合细菌主要进行生物量合成和产酸代谢,得到各浓度梯度下的最大生物量,但对产氢代谢产生抑制作用,表明最大生物量与最大的产氢能力之间不成正比关系及光合细菌产生CO2机制与产氢机制不同;光合细菌最大比产氢活性表现在对数生长期,最大生物量出现在稳定期。实验证明,光合细菌对数生长期受底物浓度影响大,底物浓度低,最大生物量所对应的时间相对较早,底物浓度增大,最大生物量所对应的时间相对延后。 相似文献
18.
19.
为研究底物浓度对玉米秸秆乙醇发酵过程中乙醇产率和乙醇发酵剩余残渣厌氧发酵产气特性的影响,在中温(37±0.2) ℃条件下,利用实验室自制小型厌氧发酵装置,在底物浓度为2%、3%、4%和5%下开展周期为50 d的序批式厌氧发酵实验,探索不同底物浓度下玉米秸秆发酵乙醇产率和乙醇发酵剩余残渣厌氧发酵产气特性。结果表明:底物浓度对玉米秸秆乙醇发酵影响显著,当底物浓度为3%时,玉米秸秆厌氧发酵乙醇产量最大,达到39.04 g;底物浓度过低或过高均不适合后期厌氧发酵产甲烷的进行,当底物浓度为3%时,玉米秸秆乙醇发酵残渣表面纤维结构被破坏最明显,残渣厌氧发酵产甲烷实验最早在3 d出现产气峰值,挥发性固体单位甲烷产量为26.82 mL·g-1,并且累积产气量最高,挥发性固体单位累积甲烷产量达到270.01 mL·g-1,玉米秸秆乙醇发酵残渣还有较高的产气潜能;通过质量平衡分析得到,底物浓度为3%时,玉米秸秆生物转化过程中TS和VS去除率最高,分别为59.12%和79.07%。该研究可为玉米秸秆乙醇发酵工程提供参考。 相似文献
20.
使用铁代替铂作为阴极催化剂,制作含铁碳布空气阴极并构建单室MFC(Fe-C-ACMFC)。以乙酸钠为燃料,通过稳态放电法和循环伏安测试等测试手段,分析了不同铁含量对Fe-C-ACMFC产电性能的影响以及性能最优Fe-C-ACM-FC的连续运行稳定性。结果表明,随着铁含量的增加,Fe-C-ACMFC启动期开路电压(OCV)逐步提高,达到峰值后,随着铁含量的增加而降低;同样,Fe-C-ACMFC极化性能和功率密度等产电性能也随铁含量的增加先升高再降低;当铁含量为0.7 mg/cm2时,MFC的产电性能最优,最大开路电压为593 mV,表观内阻为89Ω,最大功率密度达到12 907 mW/m3,并且经循环伏安测试,电池放电容量几乎没有变化,表明Fe-C-ACMFC的性能比较稳定,能够长期运行。由于铁催化剂价格远远低于铂催化剂,因此,铁碳布空气阴极MFC更利于推广应用。 相似文献