首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文通过介绍各类氨氮废水处理技术应用及应用中存在的问题,并对应用技术的优缺点、适用范围进行了分析研究。以期望通过此次的论述研究得出的不同类型高氨氮废水处理的选择方法的理论,为从事治理高氨氮废水工作的人员提供一条便捷的选择方法。氨氮的大量排放,造成了水环境的污染。  相似文献   

2.
合成氨废水资源化处理技术研究进展   总被引:2,自引:1,他引:1  
合成氨废水具有高氨氮的特点,高氨氮污水的治理是大家关注的焦点。文章介绍处理高氨氮废水的三种资源化回收技术,(1)以氨水形式回收氨氮的废水处理技术;(2)将氨氮制成硫酸铵回收利用的废水治理技术;(3)既能高效脱氮又能充分回收氨氮的磷酸铵镁(俗称鸟粪石)结晶沉淀法,其中重点介绍鸟粪石结晶沉淀法回收氨氮技术。这些废水处理技术有效地治理了高氨氮废水,具有节能减耗、无二次污染和污染物可得到充分回收利用等特点,是处理高浓度氨氮废水的可持续发展方向。  相似文献   

3.
氨氮废水处理技术研究进展   总被引:7,自引:0,他引:7  
针对氨氮废水排放导致的点源污染问题,本文综述了低浓度氨氮废水和高浓度氨氮废水的处理技术在国内外研究进展。低浓度氨氮废水的处理技术包括:生物法,折点加氯法,沉淀法,离子交换法等;高浓度氨氮废水处理技术包括:物化法,生物法,短程硝化反硝化,生物膜一SBR法等。同时,讨论了上述方法在不同浓度氨氮废水中的应用条件与效果,并对今后氨氮废水处理方向做出了展望。对了解和掌握高、低不同浓度氨氮废水污水处理技术具有一定借鉴意义。  相似文献   

4.
高浓度氨氮废水处理技术及其发展趋势   总被引:9,自引:0,他引:9  
介绍了高浓度氨氮废水的主要来源及其危害性,对国内外主要的高浓度氨氮废水处理工艺进行了分析和对比,并阐述了其发展趋势,为处理高浓度氨氮废水工艺技术的选择提供了参考。  相似文献   

5.
采用超临界水氧化技术对焦化厂焦化废水进行实验研究,结果表明:超临界水氧化废水处理装置结构简单、体积小,处理后的水中氨氮、COD和色度达到或低于国家一级排放标准指标,处理工艺无二次污染,是较为理想的焦化废水处理方法。  相似文献   

6.
电化学氧化法处理高氨氮废水的试验研究   总被引:3,自引:0,他引:3  
针对传统高氨氮废水处理工艺存在二次污染、出水氨氮值偏高等问题,采用电化学氧化法对高氨氮配水进行试验研究,分别考察了电流强度、氯离子浓度和面体比对氨氮去除效果的影响,结果表明:在电流强度为9 A、投加氯化钠摩尔比(NH3-N/Cl-)为1∶4、极板间距为1 cm、面体比为40 m2/m3时,电解90 min后,氨氮浓度可以从2 000 mg/L降至247.51 mg/L;该方法运用于高氨氮废水的脱氮处理具有较好的应用前景。  相似文献   

7.
畜禽养殖废水的混合处理工艺   总被引:11,自引:1,他引:10  
针对畜禽养殖场废水的“三高”特点,即CODCr高、氨氮高、SS高,应用气浮ABRCASS湿地及生态塘为主体的废水处理工艺。结果证明,该工艺处理后的废水CODCr、氨氮、SS等指标都能达到(GB89781996)一级排放标准。  相似文献   

8.
焦化废水是一种氨氮浓度高且含有多种杂环化合物等有毒物质的有机工业废水.现分析微氧条件下使用EGSB反应器处理焦化废水的技术优点、工艺流程等,提出其用于焦化废水处理的建议.  相似文献   

9.
为了解外源菌剂在处理系统中的微生物活性和群落结构变化对于制革废水处理效果的影响。采用Biolog技术追踪了不同处理单元活性污泥中菌群的代谢差异性变化,获得了菌群代谢指纹图谱和功能群落多样性信息,并结合COD、氨氮及总氮去除率进行综合分析。研究结果表明,各单元功能菌群均对醇类碳源的代谢衰退最显著,而综合代谢活性衰退在二级好氧池最明显;各单元功能群落丰富度高而代谢活性较低是由菌剂稀释造成的,投加量是影响废水处理效果的关键因素,在生物选择池增大菌剂投加量可最大限度地减少菌剂总的使用量,并使COD、氨氮及总氮去除率分别提高23.1%、58.8%及43.5%。  相似文献   

10.
胡波  王晓 《环境科技》2007,20(Z2):36-38
各种物理的、化学的和生物的方法不断被应用于废水处理中.由于焦化废水中有机污染物和氨氮类化合物的浓度比较高,生物方法更具研究价值.目前研究人员将通过筛选、培养而或基因组合技术得到的优势高效菌种应用于生物脱氮技术、曝气生物滤池以及固定微生物技术,在显著提高了水的处理效果的同时,获得了更好的经济和社会效益.  相似文献   

11.
介绍了新型高效内流式循环脱氨塔装置在高氨氮废水处理的工艺流程及运行中注意要点。通过实际运行证明:内流式循环脱氨塔装置能够有效处理高氨氮污水的设计要求,进水氨氮在3000mg/L时,经过处理后出口氨氮可达到100mg/L以下,硫酸铵回收浓度可控制在20%~25%左右,完全可以回收使用。  相似文献   

