首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of elevated O3 on photosynthetic properties in adult beech trees (Fagus sylvatica) were investigated in relation to leaf mass per area as a measure of the gradually changing, within-canopy light availability. Leaves under elevated O3 showed decreased stomatal conductance at unchanged carboxylation capacity of Rubisco, which was consistent with enhanced δ13C of leaf organic matter, regardless of the light environment during growth. In parallel, increased energy demand for O3 detoxification and repair was suggested under elevated O3 owing to enhanced dark respiration. Only in shade-grown leaves, light-limited photosynthesis was reduced under elevated O3, this effect being accompanied by lowered Fv/Fm. These results suggest that chronic O3 exposure primarily caused stomatal closure to adult beech trees in the field regardless of the within-canopy light gradient. However, light limitation apparently raised the O3 sensitivity of photosynthesis and accelerated senescence in shade leaves.  相似文献   

2.
The effect of free-air ozone fumigation and crown position on antioxidants were determined in old-growth spruce (Picea abies) trees in the seasonal course of two consecutive years (2003 and 2004). Levels of total ascorbate and its redox state in the apoplastic washing fluid (AWF) were increased under double ambient ozone concentrations (2xO3), whilst ascorbate concentrations in needle extracts were unchanged. Concentrations of apoplastic and symplastic ascorbate were significantly higher in 2003 compared to 2004 indicating a combined effect of the drought conditions in 2003 with enhanced ozone exposure. Elevated ozone had only weak effects on total glutathione levels in needle extracts, phloem exudates and xylem saps. Total and oxidised glutathione concentrations were higher in 2004 compared to 2003 and seemed to be more affected by enhanced ozone influx in the more humid year 2004 compared to the combined effect of elevated ozone and drought in 2003 as observed for ascorbate.  相似文献   

3.
During the summer of 2001, 2-year-old Fraxinus excelsior and Fagus sylvatica plants were subjected to ozone-rich environmental conditions at the Regional Forest Nursery at Curno (Northern Italy). Atmospheric ozone concentrations and stomatal conductance were measured, in order to calculate the foliar fluxes by means of a one-dimensional model. The foliar structure of both species was examined (thickness of the lamina and of the individual tissues, leaf mass per area, leaf density) and chlorophyll a fluorescence was determined as a response parameter. Stomatal conductance was always greater in Fraxinus excelsior, as was ozone uptake, although the highest absorption peaks did not match the peaks of ozone concentration in the atmosphere. The foliar structure can help explain this phenomenon: Fraxinus excelsior has a thicker mesophyll than Fagus sylvatica (indicating a greater photosynthesis potential) and a reduced foliar density. This last parameter, related to the apoplastic fraction, suggests a greater ability to disseminate the gases within the leaf as well as a greater potential detoxifying capacity. As foliar symptoms spread, the parameters relating to chlorophyll a fluorescence also change. PI (Performance Index, Strasser, A., Srivastava, A., Tsimilli-Michael, M., 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus, M., Pathre, U., Mohanty, P., (Eds.) Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Taylor & Francis, London, UK, pp. 445-483.) has proved to be a more suitable index than Fv/Fm (Quantum Yield Efficiency) to record the onset of stress conditions.  相似文献   

4.
Epidemiological analysis of sequential growth data may be a tool in assessing ozone sensitivity of mature trees. Annual shoot growth of mature Fagus sylvatica in 83 Swiss permanent forest observation plots and of Picea abies in 61 plots was evaluated for 11 and 8 consecutive years, respectively, using branches harvested every 4 years. The data were assessed as annual deviation from average growth and related to fructification, ozone, meteorological parameters, and modelled soil water content using a mixed linear model. In beech, a significant association between ozone and shoot growth was observed which corresponded to a 7.4% growth reduction between 0 and 10 ppm h AOT40 (accumulated ozone over threshold 40). This is in the same order of magnitude as the response observed in experiments with seedlings. No interaction was found between ozone and drought parameters. In Norway spruce, shoot growth was neither associated with ozone nor with drought.  相似文献   

