首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Management in fire-prone ecosystems relies widely upon application of prescribed fire and/or fire surrogate (e.g., forest thinning) treatments to maintain biodiversity and ecosystem function. Recently, published literature examining wildlife response to fire and fire management has increased rapidly. However, none of this literature has been synthesized quantitatively, precluding assessment of consistent patterns of wildlife response among treatment types. Using meta-analysis, we examined the scientific literature on vertebrate demographic responses to burn severity (low/moderate, high), fire surrogates (forest thinning), and fire and fire surrogate combined treatments in the most extensively studied fire-prone, forested biome (forests of the United States). Effect sizes (magnitude of response) and their 95% confidence limits (response consistency) were estimated for each species-by-treatment combination with two or more observations. We found 41 studies of 119 bird and 17 small-mammal species that examined short-term responses (< or =4 years) to thinning, low/moderate- and high-severity fire, and thinning plus prescribed fire; data on other taxa and at longer time scales were too sparse to permit quantitative assessment. At the stand scale (<50 ha), thinning and low/moderate-severity fire demonstrated similar response patterns in these forests. Combined thinning plus prescribed fire produced a higher percentage of positive responses. High-severity fire provoked stronger responses, with a majority of species possessing higher or lower effect sizes relative to fires of lower severity. In the short term and at fine spatial scales, fire surrogate forest-thinning treatments appear to effectively mimic low/moderate-severity fire, whereas low/moderate-severity fire is not a substitute for high-severity fire. The varied response of taxa to each of the four conditions considered makes it clear that the full range of fire-based disturbances (or their surrogates) is necessary to maintain a full complement of vertebrate species, including fire-sensitive taxa. This is especially true for high-severity fire, where positive responses from many avian taxa suggest that this disturbance (either as wildfire or prescribed fire) should be included in management plans where it is consistent with historic fire regimes and where maintenance of regional vertebrate biodiversity is a goal.  相似文献   

2.
The potential environmental risk posed by metals in forest soils is typically evaluated by modeling metal mobility using soil-solution partitioning coefficients (K(d)), although such information is generally restricted to a few well-studied metals. Soil-solution partitioning coefficients were determined for 17 mineral elements (Al, As, Be, Ba, Ca, Cr, Cu, Fe, Ga, K, Li, Mg, Rb, Sr, Tl, U and V) in A-horizon (0-5 cm) soil at 46 forested sites that border the Precambrian Shield in central Ontario, where soil pH(aq) varied from 3.9 to 8.1. Sites were dominated by mature sugar maple (Acer saccharum Marsh.), white birch (Betula papyrifera Marsh.), balsam fir (Abies balsamea (L.) Mill.) or white pine (Pinus strobus L.). Log K(d) values for all elements could be predicted by empirical linear regression with soil pH (r (2) = 0.17-0.77) independent of forest type, although this relationship was greatly affected by positive relationships between acid-extractable metal concentration and pH(aq) for 13 of the 17 elements. Elements that exhibited strong or moderate (r (2)> 0.29; p < 0.001) relationships with soil pH(aq) in soil water extracts include Al, Ba, Fe, Ga, K, Li, Rb, Tl, V (negative) and Ca (positive). Elemental partitioning in mineral soil was independent of forest type; tree species differed in their response to chemical differences in mineral soil. For example, Rb, Ba, and Sr concentrations in foliage of sugar maple and white birch significantly increased with increasing soil acidity, whereas Rb, Ba, and Sr concentrations in balsam fir and white pine foliage exhibited no response to soil pH(aq). While K(d) values can provide useful information on the potential mobility and bioavailability of mineral elements in forest soils, care must be used when interpreting the relative contribution of solid and aqueous phases to this relationship and the differing responses of vegetation in elemental cycling in forests must also be considered.  相似文献   