12.
稀土氨氮废水处理技术研究进展   总被引:1,自引:0,他引:1  
本文旨在研究到目前为止前人对稀土氨氮废水处理技术的进展情况,尽管稀土氨氮废水的处理方法颇多,然而不是处理成本太高就是对水质的要求太苛刻,用于实践不太乐观;我们采用混合处理稀土氨氮废水的方法将减少处理成本,增强处理效果,如:化学沉淀+吹脱,吹脱+吸附等;另外,处理稀土氨氮废水要注意回收氨氮副产品,以抵消处理成本,达到清洁生产的目的。  相似文献   

13.
国内动态     
化肥焦化行业废水处理难题攻克如何用经济可行的方法对高浓度氨氮废水进行有效处理 ,这个问题长期以来一直困扰着化肥企业及焦化企业。由华北工学院刘有智教授研究开发的超重力法吹脱氨氮废水技术解决了这一难题 ,给这些企业带来了福音。我国化肥企业及焦化企业目前对氨氮废水处理采用的是填料塔空气吹脱 ,此方法的不足之处在于 ,由于传质系数小、气液比大 ,造成后续吹出的氨回收利用困难 ,吹脱率低 ,成本高。为解决这一难题 ,刘有智教授设计开发了适合吹脱高浓度氨氮废水的旋转填料塔和与之配套的高效率填料 ,以及液体分布器的合理设计 ,首…  相似文献   

14.
浅谈高浓度氨氮废水处理的可持续发展方向   总被引:5,自引:1,他引:4  
基于可持续发展观念,简评了目前一些常用的和新研发的氨氮废水处理方法,认为既能高效脱氮又能充分回收氨的磷酸铵镁(MAP)沉淀法和可节能减耗的生物脱氮新工艺,将是未来高浓度氨氮废水处理的优先选择和发展方向。  相似文献   

15.
稀土冶炼分离过程产生大量的废水,废水中的主要污染物为氨氮、油类、COD和重金属离子等,如果不经处理直接排放,对水体会造成严重的污染.基于稀土冶炼分离工艺,阐述了稀土冶炼废水的特征,重点介绍了现有的稀土冶炼氨氮废水处理技术,包括蒸发浓缩结晶法、吹脱法、折点氯化法、化学沉淀法、离子交换法和膜分离法,分析了各种处理技术的适用性及优缺点,并对稀土冶炼分离废水处理技术进行了展望.  相似文献   

16.
脱氮-混凝气浮-UASB-接触氧化法处理垃圾填埋渗滤液   总被引:6,自引:0,他引:6  
采用脱氮—混凝气浮—UASB—接触氧化工艺处理高氨氮、高浊度的垃圾渗滤液,使处理后出水的各项指标完全达到国家《污水综合排放标准》(GB8978—1996)二级新扩改标准。对废水处理系统的工艺作了简单介绍,并对系统的调试、运行过程进行了技术总结。  相似文献   

17.
沸石用于去除废水中的氨氮   总被引:3,自引:0,他引:3  
天然沸石及改性沸石对氨氮有很强的选择性吸附能力。介绍了沸石去除废水中氨氮的应用研究,包括在O/A生物处理系统、二级氧化塘处理系统、土地处理系统、湿地系统和堆肥系统等中的应用。分析了氨氮在沸石上发生吸附和离子交换的主要影响因素和规律。为开拓沸石在废水处理中的应用提供科学与技术基础。  相似文献   

18.
固定化微生物法处理氨氮废水   总被引:15,自引:0,他引:15  
通过固定消化菌处理氨氮废水和研究,着重从凝胶颗粒的机械强度、缩水性能、化学稳定性微生物活性等4个方面来选择包埋剂。结果表明海藻酸钠、卡拉胶、聚惭烯醇和丙烯酰胺是较理想的微生物载体。在选用丙烯酰胺凝胶颗粒固定硝化菌的氨氮废水处理工艺中,用正交试验与实验方法列出了影响氨氮去除率诸因素主次顺序,依次为PH值,颗普重量、丙烯酰胺量、菌体量。交得出丙烯酰胺含量12.5%,包埋菌体含量5%、颗粒重量4gPH值  相似文献   

19.
针对高氨氮、高CODcr的味精工艺废水处理工程,进行了超滤膜工艺相关试验。在超滤运行工艺参数分析基础上,重点分析了叠片过滤及纤维过滤两类不同超滤前处理的运行工况,从而得出特定水源条件下超滤的前处理工艺及参数。  相似文献   

20.
屠宰废水属较高浓度的有机废水,由于农村地区受经济及技术水平制约,传统屠宰废水处理工艺运行、维护、管理较为复杂,处理出水难以稳定达标排放。以湖北省-德国萨克森州环保技术合作契机,利用人工湿地技术,对蕲春县某小型机械化屠宰厂污水处理站进行好氧+人工湿地组合工艺的改造,探索并优化小型屠宰废水处理新工艺,使其便于运行、维护及管理,处理出水实现稳定达标排放。改造后调试运行期间组合工艺80%保证率下好氧单元COD去除率达到85.6%,氨氮去除率达到42%;人工湿地单元COD去除率达到54%,氨氮去除率达到90.3%,并对粪大肠杆菌有一定去除能力。该组合工艺操作及维护管理较简单,适宜在农村地区小型屠宰厂废水处理方面推广应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号