首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In planktonic food webs, the conversion rate of plant material to herbivore biomass is determined by a variety of factors such as seston biochemical/elemental composition, phytoplankton cell morphology, and colony architecture. Despite the overwhelming heterogeneity characterizing the plant–animal interface, plankton population models usually misrepresent the food quality constraints imposed on zooplankton growth. In this study, we reformulate the zooplankton grazing term to include seston food quality effects on zooplankton assimilation efficiency and examine its ramifications on system stability. Using different phytoplankton parameterizations with regards to growth strategies, light requirements, sinking rates, and food quality, we examined the dynamics induced in planktonic systems under varying zooplankton mortality/fish predation, light conditions, nutrient availability, and detritus food quality levels. In general, our analysis suggests that high food quality tends to stabilize the planktonic systems, whereas unforced oscillations (limit cycles) emerge with lower seston food quality. For a given phytoplankton specification and resource availability, the amplitude of the plankton oscillations is primarily modulated from zooplankton mortality and secondarily from the nutritional quality of the alternative food source (i.e., detritus). When the phytoplankton community is parameterized as a cyanobacterium-like species, conditions of high nutrient availability combined with high zooplankton mortality led to phytoplankton biomass accumulation, whereas a diatom-like parameterization resulted in relatively low phytoplankton to zooplankton biomass ratios highlighting the notion that high phytoplankton food quality allows the zooplankton community to sustain relatively high biomass and to suppress phytoplankton biomass to low levels. During nutrient and light enrichment conditions, both phytoplankton and detritus food quality determine the extent of the limit cycle region, whereas high algal food quality increases system resilience by shifting the oscillatory region towards lower light attenuation levels. Detritus food quality seems to regulate the amplitude of the dynamic oscillations following enrichment, when algal food quality is low. These results highlight the profitability of the alternative food sources for the grazer as an important predictor for the dynamic behavior of primary producer–grazer interactions in nature.  相似文献   

2.
Zooplankton ingestion of phytoplankton carbon in the iceedge zone of the Eastern Bering Sea was measured using a deck incubation approach in 1982. Using further samples collected in 1983, the plant cell carbon to cell volume ratio was estimated at 0.0604 pg m–3 from an experimentally determined particulate carbon to seston volume relationship. The application of this conversion to the results of experimental incubations of natural plant stocks with net-caught zooplankton produced ingestion rates of 68.8 and 10.26 mg C g–1 grazer d–1 for copepods and euphausiids, respectively. Extrapolating these rates to in situ zooplankton biomass at the edge of the seasonal ice pack yielded carbon flux rates through the zooplankton community ranging between 6.5 and 32.8 mg C m–2 d–1. This consumption amounted to less than 2% of the daily phytoplankton production in the ice-edge zone.  相似文献   

3.
The feeding and metabolic rates of Mytilus edulis L. of different body sizes were measured in response to changes in particle concentrations ranging from 2 to 350 mg l-1. Rates of oxygen consumption were not significantly affected by changes in seston concentration, whereas clearance rates gradually declined with increasing particle concentration. Pseudofaeces production was initiated at relatively low seston concentrations (<5 mg l-1). Marked seasonal changes were recorded in the composition of suspended particulates (seston) in an estuary in south-west England. Total seston was sampled at frequent intervals throughout an annual cycle and analysed in terms of: particle size-frequency distributions, total dry weight (mg l-1), inorganic content, chlorophyll a, carbohydrate, protein and lipid. The particulate carbohydrate, protein and lipid content provided an estimate of the food content of the seston. The results are discussed in terms of the food available to a nonselective suspension feeder, such as M. edulis, during a seasonal cycle. The effect of inorganic silt in suspension was mainly to limit by dilution the amount of food material ingested rather than to reduce the amount of material filtered by the mussel. In winter, the food content of the material ingested was 5%, and this increased to 25% during the spring and summer.  相似文献   