5.
An Open-Top Chambers experiment on Fagus sylvatica and Quercus robur seedlings was conducted in order to compare the performance of an exposure-based (AOT40) and a flux-based approaches in predicting the appearance of ozone visible injuries on leaves. Three different ozone treatments (charcoal-filtered; non-filtered; and open plots) and two soil moisture treatments (watered and non-watered plots) were performed. A Jarvisian stomatal conductance model was drawn up and parameterised for both species and typical South Alpine environmental conditions, thus allowing the calculation of ozone stomatal fluxes for every treatment. A critical ozone flux level for the onset of leaf visible injury in beech was clearly identified between 32.6 and 33.6 mmolO3 m(-2). In contrast, it was not possible to identify an exposure critical level using the AOT40 index. Water stress delayed the onset of the leaf visible injuries, but the flux-based approach was able to take it into account accurately.  相似文献   

6.
Rooted cuttings of poplar (Populus nigra) and seedlings of beech (Fagus sylvatica) were exposed to ozone in open-top chambers for one growing season. Three treatments were applied: charcoal-filtered (CF), non-filtered (NF) and non-filtered air plus 30 ppb (nl l(-1)) ozone (NF+). Extra ozone was only added on clear days, from 09:00 until 17:00-20:00. The AOT40s (accumulated exposure over a threshold of 40 ppb), calculated from April to September were 4055 ppb.h for the NF and 8880 ppb.h for the NF+ treatments. For poplar ozone exposure caused highly significant reductions in growth rate, light-saturated net CO(2) assimilation rate, stomatal conductance, F(v)/F(m) and chlorophyll content. The largest effects were observed in August at which time ozone concentrations were elevated. A reduction was noticed in new leaf production, while accelerated ageing and visible damage to leaves caused high leaf losses. For beech the responses were similar but less pronounced: ozone exposure resulted in non-significant growth reductions, slight changes in light-saturated photosynthesis and accelerated leaf abscission. The chlorophyll content of beech leaves was not affected by the ozone treatments. The results confirmed previous observations that fast-growing tree species, such as most poplar species and hybrids, are more sensitive and responsive to tropospheric ozone than slower-growing species, such as beech. The growth reductions observed and reported here for beech were within the range of those reported in relationship to the AOT40 (accumulated exposure over a threshold of 40 ppb) critical level for ozone.  相似文献   

7.
Open pollinated families of black cherry seedlings were studied to determine genotypic differences in foliar ozone injury and leaf gas exchange in 1994 and growth response following three growing seasons. An O(3)-sensitive half-sibling family (R-12) and an O(3)-tolerant half-sibling family (MO-7) planted in natural soil were studied along with generic nursery stock (NS) seedlings. Ozone exposure treatments were provided through open top chambers and consisted of 50, 75, and 97% of ambient ozone, and open plots from May 9 to August 26, 1994. Ambient ozone concentrations reached an hourly peak of 88 ppb with 7-hour averages ranging from 39 to 46 ppb. Seedlings in the 50 and 75% of ambient chambers were never exposed to greater than 80 ppb O(3). Visible foliar ozone injury (stipple) was significantly higher for R-12 seedlings than MO-7 seedlings and increased with increasing ozone exposures. For the chamber treatments averaged over all families, there was no significant difference in stomatal conductance and net photosynthetic rates, but there was a significant decrease in root biomass, and a significant decrease in root/shoot ratio between the 50 and 97% of ambient chambers. Stomatal conductance and net photosynthetic rates were significantly different between families with R-12 seedlings generally greater than MO-7 seedlings. The R-12 seedlings had a 7.5 mmol m(-2) increase in ozone uptake compared to MO-7, and at the same cumulative O(3) exposure R-12 exhibited 40.9% stippled leaf area, whereas MO-7 had 9.2% stippled leaf area. Significant differences were observed in stem volume growth and total final biomass between the open-top chambers and open plots. Although R-12 had the most severe foliar ozone injury, this family had significantly greater stem volume growth and total final biomass than MO-7 and NS seedlings. Root:shoot ratio was not significantly different between MO-7 and R-12 seedlings.  相似文献   