3.
利用6个含有单抗基因的近等基因系材料为鉴别品种,在水稻的孕穗期采用剪叶接种的方法,测定了西南不同海拔稻区218株水稻白叶枯病菌(Xanthomonas oryzae pv.oryzae)的致病型。结果表明,(1)西南稻区水稻白叶枯病菌致病型具有丰富的多样性,共包含18种,其中9种新致病型为西南地区特有的类型。(2)不同海拔稻区病菌致病型组成存在明显差异,中海拔稻区病菌致病型数量最多,高海拔稻区次之,低海拔稻区最少。低海拔稻区病菌致病型多样性指数、均匀度指数均最低,并且与中海拔和高海拔稻区差异显著。(3)通过分析病菌对抗性基因的克服数量以及鉴别品种病斑长度,表明不同海拔稻区病菌毒力存在明显差异。病菌的毒力与其地理来源的海拔高度呈负相关关系。(4)聚类分析结果显示,以致病型彼此间相似率60%为界,18种致病型可归为4个聚类簇,其中簇Ⅰ毒性最弱,主要集中了高海拔稻区的菌株,簇Ⅳ毒性最强,集中的主要是低海拔菌株。(5)相关性分析表明,病菌致病型多样性特征值与气候类型和寄主品种的多样性呈线性相关关系,气候类型和寄主品种影响病菌致病型的多样性分布,并且寄主品种对病菌的影响程度高于气候类型。就品种的布局而言,低海拔稻区应尽可能使用含有多个抗性基因的聚合品种,而在中、高海拔稻区,应制定好抗性基因轮换的宏观计划,减少低海拔地区向海拔较高的地区稻种的频繁调运,降低水稻白叶枯病的危害。  相似文献   

4.
5.
Laurila A  Lindgren B  Laugen AT 《Ecology》2008,89(5):1399-1413
Antipredator defenses are expected to decrease toward higher latitudes because predation rates are predicted to decrease with latitude. However, latitudinal variation in predator avoidance and defense mechanisms has seldom been studied. We studied tadpole antipredator defenses in seven Rana temporaria populations collected along a 1500-km latitudinal gradient across Sweden, along which previous studies have found increasing tadpole growth and development rates. In a laboratory common garden experiment, we measured behavioral and morphological defenses by raising tadpoles in the presence and absence of a predator (Aeshna dragonfly larva) in two temperature treatments. We also estimated tadpole survival in the presence of free-ranging predators and compared predator densities between R. temporaria breeding ponds situated at low and high latitudes. Activity and foraging were generally positively correlated with latitude in the common garden experiment. While all populations responded to predator presence by decreasing activity and foraging, high-latitude populations maintained higher activity levels in the presence of the predator. All populations exhibited defensive morphology in body and tail shape. However, whereas tail depth tended to increase with latitude in the presence of predator, it did not change with latitude in the absence of the predator. Predator presence generally increased larval period and decreased growth rate. In the southern populations, predator presence tended to have a negative effect on metamorphic size, whereas in the northern populations predators had little or a positive effect on size. Latitude of origin had a strong effect on survival in the presence of a free-ranging predator, with high-latitude tadpoles experiencing higher mortality than those from the low latitudes. In the wild, predator densities were significantly lower in high-latitude than in mid-latitude breeding ponds. Although the higher activity level in the northern populations seems to confer a significant survival disadvantage under predation risk, it is probably needed to maintain the high growth and development rates. However, the occurrence of R. temporaria at high latitudes may be facilitated by the lower predator densities in the north.  相似文献   

6.
Woody plant encroachment is a worldwide phenomenon in grassland and savanna systems whose consequence is often the development of an alternate woodland state. Theoretically, an alternate state may be associated with changes in system state variables (e.g., species composition) or abiotic parameter shifts (e.g., nutrient availability). When state-variable changes are cumulative, such as in woody plant encroachment, the probability of parameter shifts increases as system feedbacks intensify over time. Using a Before-After Control-Impact (BACI) design, we studied eight pairs of grassland sites undergoing various levels of eastern redcedar (Juniperus virginiana) encroachment to determine whether responses of flora and fauna to experimental redcedar removal differed according to the level of pretreatment redcedar cover. In the first year after removal, herbaceous plant species diversity and evenness, woody plant evenness, and invertebrate family richness increased linearly with pretreatment redcedar cover, whereas increases in small-mammal diversity and evenness were described by logarithmic trends. In contrast, increases in woody plant diversity and total biomass of terrestrial invertebrates were accentuated at levels of higher pretreatment cover. Tree removal also shifted small-mammal species composition toward a more grassland-associated assemblage. During the second year postremoval, increases in herbaceous plant diversity followed a polynomial trend, but increases in most other metrics did not vary along the pretreatment cover gradient. These changes were accompanied by extremely high growing-season precipitation, which may have homogenized floral and faunal responses to removal. Our results demonstrate that tree removal increases important community metrics among grassland flora and fauna within two years, with some responses to removal being strongly influenced by the stage of initial encroachment and modulated by climatic variability. Our results underscore the importance of decisive management for reversing the effects of woody plant encroachment in imperiled grassland ecosystems.  相似文献   