4.
W. Hickel 《Marine Biology》1974,24(2):125-130
Seston composition [particulate organic carbon (POC), particulate nitrogen (PN), phyto- and microzooplankton numbers and biomass] was investigated in the bottom waters of Great Lameshur Bay, St. John, Virgin Islands (USA), in October, 1970 during Tektite II Mission 17–50. Mean values of 67.4 g POC · I-1 and 7.2 g PN · I-1 were determined. A mean phytoplankton carbon content of 42.2 g · I-1 and zooplankton carbon content of 5.5 g · I-1 were calculated from counts. The phytoplankton consisted mainly of dinoflagellates 71.2% phytoplankton carbon. Copepods were the dominant zooplankters (61.8% zooplankton carbon), followed by larvaceans (30.9% zooplankton carbon). Organic carbon content of counted zooplankton faecal pellets ranged between 0.4 and 1.6 g · I-1, and amounted probably to about 15% of the total zooplankton carbon value. Plankton and detritus components as possible food for coral-reef animals are discussed. The ratio carbon: nitrogen of suspended particles is compared to that of sedimented matter.  相似文献   

5.
Krill grazing data collected during cruises in the region of the Antarctic Polar Front (S.A. Agulhas Voyage 70) and the South Georgia shelf (R.V. Africana Voyage 119) during the austral summer of 1993 were analyzed to estimate the variability of crucial parameters of the gut fluorescence technique in relation to food availability and krill feeding history. Gut evacuation rates (k) and passage or throughput times (1/k) varied in the ranges of 0.101 to 0.424 h-1 and 2.3 to 9.9 h and were strongly correlated (p<0.001, r 2=0.98) to krill feeding activity (estimated as initial gut pigment content, G0) but not to ambient chlorophyll a concentration. A significant differences was found when k values derived from incubations in filtered seawater and low charcoal particle concentrations (0.4 to 0.8 mgl-1) were compared with values derived from krill fed high concentrations of charcoal (6 mgl-1). The efficiency of gut pigment destruction was among the highest recorded for zooplankton organisms, 58.1 to 98.4%, and did not covary significantly (p>0.05) with ambient food concentration. However, the pigment lost per individual krill was strongly correlated with the total amount of pigment ingested (p<0.001, r 2=0.99). We suggest that both gut evacuation rates and pigment destruction efficiency may be realistically estimated only when krill is allowed to continue ingesting particles uninterruptedly. Charcoal particle concentration should be equivalent to the in situ wet weight of total seston per unit volume. An objective criterion for the standardization of the measurement and calculation of k values is also proposed.  相似文献   

6.
Short-term incubations in seawater containing H14CO3 - or 3H2O in place of the naturally predominant isotopes can yield highly radioactive preparations of living phytoplankton or zooplankton. Subsequent in situ incubation of these labelled organisms with the community from which they were taken results in the rapid transfer of radioisotope to those species which prey upon them. This technique has been employed to map a portion of a marine food web involving demersal zooplankton; experiments were conducted in summer and autumn on a coral reef and in a subtropical estuary. Similar results were obtained from these initial experiments at each study site during both seasons. Prey supplied as zooplankton (124 to 410 m nominal diameter), which consisted mainly of Oithona oculata, was fed upon by zooplankton size classes ranging from 410 to 850 m and containing amphipods, ostracods, cumaceans and polychaetes. In experiments employing labelled phytoplankton as prey a wide size spectrum was used (10 to 106 m) in order to include representative samples of most of the available planktonic autotrophs as estimated by primary production measurements. In two separate experiments, only 7 out of 63 samples evidenced grazing of phytoplankton by demersal zooplankters. In contrast, labelled diatom auxospores, employed in one experiment as they constituted the most numerically abundant species in the water column, were found to be grazed upon in nearly half the samples examined.  相似文献   