8.
Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury.  相似文献   

9.
Beech seedlings were grown under different nitrogen fertilisation regimes (0, 20, 40, and 80 kg Nha(-1)yr(-1)) for three years and were fumigated with either charcoal-filtered (F) or ambient air (O3). Nitrogen fertilisation increased leaf necroses, aphid infestations, and nutrient ratios in the leaves (N:P and N:K), as a result of decreased phosphorus and potassium concentrations. For plant growth, biomass accumulation, and starch concentrations, a positive nitrogen effect was found, but only for fertilisations of up to 40 kg Nha(-1) yr(-1). The highest nitrogen load, however, reduced leaf area, leaf water content, growth, biomass accumulation, and starch concentrations, whereas soluble carbohydrate concentrations were enhanced. The ozone fumigation resulted in reduced leaf area, leaf water content, shoot growth, root biomass accumulation, and decreased starch, phosphorus, and potassium concentrations, increasing the N:P and N:K ratios. A combined effect of the two pollutants was detected for the leaf area and the shoot elongation, where ozone fumigation amplified the nitrogen effects.  相似文献   

10.
Stand level O(3) fluxes were calculated using water balance calculations for 21 Common beech (Fagus sylvatica L.) stands and O(3) data from 20 monitoring stations in Southern Germany. For this intention, the daily loss of water by evapotranspiration per stand area was set against the daily O(3) uptake. During the last 30 years, O(3) uptake ranges between 0 and 187 mmol ha(-1) d(-1) per stand area. Cumulative O(3) uptake (CUO(3)), ranging between 0.1 and 0.7 mmol m(-2) yr(-1) per stand area, shows increasing trends since 1971 with considerably greater values at high altitudes. Effects in radial growth were used to derive an initial approximate critical threshold value for O(3) impacts on the vitality and growth of mature beech stands in Southern Germany. It is concluded that this concept of O(3) flux estimation in combination with dendroecological analyses offers both a site specific and regional applicable approach to derive new critical levels for O(3).  相似文献   

11.
The effect of ozone on leaf gas diffusion was investigated by analyzing the stable oxygen isotopic signatures (δ18O) in leaves of Holcus lanatus L., Plantago lanceolata L., Ranunculus friesianus (Jord.), and Trifolium pratense L. grown in temperate, semi-natural grassland. Dried material from plants exposed to ambient or elevated ozone levels in a long-term free-air experiment was sampled in 2002 and 2003. A general increase in δ18O in elevated ozone indicated increased limitation to gas diffusion, which was strongest during the driest and warmest period in 2003. In three out of four species, the increase in δ18O paralleled an increase in δ13C measured earlier in the same samples, meaning that the dominant effect of ozone was on gas diffusion and not on CO2 fixation. Only in R. friesianus, ozone affected both processes simultaneously. It is concluded that elevated ozone not only affects productivity, but also the water status of important component species of grassland communities.  相似文献   

12.
We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (gwv), foliar injury, and leaf nitrogen concentration (NL) to tropospheric ozone (O3) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, gwv, foliar injury, and NL (P < 0.05) among O3 treatments. Seedlings in AA showed the highest A and gwv due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, gwv, NL, and higher foliar injury (P < 0.001) than younger leaves. Leaf age affected the response of A, gwv, and foliar injury to O3. Both VPD and NL had a strong influence on leaf gas exchange. Foliar O3-induced injury appeared when cumulative O3 uptake reached 8-12 mmol m−2, depending on soil water availability. The mechanistic assessment of O3-induced injury is a valuable approach for a biologically relevant O3 risk assessment for forest trees.  相似文献   