7.
Forest fuel reduction treatments are increasingly used by managers to reduce the risk of high-severity wildfire and to manage changes in the ecological function of forests. However, comparative ecological effects of the various types of treatments are poorly understood. We examined short-term patterns in small-mammal responses to mechanical thinning, prescribed-fire, and mechanical thinning/prescribed-fire combination treatments at eight different study areas across the United States as a part of the National Fire and Fire Surrogate (FFS) Project. Research questions included: (1) do treatments differ in their effect on small mammal densities and biomass? and (2) are effects of treatments consistent across study areas? We modeled taxa-specific densities and total small-mammal biomass as functions of treatment types and study area effects and ranked models based on an information-theoretic model selection criterion. Small-mammal taxa examined, including deer mice (Peromyscus maniculatus), yellow-pine chipmunks (Tamias amoenus), and golden-mantled ground squirrels (Spermophilus lateralis), as well as all Peromyscus and Tamias species, had top-ranked models with responses varying both by treatment type and study area. In each of these cases, the top-ranked model carried between 69% and 99% of the total weight in the model set, indicating strong support for the top-ranked models. However, the top-ranked model of total small-mammal biomass was a model with biomass varying only with treatment (i.e., treated vs. untreated), not by treatment type or study area; again, this model had strong support, with 75% of the total model weight. Individual species and taxa appear to have variable responses to fuel reduction treatment types in different areas; however, total small-mammal biomass appears generally to increase after any type of fuel reduction. These results suggest that there is substantial variability in taxa-specific responses to treatments and indicate that adaptive management policies may be necessary when applying fuel reduction treatments in areas where management of small-mammal populations is of interest. Adaptive management can be used by managers who are conducting fuel reduction treatments to reduce uncertainty as to which treatments are locally optimal for meeting objectives for the management of small-mammal populations.  相似文献   

8.
Disturbances such as fire play a key role in controlling ecosystem structure. In fire-prone forests, organic detritus comprises a large pool of carbon and can control the frequency and intensity of fire. The ponderosa pine forests of the Colorado Front Range, USA, where fire has been suppressed for a century, provide an ideal system for studying the long-term dynamics of detrital pools. Our objectives were (1) to quantify the long-term temporal dynamics of detrital pools; and (2) to determine to what extent present stand structure, topography, and soils constrain these dynamics. We collected data on downed dead wood, litter, duff (partially decomposed litter on the forest floor), stand structure, topographic position, and soils for 31 sites along a 160-year chronosequence. We developed a compartment model and parameterized it to describe the temporal trends in the detrital pools. We then developed four sets of statistical models, quantifying the hypothesized relationship between pool size and (1) stand structure, (2) topography, (3) soils variables, and (4) time since fire. We contrasted how much support each hypothesis had in the data using Akaike's Information Criterion (AIC). Time since fire explained 39-80% of the variability in dead wood of different size classes. Pool size increased to a peak as material killed by the fire fell, then decomposed rapidly to a minimum (61-85 years after fire for the different pools). It then increased, presumably as new detritus was produced by the regenerating stand. Litter was most strongly related to canopy cover (r2 = 77%), suggesting that litter fall, rather than decomposition, controls its dynamics. The temporal dynamics of duff were the hardest to predict. Detrital pool sizes were more strongly related to time since fire than to environmental variables. Woody debris peak-to-minimum time was 46-67 years, overlapping the range of historical fire return intervals (1 to > 100 years). Fires may therefore have burned under a wide range of fuel conditions, supporting the hypothesis that this region's fire regime was mixed severity.  相似文献   

9.
Slope aspect modifies microclimate and influences ecological processes and spatial distribution of species across forest landscapes, but the impact of slope aspect on community responses to disturbance is poorly understood. Such insight is necessary to understand landscape community dynamics and resilience. We compared bryophyte (liverworts and mosses) communities in matched 0.02-ha plots of four boreal stand types in central Sweden: recently clear-felled and mature stands dominated by Norway spruce in south-facing and north-facing slopes. Differences between forests and clear-cuts were interpreted as effects of clear-cutting, and differences between south- and north-facing slopes as effects of aspect. In response to clear-cutting, bryophyte cover and composition changed more in south-facing slopes. Only one out of ten significantly declining species in south-facing slopes also declined significantly in north-facing slopes. North-facing slopes lost fewer bryophyte species, and among those, fewer forest species and fewer species associated with wood and bark. In north-facing slopes, the average proportions of mosses and liverworts shared between the forest and the clear-cut plot were 88% and 74%, respectively. Corresponding numbers for south-facing slopes were 79% and 33%. In addition, more bryophyte species were added in north- than south-facing slopes after clear-cutting, somewhat reducing the difference in compositional change between aspects. South- and north-facing mature forests differed in species composition, mostly due to higher richness of mosses in south-facing slopes. The smaller changes in bryophyte communities on north-facing slopes in response to clear-cutting have implications for ecosystem dynamics and management as high local survival may enhance landscape-level resilience.  相似文献   