7.
South Atlantic Central Waters (SACW) upwell close to Cabo Frio (Brazil, Rio de Janeiro) shore. The resultant typical hydrobiological conditions were studied at an anchorage station over an annual cycle from February 1973–February 1974. Multivariate analyses of hydrological and planktonic data revealed the structure of the ecosystem and the factorial relations governing its dynamics. Alternation, superposition or mixing of the water masses of different origin (Brazil current, coastal, SACW) constitute the most important factors responsible for the great hydrobiological variability observed in the study area. Spasmodic changes in wind direction and force are superimposed on a seasonal trend of more frequent upwelling in summer than during the rest of the year. The deep water is characterized by temperatures of <18°C, nitrate contents of 10 g-at l-1 and by organic matter mainly composed of detritic elements from the shelf. Temperature variations together with nutrient contents (NO3 or PO4) reflect variations in primary biomass at the surface but not at 50 m depth, where detrital matter precluded valid measurements. Water of the Brazilian Current (salinity 36.0) frequently mixes with deep water of the thermal front, or with coastal water (<35.0) which invades the area when south-west winds prevail. This lower-salinity water is rich in seston particles. During the study period, primary biomass was relatively low due to eutrophication. We observed less than 3 g l-1 chlorophyll and 106 phytoplankton cells per litre: the phytoplankton populations were highly diversified, indicating an advanced degree of complexity and evolution of this ecosystem. The observed formation of a thermocline constitutes an important inducing factor for an algal bloom. Simultaneous phyto- and zooplankton maxima would induce an increased grazing rate by herbivorous zooplankton which would also partly explain the relatively low level of primary biomass. Zooplankton is as abundant here as in other great upwelling regions: 100 organisms l-1 and 200 mg organic matter m-3.  相似文献   

8.
A survey was conducted on 15th November, 1970, in mangrove forests and backwater regions of a section of the Vellar-Coleroon estuarine complex; a total of 19 stations were occupied. Detailed investigations on nutrients, pigments, and plankton were carried out. The following ranges in values were recorded: salinity, 10.40 to 30.50; pH, 7.50 to 8.30; temperature, 29.50° to 30.50°C; total phosphorus, 0.72 to 3.34 g at/l; inorganic phosphate, 0.19 to 1.59 g at/l; ammonia, 0.34 to 0.36 g at/l; nitrite, 0.11 to 0.25 g at/l; nitrate, 2.85 to 6.94 g at/l; silicate, 18.49 to 134.92 g at/l. Dissolved oxygen content ranged from a minimum of 3.69 ml to a maximum of 5.44 ml/l. Chlorophyll a ranged from an undetectable amount to 1.01 mg/m3, chlorophyll b from 0.02 to 0.85 mg/m3, chlorophyll c from 0 to 0.41 mg/m3 and carotenoids from 0 to 0.74 MSPU/m3. The plankton displacement volume ranged from a negligible amount to 3.60 cm3/m3; seston varied between 0.29 and 0.91 g/l. Phytoplankton was abundant at 3 stations; at other stations zooplankton was abundant. Coscinodiscus, Asterionella and Ditylum were the dominant forms among the phytoplankton; Oithona, Acrocaanus, Euterpina, Centropages, Corycaeus, Lucifer and Oikocreura were dominant among the zooplankton. Phytoplankton and zooplankton populations, as percentage of the total plankton, varied between 3.70 and 89.00% and between 11 and 96.30%, respectively. Average gross production values in the mangrove and back-water stations were 7.56 and 3.33 g C/m3/day, and the net production values 6.29 and 2.67 g C/m3/day, respectively.  相似文献   