13.
14.
Although the spatial variability of throughfall (TF) in forest ecosystems can have important ecological implications, little is known about the driving factors of within-stand TF variability, particularly in deciduous forests. While the spatial variability of TF water amount and H+ deposition under a dominant beech (Fagus sylvatica L.) tree was significantly higher in the leafed period than in the leafless period, the spatial TF deposition patterns of most major ions were similar in both periods. The semiannual TF depositions of all ions other than H+ were significantly positively correlated (r=0.68-0.90, p<0.05) with canopy structure above sample locations throughout the entire year. The amounts of TF water and H+ deposition during the leafed period were negatively correlated with branch cover. We conclude that the spatial heterogeneity of ion deposition under beech was significantly affected by leaves in the growing period and by branches in non-foliated conditions.  相似文献   

15.
Gas exchange and pigmentation responses of mature ponderosa pine (Pinus ponderosa Laws.) branches to ozone and acid rain exposure were investigated using three grafted clones growing in a managed seed orchard. Exposure of one-year-old foliage to twice ambient ozone (2 x AMB) resulted in significant decreases in net photosynthesis (Pn), stomatal conductance (gsw) and pigmentation relative to charcoal-filtered (CF) and ambient (AMB) ozone treatments. Ozone effects on gas exchange and pigmentation were most pronounced during late-season and differed significantly among clones. Environmental parameters (e.g. light, vapor pressure deficit, and temperature) accounted for more variation in Pn than did cumulative ozone exposure. Minimal differences in gsw and Pn among ozone treatments occurred during seasonal periods of high temperature and evaporative demand. Negative effects of 2 x AMB ozone on gsw and pigmentation were greatest for the clones having highest and lowest phenotypic vigor under ambient conditions; the clone of moderate phenotypic vigor under ambient conditions was least sensitive to ozone. Application of simulated acid rain of pH 3.0, pH 5.1 or no rain (NR) had little impact on gas exchange or pigmentation.  相似文献   

16.
The relationships between crown defoliation of beech, visible foliar symptoms on native vegetation and ozone exposure were investigated on permanent monitoring sites in South-Western Europe in the years 2000-2002. Relationships between defoliation of beech and O3 (seasonal mean, 2-week maximum, AOT40) were investigated by means of multiple regression models (11 plots, 1-3 years of data each) and a model based on temporal autocorrelation of defoliation data (14 plots, 1-3 years of data each). Different multiple regression techniques were used. The four models generated (R2=0.71-0.85, explained variance in cross-validation 61-78%) identified several significant predictors of defoliation, with AOT40 (p=0.008) and foliar content of phosphorous (p=0.0002-0.0004) being common to all models. The autocorrelation model (R2=0.55; p<0.0001) was used to calculate expected defoliation on the basis of the previous year's defoliation, and model predictions were used as an estimate of expected defoliation under constant site and environmental condition. Residuals (predicted-measured) plotted against current AOT40 shows that a possible effect of ozone occurs only at very high AOT40 (>35,000 ppbh). O3-like visible foliar symptoms were recorded on 65 species at 47% of the common monitoring sites in 2001 and 38% in 2002. No relationship was found between O3 exposure, frequency of symptomatic sites and frequency of species with symptoms (R2=0.11; p>0.05). A number of questions related to the ecological and methodological basis of the survey were identified. Inherent sampling and non-sampling errors and multicollinearity of the data suggest great caution when examining results obtained from mensurational, correlative studies.  相似文献   

17.
Bernhardt A  Ruck W 《Chemosphere》2004,57(10):1563-1570
The pesticide contamination of water samples collected in and nearby a beech forest in northern Germany was evaluated. For this purpose, a method for the collection of water samples from stemflow and throughfall of beeches (Fagus sylvatica L.) and rainfall was developed in response to the demands for the analysis of organic contaminants in water samples. Furthermore a sensitive and selective multiresidue method was developed to determine 18 pesticides, frequently used in Germany, in aqueous samples. The samples collected were taken from the stemflow, the crown throughfall and the rainfall between May and November 2001. Analysis based on reversed-phase liquid chromatography with a pneumatically assisted electrospray mass spectrometer followed a solid phase extraction using C-18 extraction cartridges. Isoproturon, metolachlor, prosulfocarb and terbuthylazine were found during and shortly after their application period. In rainfall metolachlor, terbuthylazine and prosulfocarb were detectable in concentrations between 5 and 65 ng l(-1) and isoproturon in concentrations between 20 and 360 ng l(-1) respectively. In most of the samples, concentrations of those four pesticides were higher and detectable for a longer time in stemflow than in rainfall. Crown throughfall samples were collected from the end of August to November. Absolute deposition of isoproturon to forest soil were up to 70 times higher in comparison to rainwater samples.  相似文献   