10.
Forest management, climatic change, and atmospheric N deposition can affect soil biogeochemistry, but their combined effects are not well understood. We examined the effects of water and N amendments and forest thinning and burning on soil N pools and fluxes in ponderosa pine forests near Flagstaff, Arizona (USA). Using a 15N-depleted fertilizer, we also documented the distribution of added N into soil N pools. Because thinning and burning can increase soil water content and N availability, we hypothesized that these changes would alleviate water and N limitation of soil processes, causing smaller responses to added N and water in the restored stand. We found little support for this hypothesis. Responses of fine root biomass, potential net N mineralization, and the soil microbial N to water and N amendments were mostly unaffected by stand management. Most of the soil processes we examined were limited by N and water, and the increased N and soil water availability caused by forest restoration was insufficient to alleviate these limitations. For example, N addition caused a larger increase in potential net nitrification in the restored stand, and at a given level of soil N availability, N addition had a larger effect on soil microbial N in the restored stand. Possibly, forest restoration increased the availability of some other limiting resource, amplifying responses to added N and water. Tracer N recoveries in roots and in the forest floor were lower in the restored stand. Natural abundance delta15N of labile soil N pools were higher in the restored stand, consistent with a more open N cycle. We conclude that thinning and burning open up the N cycle, at least in the short-term, and that these changes are amplified by enhanced precipitation and N additions. Our results suggest that thinning and burning in ponderosa pine forests will not increase their resistance to changes in soil N dynamics resulting from increased atmospheric N deposition or increased precipitation due to climatic change. Restoration plans should consider the potential impact on long-term forest productivity of greater N losses from a more open N cycle, especially during the period immediately after thinning and burning.  相似文献   

11.
Graff P  Aguiar MR  Chaneton EJ 《Ecology》2007,88(1):188-199
Isolating the single effects and net balance of negative and positive species effects in complex interaction networks is a necessary step for understanding community dynamics. Facilitation and competition have both been found to operate in harsh environments, but their relative strength may be predicted to change along gradients of herbivory. Moreover, facilitation effects through habitat amelioration and protection from herbivory may act together determining the outcome of neighborhood plant-plant interactions. We tested the hypothesis that grazing pressure alters the balance of positive and negative interactions between palatable and unpalatable species by increasing the strength of positive indirect effects mediated by associational resistance to herbivory. We conducted a two-year factorial experiment in which distance (i.e., spatial association) from the nearest unpalatable neighbor (Stipa speciosa) and root competition were manipulated for two palatable grasses (Poa ligularis and Bromus pictus), at three levels of sheep grazing (none, moderate, and high) in a Patagonian steppe community. We found that grazing shifted the effect of Stipa on both palatable grasses, from negative (competition) in the absence of grazing to positive (facilitation) under increasing herbivore pressure. In ungrazed sites, belowground competition was the dominant interaction, as shown by a significant reduction in performance of palatable grasses transplanted near to Stipa tussocks. In grazed sites, biomass of palatable plants was greater near than far from Stipa regardless of competition treatment. Proximity to Stipa reduced the amount of herbivory suffered by palatable grasses, an indirect effect that was stronger under moderate than under intense grazing. Our results demonstrate that facilitation, resulting mainly from protection against herbivory, is the overriding effect produced by unpalatable neighbors on palatable grasses in this rangeland community. This finding challenges the common view that abiotic stress amelioration should be the predominant type of facilitation in arid environments and highlights the role of herbivory in modulating complex neighborhood plant interactions in grazing systems.  相似文献   