9.
There is increasing evidence that suspension feeders play a significant role in plankton–benthos coupling. However, to date, active suspension feeders have been the main focus of research, while passive suspension feeders have received less attention. To increase our understanding of energy fluxes in temperate marine ecosystems, we have examined the temporal variability in zooplankton prey capture of the ubiquitous Mediterranean gorgonian Leptogorgia sarmentosa. Prey capture was assessed on the basis of gut content from colonies collected every 2 weeks over a year. The digestion time of zooplankton prey was examined over the temperature range of the species at the study site. The main prey items captured were small (80–200 µm), low-motile zooplankton (i.e. eggs and invertebrate larvae). The digestion time of zooplankton prey increased when temperature decreased (about 150% from 21°C to 13°C; 15 h at 13°C, 9 h at 17°C, and 6 h at 21°C), a pattern which has not previously been documented in anthozoans. Zooplankton capture rate (prey polyp–1 h–1) varied among seasons, with the greatest rates observed in spring (0.16±0.02 prey polyp–1 h–1). Ingestion rate in terms of biomass (g C polyp–1 h–1) showed a similar trend, but the differences among the seasons were attenuated by seasonal differences in prey size. Therefore, ingestion rate did not significantly vary over the annual cycle and averaged 0.019±0.002 g C polyp–1 h–1. At the estimated ingestion rates, the population of L. sarmentosa removed between 2.3 and 16.8 mg C m–2 day–1 from the adjacent water column. This observation indicates that predation by macroinvertebrates on seston should be considered in energy transfer processes in littoral areas, since even species with a low abundance may have a detectable impact.Communicated by S.A. Poulet, Roscoff  相似文献   

10.
Mytilus edulis planulatus (Lamarck) were collected from Howden, South-east Tasmania in autumn 1981. Interaction effects of cadmium, copper and zinc during accumulation by mussels exposed for ten days to all three metals simultaneously were examined in a series of experiments in which each metal was tested at three concentrations. In general, interaction effects were most evident at the highest concentrations tested (20 g l-1 Cd; 20 g l-1 Cu; 200 g l-1 Zn) and led to a reduction in the accumulation of cadmium and an increase in that of copper and zinc. More specifically, high levels of zinc caused a decrease in cadmium uptake and an increase in copper accumulation. The presence of copper resulted in depressed cadmium accumulation while zinc accumulation increased. Cadmium tended to enhance zinc accumulation, but copper accumulation was only affected to any great extent when zinc was also present.  相似文献   

11.
Winter and summer zooplankton maxima were observed on both near-reef and offshore sampling sites in the northern part of the Gulf of Aqaba, with summer maxima smaller than those of winter and more characterized by larval forms. Near-reef zooplankton biomass was generally several times greater than that observed 2 km offshore. During 1987, a near-reef maximum of 155 ind. or 12.2 g wet biomass m–3 was observed in March, while 103 ind. or 8.5 g wet biomass m–3 was observed in July. In the same year, 2 km offshore a maximum of 53 ind. or 2.5 g wet biomass m–3 was observed in February, while a maximum of 33 ind. or 0.5 g wet biomass m–3 was noted in July. The following year, 1988, the near-reef zooplankton abundances were little changed, but offshore zooplankton abundances were much higher (317 m–3). During 1987, the dominant winter (March) forms near the reef were gammarid amphipods, at maximum concentrations of 100 ind. m–3, where the summer (July) maximum was composed primarily of mysids (34 m–3), gammarid amphipods (30 m–3), and fish eggs (24 m–3). The offshore winter zooplankton fauna was characterized by copepods and appendicularians, each at a maximum concentrations of ca 13 ind. m–3, while the summer maximum was dominated by brachyuran zoea (31 m–3). Though the 1988, winter near-reef zooplankton community compositions were similar to those of 1987, the offshore zooplankton fauna was dominated by ostracods, which were relatively rare in previous years. Preliminary data suggests that holoplanktonic forms like chaetognaths, copepods and appendicularians, at an offshore site exhibit different patterns of vertical migration than those near the reef. This different behavior may result from different species compositions of these taxa or from high concentrations of pseudoplanktonic bentho-neritic peracarid crustaceans.Please address correspondence and reprint requests to T. Echelman, Marine Science Research Center, State University of New York, Stony Brook, New York 11794-5000, USA  相似文献   

12.
The standing stock and taxonomic composition of zooplankton (>200 m) were monitored in the lagoon of Tikehau atoll from April 1985 to April 1986. These data were supplemented by two 10 d studies on the variability, structure and functioning of the pelagic ecosystem. The biomass of animals >200 m comprised 50% of the total biomass of all organisms from 35 to >2000 m. The zooplankton populations were characterized by successive blooms of copepods, larvaceans, pteropods and salps, probably arising from the periodic input of detritus from the reef during windy periods. As a result, the ecosystem was not in a steady state and the data for the fluxes of organic matter are presented separately for April 1985 and April 1986. Using the C:N:P ratio method, net growth efficiencies, K 2, were calculated for total mesozooplankton, mixed copepods, and two planktonic species, Undinula vulgaris and Thalia democratica. Combined with nitrogen and phosphorus excretion rates, these K 2 values enabled the assessment of production rates. On a 24 h basis, P:B ratios (%) were close to 100 for the total zooplankton and 54, 34 and 800 for mixed copepods, U. vulgaris and T. democratica, respectively. These ratios are 5.7 times lower than that recorded for phytoplankton. High productivity may be ascribable to the high density of seston, the high temperature (29.5°C), and the kind of organisms present. Zooplankton production equalled 38 and 30% of 14C uptake during April 1985 and April 1986, respectively. Ingestion of animals >35m was calculated by means of assimilation efficiencies and amounted to 17 and 7% of particulate organic carbon, 100 and 38% of living carbon, and 64 and 140% of primary production during the two periods, respectively. Finally, inorganic exduring was 32 and 18% of phytoplankton nitrogen and phosphorus requirements. A model based on the dimensional structure of the pelagic food-web, has been drawn to illustrate the biomass and carbon, nitrogen and phosphorus fluxes in the study area. The lagoon appears to export part of its planktonic biomass, which is 4.2 times lower one sea mile outside the main pass connecting the lagoon to the open ocean.  相似文献   

13.
The ability of the oyster Crassostrea virginica (Gmelin) to filter, ingest and assimilate 14C-labeled Spartina alterniflora as a carbon source was investigated under laboratory conditions. The oyster assimilated crude-fiber carbon extracted from S. alterniflora with an efficiency of approximately 3%. Enteric bacteria did not enhance this process. The annual average (April 1984 to November 1985) of crude fiber in the Choptank River sub-estuary of the Chesapeake Bay, Maryland, USA, from which the oysters were collected, was 15.7 g l-1 (range 4.3 to 34.3 g l-1). The potential food value of crude fiber to oysters in this system was estimated to be less than 1% of their carbon demand. However, the potential contribution of crude fiber to the carbon requirements of other oyster populations, such as those in southeastern USA, may be as great as 20%, due to higher crudefiber concentrations in the seston.  相似文献   

14.
Ammonium excretion rates of recently collected specimens of gelatinous zooplankton, the scyphomedusan Chrysaora quinquecirrha DeSor and the etenophore Mnemiopsis leidyi A. Agassiz, were correlated with body mass and water temperature in measurements made from April to October 1989 and 1990. Rates ranged between 3.5 and 5.0 g atoms NH 4 + -N (g dry wt)-1h-1 for C. quinquecirrha and 3.0 to 4.9 g atoms NH 4 + -N (g dry wt)-1h-1 for M. leidyi. Excretion rate equations and in situ data on the size distributions and biomasses of gelatinous zooplankters and water temperature were used to estimate the contribution of ammonium by medusae and ctenophores to mesohaline Chesapeake Bay waters on several dates during April to October 1989 and 1990. We then compared the estimated contributions to direct measurements of 15NH 4 + uptake by microplankton. The maximum estimated regeneration by gelatinous zooplankton was 5.8 g atoms NH 4 + -N m-3h-1 at night in August 1990, when medusae biomass was greatest. This represents about 4% of the ammonium required by the microplankton. During the daytime on all dates, less than 1% of the ammonium required by microplanktion was supplied by gelatinous zooplankton. Therefore, gelatinous zooplankton appear to play a minor role in the ammonium cycle of Chesapeake Bay.  相似文献   