12.
We use permanent-plot data from the USDA Forest Service's Forest Inventory and Analysis (FIA) program for an analysis of the effects of competition on tree growth along environmental gradients for the 14 most abundant tree species in forests of northern New England, USA. Our analysis estimates actual growth for each individual tree of a given species as a function of average potential diameter growth modified by three sets of scalars that quantify the effects on growth of (1) initial target tree size (dbh), (2) local environmental conditions, and (3) crowding by neighboring trees. Potential growth of seven of the 14 species varied along at least one of the two environmental axes identified by an ordination of relative abundance of species in plots. The relative abundances of a number of species were significantly displaced from sites where they showed maximum potential growth. In all of these cases, abundance was displaced to the more resource-poor end of the environmental gradient (either low fertility or low moisture). The pattern was most pronounced among early successional species, whereas late-successional species reached their greatest abundance on sites where they also showed the highest growth in the absence of competition. The analysis also provides empirical estimates of the strength of intraspecific and interspecific competitive effects of neighbors. For all but one of the species, our results led us to reject the hypothesis that all species of competitors have equivalent effects on a target species. Most of the individual pairwise interactions were strongly asymmetric. There was a clear competitive hierarchy among the four most shade-tolerant species, and a separate competitive hierarchy among the shade-intolerant species. Our results suggest that timber yield following selective logging will vary dramatically depending on the configuration of the residual canopy, because of interspecific variation in the magnitude of both the competitive effects of different species of neighbors and the competitive responses of different species of target trees to neighbors. The matrix of competition coefficients suggests that there may be clear benefits in managing for specific mixtures of species within local neighborhoods within stands.  相似文献   

13.
Robust predictions of competitive interactions among canopy trees and variation in tree growth along environmental gradients represent key challenges for the management of mixed-species, uneven-aged forests. We analyzed the effects of competition on tree growth along environmental gradients for eight of the most common tree species in southern New England and southeastern New York using forest inventory and analysis (FIA) data, information theoretic decision criteria, and multi-model inference to evaluate models. The suite of models estimated growth of individual trees as a species-specific function of average potential diameter growth, tree diameter at breast height, local environmental conditions, and crowding by neighboring trees. We used ordination based on the relative basal area of species to generate a measure of site conditions in each plot. Two ordination axes were consistent with variation in species abundance along moisture and fertility gradients. Estimated potential growth varied along at least one of these axes for six of the eight species; peak relative abundance of less shade-tolerant species was in all cases displaced away from sites where they showed maximum potential growth. Our crowding functions estimate the strength of competitive effects of neighbors; only one species showed support for the hypothesis that all species of competitors have equivalent effects on growth. The relative weight of evidence (Akaike weights) for the best models varied from a low of 0.207 for Fraxinus americana to 0.747 for Quercus rubra. In such cases, model averaging provides a more robust platform for prediction than that based solely on the best model. We show that predictions based on the selected best models dramatically overestimated differences between species relative to predictions based on the averaged set of models.  相似文献   

14.
At least four hypotheses have been suggested to explain the formation and maintenance of song dialects among birds: historic processes (epiphenomenon), genetic or local adaptation, acoustic adaptation, and social adaptation. We studied spatial and temporal distribution of dialect in the orange-tufted sunbird (Nectarinia osea), a small nectarivorous bird that expanded its breeding range in Israel during the past 100 years from the southern part of Rift Valley to the entire country. Sunbird range expansion was concurrent with the establishment of many small settlements with an ethos of gardening, which introduced many ornithophilous plants. We recorded songs and genetically screened individual sunbirds in 29 settlements distributed across a 380 km north–south gradient along the Rift Valley. We show that dialects cluster together into geographical regions in 70% of cases, a moderate concurrence to geography. Settlement establishment date, geographical position, and genetic distance between local populations (i.e., settlements) were all poor predictors for the variance among song dialects. The specific effect of habitat was not tested because all sampled localities were similar in their physical and acoustic properties. Using a network analysis, we show that dialects seem to aggregate into several network communities, which clustered settlement populations from several regions. Our results are best explained by either the epiphenomenon hypothesis or the social adaptation hypothesis, but at present our data cannot state unequivocally which of these hypotheses is better supported. Last, we discovered a negative association between network centrality and genetic diversity, a pattern that requires further examination in other systems.  相似文献   

15.
Garcia EA  Mittelbach GG 《Ecology》2008,89(6):1703-1713
Variation in the intensity of predation across the well-known environmental gradient of freshwater habitats from small, ephemeral ponds to large, permanent lakes is a key factor in the development and maintenance of aquatic community structure. Here, we present data on the distribution and abundance of four species of Chaoborus (Diptera: Chaoboridae) across this environmental gradient. Chaoborus show a distinct pattern of species sorting when aquatic systems are divided into fish and fishless environments, and this pattern is consistent with species traits known to influence their vulnerability to fish predation (i.e., pigmentation, diel vertical migration [DVM] behavior, and body size). To test whether fish are the drivers of this pattern, we created a gradient in fish density by stocking bluegill sunfish (Lepomis macrochirus) into 15 experimental ponds in southwestern Michigan, USA, and then allowed Chaoborus species to colonize. There was clear evidence of species sorting along the predation gradient; Chaoborus americanus was most abundant in the fishless ponds, C. flavicans was neutral in response to fish, and C. punctipennis and C. albatus were most abundant at high fish biomass, a response consistent with their field pattern. Furthermore, prey preference experiments confirm that size selective predation and differences in Chaoborus species traits contribute to the pattern of Chaoborus abundance and distribution.  相似文献   

16.
The trophic organization of the crustacean fauna belonging to a photophilic assemblage exposed to an urban and industrial contamination gradient in the Gulf of Fos (South of France) was studied over a period of 16 mo (May 1974 to August 1975). An increasing destabilization of the four major trophic groups from clean waters towards those most polluted was noted. Carnivores dominated at the relatively cleanwaterCystoseira stricta station; at the second, moderately pollutedC. stricta station, carnivores were replaced by suspension-feeders. Deposit-feeders dominated theCorallina cf.mediterranea stations affected by the warm-water effluent of a power plant. Other polluted stations, dominated byMytilus galloprovincialis andUlva cf.rigida, were dominated by grazers. The faunal destabilization was related to changes in the structural composition of the photophilic algal assemblage which were, in turn, related to the industrial contamination gradient along this coast.  相似文献   

17.
三江平原不同水位梯度湿地地上生物量动态特征   总被引:4,自引:1,他引:4  
水分条件变化直接影响湿地植物群落的分布及其生产量,为了阐明不同水分条件湿地初级生产力的形成规律,揭示水文格局对湿地生态系统物质生产过程的调控机理,采用收获法研究了三江平原不同水位梯度上的小叶章(Calamagrostics angustifolia)、乌拉苔草(Carex meyeriana)和毛苔草(Carex lasiocarpa)湿地地上生物量的结构动态及其增长速率,结果表明:3类湿地地上及其各器官生物量均呈单峰型变化,小叶章湿地和乌拉苔草湿地地上生物量的峰值出现的时间早于毛苔草湿地,而且小叶章湿地和乌拉苔草湿地各季节地上生物量均大于毛苔草湿地.茎对小叶章湿地地上生物量的平均贡献率与毛苔草湿地相近,均大于乌拉苔草湿地;叶对小叶章湿地地上生物量的平均贡献率与毛苔草湿地相近,均小于乌拉苔草湿地.3类湿地地上生物量的绝对增长率和相对增长率的变化趋势基本相同,但不同阶段绝对增长率和相对增长率值的大小存在差异.3类湿地地上生物量及各组分生物量的季节动态变化均符合抛物线模型,并且各模型拟合精度均较高,R2基本都在0.92以上.  相似文献   

18.
19.
You  Jingxiang  Xue  Zongguo  He  Ziqiang  Yan  Yunfei  Zhang  Zhien 《Environmental Chemistry Letters》2023,21(6):3273-3328
Environmental Chemistry Letters - Hydrogels are 3-dimensional polymeric networks with unique properties of high flexibility and high water content, and are thus advanced materials for applications...  相似文献   

20.
The effects of natural intensities of ultraviolet A (UVA, 320 to 400 nm) and B (UVB, 280 to 320 nm) radiation on planktonic planula larvae of the reef-building coral Agaricia agaricites (Linnaeus) were investigated through field experiments. Survival, chlorophyll concentrations, and solubilized protein concentrations were determined for larvae spawned from colonies at 3 and 24 m depth and subjected to one of three light regimes at 3, 10, or 24 m depth for 72 h: PAR (photosynthetically active radiation, 40- to 700 nm) only, PAR+UVA, or PAR+UVA+UVB. At 3 m depth, larvae in the PAR+UVA+UVB treatment showed lower survivorship than larvae exposed to either PAR alone or PAR+UVA. Within the PAR+UVA+UVB treatment at 3 m depth, larvae from colonies at 24 m depth suffered higher mortality than those from 3 m. Differences in survivorship between larvae originating from 3 and 24 m depth corresponded with tissue concentrations of UVB-protective mycosporine-like amino acids: larvae from 3 m had higher concentrations of mycosporine-glycine (max=310nm) and palythine (max=320nm) than those from 24 m depth. Chlorophyll concentrations were inversely correlated with PAR intensities, but variation in this parameter did not appear to be detrimental. These results show that sensitivity to high intensities of UVB radiation may affect survival of A. agaricites larvae in shallow reef-waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号