15.
Relation of fish larvae and zooplankton biomass in the Gulf of Aden   总被引:2,自引:0,他引:2  
This study is based on zooplankton samples collected in the upper 50 m by the F.R.V. Manihine in the Gulf of Aden during October–November, 1966 and February–March, 1967. Generally, the displacement volume of zooplankton varied between 20 and 67 ml/m2. Some higher values, up to 100 ml/m2, were also observed. The number of larval fish in positive hauls ranged from 2 to 282 larvae/m2. An inverse relationship between the number of larval fish and the accompanying volume of zooplankton was noted. This relationship is discussed. It is hypothesized that larval mortality due to predation in the Gulf of Aden during the northeast monsoon (November, February and March) was very high.  相似文献   

16.
The abundance and biomass of marine planktonic ciliates were determined at monthly intervals at two stations in Southampton Water between June 1986 and June 1987. The two stations, an outer one at Calshot and an inner one at N. W. Netley, were subject to differing marine and terrestrial influences. The potential ciliate production at cach station on each visit was estimated from these data. Enumeration of ciliates and measurements of biovolume were performed on Lugol's iodinepreserved samples and potential production was calculated using a predictive relationship based on temperature and cell volume. Heterotrophic ciliate abundance and biomass were greatest at both stations during spring and summer months, with respective maxima of 16x103 organisms 1-1 and 219 g Cl-1 recorded at N. W. Netley. Estimates of the potential production of the ciliate community ranged from <1 to 18 g Cl-1 d-1 at Calshot and <1 to 141 g Cl-1 at N. W. Netley, with annual values of 2 and 9 mg Cl-1 yr-1, respectively. Abundances, biomass and potential production estimates were generally greater at N. W. Netley than at Calshot. Carbon flow through the ciliate community was assessed using annual production values from both this study and the literature. The annual ciliate carbon requirement was equivalent to 9 and 11% of annual primary production at Calshot and N. W. Netley, and potential annual ciliate production was equivalent to 34% and >100% of the energy requirements of metazoan zooplankton at these locations, although comprising only 8 and 10% of their available food.  相似文献   

17.
The annual cycle of protozooplankton in the Kiel Bight   总被引:6,自引:0,他引:6  
Protozooplankton (heterotrophic dinoflagellates and ciliates) composition and biomass was studied in a 20-m water column in the Kiel Bight on 44 occasions between January 1973 and April 1974. Both groups attained comparable biomass maxima during spring and autumn (0.3 to 0.7 g C m-2 in the 20-m water column) and biomass levels were much lower in summer and lowest in winter. The spring protozooplankton maximum coincided with that of phytoplankton and during the rest of the year, protozooplankton stocks did not appear to be food limited as phytoplankton stocks were large throughout; many protozoans with ingested microplankton cells were observed, indicating that their potential food supply is not restricted to nanoplankton. Non-loricate organisms dominated biomass of the ciliates and tintinnids were of little importance. Tintinnids predominated in plankton samples concentrated by 20 m gauze indicating that most non-loricate ciliates, irrespective of size, were not retained. When phytoplankton sotcks were large (>3 g C m-2) but those of metazooplankton small, as in spring and autumn, protozooplankton were the major herbivores with biomass levels comparable to those attained in summer by metazooplankton ( 0.5 g C m-2). A highly significant negative correlation was found between protozooplankton and metazooplankton during the plankton growth season. Predation by the latter is thus an important factor regulating size of the protozooplankton population, although other factors also appear to be in operation. Loss rates of the pelagic system through sedimentation are highest in spring and autumn when protozooplankton dominate the grazing community and loss rates are much lower in summer when metazooplankton are the dominant herbivores. Apparently, the impact of protozooplankton grazing on the pelagic system is quite different to that of the metazooplankton.Publication No. 268 of the Joint Research Programme (SFB 95), Kiel University  相似文献   

18.
A decreasing gradation in the plankton standing stock of the Bristol Channel was observed from the seaward section to the inner, less saline, reaches. Two sub-regions of our survey, the North Outer Channel (NOC) and the Inner Channel (IC), represented the extremes of this gradient and were selected for detailed comparison. The integrated zooplankton biomass, over the 307 d sampling period (4 November 1973 to 6 September 1974), was 2 475 mg C m-3 (266 mg C m-2 d-1) in the NOC and 335 mg C m-3 (20 mg C m-2 d-1) in the IC. The omnivorous plankton accounted for 76% of the standing stock in the NOC and 89% in the IC, of which 58 and 23% were meroplankton and 39 and 71% were holoplankton, respectively; the remainder was unassigned. The majority of the meroplankton in both subregions was decapod larvae and adults, whereas the holoplankton biomass was dominated in the NOC by copepods (89%) and in the IC by mysids (57%), mainly Schistomyzis spiritus. Centropages hamatus was the most abundant copepod species in the NOC and accounted for 32% of the total holoplankton omnivore standing stock. In the NOC and IC, the carnivorous plankton accounted for 24 and 11% of the total plankton biomass, respectively. In the two sub-regions, 20 and 21% of the carnivores were meroplanktonic (primarily larvae of sprats and pilchards), while the holoplankton carnivores contributed 75 and 74% to the NOC and IC, respectively (Sagitta elegans, Pleurobrachia pileus). S. elegans dominated the holoplankton carnivore biomass for the majority of the year and accounted for 96% in the NOC and 60% in the IC. The integrated total particulate carbon over the 307 d period was 200 g C m-3 (6 600 g C m-2) in the NOC and 838 g C m-3 (15 084 g C m-2) in the IC. The annual primary production ranged from 164.9 g C m-2 yr-1 in the Outer Channel (North and South) to 6.8 g C m-2 yr-1 in the IC. The zooplankton biomass reached a maximum in July. The total particulate carbon (TPC) in July was 400 mg C m-3 in the NOC of which ca. 78 mg C m-3 were phytoplankton and ca. 21 mg C m-3 were zooplankton; these values compare favourably with those found in the adjoining Celtic Sea. In the IC, the TPC was 2 800 mg C m-3, of which ca. 107 mg C m-3 were phytoplankton and 2.8 mg C m-3 were zooplankton. From the low primary production estimates for the IC it can be concluded that the majority of the chlorophyll, like the TPC, was allochthonous in origin. Furthermore it is suggested that zooplankton plays a minor role in this estuarine ecosystem and is not the main consumer of the suspended particulate carbon; the benthic filter-feeding communities are presumed to fulfill this role in the Bristol Channel.  相似文献   

19.
G. W. Allison 《Marine Biology》1994,118(2):255-261
Patchy food distribution may force temporary starvation conditions on planktonic larvae. This potential food limitation may affect survivorship, duration of larval period, and post-metamorphic succes. In this study, larvae of the asteroid Asterina miniata were subjected to temporary food deprivation of several durations and at different stages. Developmental effects were documented by quantification of larval stage, total length, time to metamorphosis, initial juvenile radius, range of settling times, and percent survival to metamorphosis. All starved treatments were significantly affected in settling time and most in percent survival. However, larvae starved later in development demonstrated tremendous tolerance of food deprivation (e.g. the total number of settlers in the treatment starved for 28 d was not significantly different from the fed control). Survival was lower in treatments starved earlier in development than those starved later. Food is apparently required until late in larval development to facilitate metamorphosis. The range of settling times was large; for example, the continuously-fed control treatment produced juveniles from Days 58 through 136. Temporary starvation had no effect on initial juvenile radius.  相似文献   

20.
Samples of Halobates robustus Barber (Heteroptera: Gerridae) from the Galápagos Islands were analysed by optical emission spectrometry. The levels (in g g-1 dry weight) of Zn (134), Cu (155), Pb (< 1), Cd (7), and Cr (3) were not significantly different among insects of different sexes or developmental stages. The low natural levels of Cd in H. robustus from the relatively unpolluted environment of the Galápagos Islands are compared to the high concentrations of Cd in Halobates spp. from relatively polluted regions. Since the measured levels of Cd in their natural zooplankton food rarely exceed 10 g g-1, and very little of the Cd is found in the soft tissues, the high Cd concentrations (100 to 200 g g–1) in some seaskater species have evidently been derived by drinking from the surface microlayer of the seawater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号