18.
Much attention has been paid to ozone as a major cause of novel forest decline in Europe. In combination with acidic mist, O(3) has been observed to increase ion leaching. Besides cations lake Mg(2+), Ca(2+), K(+), NH(4)(+), considerable amounts of nitrate were found to be leached by acidic mist from needles of Norway spruce. Controlled fumigation experiments, with 100, 300, and 600 microg O(3)m(-3) over 22 days continuously, have led to a nitrate accumulation of 94.1 +/- 14.8, 119.4 +/- 28.7 and 198.9 +/- 14.9 microg NO(3)(-1) g(-1) FW, respectively, in leaves of Quercus robur. Similar values were found in leaves of Fagus sylvatica and current and previous year needles of Picea abies. Nitrate levels of controls receiving charcoal filtered air were well below 40 microg NO(3)(-) g (-1) FW. Statistically significant elevated nitrate levels were observed after only 48 h of continuous fumigation with 600 microg O(3)m(-3), in all tree species tested, and after 144 h in the 100 microg O(3)m(-3) treatment. In another experiment, trees of Picea abies were kept in two charcoal (C) and two Purafil plus charcoal (P/C) ventilated chambers, and fumigated with O and 500 microg O(3)m(-3) in cabinets of each filter-type in order to eliminate NO(x) from chamber air. After 29 days of continuous ozone fumigation, NO(3)(-) accumulation in needles amounted to 102.0 +/- 37.7 and 137.4 +/- 40.5 microg g(-1) FW in P/C and C-filtered chambers, respectively. Nitrate contents of controls were below 30 microg NO(3)(-)g(-1) FW at the end of the experiment. No significant differences in NO(3)(-) accumulation between filter treatments were observed. Since NO(x) was reduced by more than 95% in the Purafil/charcoal versus the charcoal treatment, NO(3)(-) accumulation in needles can be attributed predominantly to the influence of ozone and not to direct NO(2) uptake of needles by the possible oxidation of NO to NO(2) in the presence of ozone.  相似文献   

19.
Fraser fir seedlings from two seed sources in the Southern Appalachians (Mt Mitchell, North Carolina, a declining population; and Mt Rogers, Virginia, a relatively healthy population) were subjected to long-term (2.5 years) intermittent ozone fumigations (0.025, 0.070, and 0.150 ppm) while being grown through five growth cycles in an accelerated-growing regime. Fumigations took place during bud break, stem elongation and bud set. Following each growing cycle, gas exchange parameters and dry weights were determined. The ozone fumigations did not produce any effect on seedling growth. The ozone fumigation effects on gas exchange parameters were inconsistent, and generally not statistically different, with no differences occurring between seed sources. There was no correlation between photosynthetic rates and seedling growth. These results provide no evidence that ozone may be contributing to the differences in decline noted between the Mt Rogers and Mt Mitchell populations of Fraser fir.  相似文献   

20.
To assess the effects of tropospheric O3 on rice cultivated in Bangladesh, four Bangladeshi cultivars (BR11, BR14, BR28 and BR29) of rice (Oryza sativa L.) were exposed daily to charcoal-filtered air or O3 at 60 and 100 nl l−1 (10:00-17:00) from 1 July to 28 November 2008. The whole-plant dry mass and grain yield per plant of the four cultivars were significantly reduced by the exposure to O3. The exposure to O3 significantly reduced net photosynthetic rate of the 12th and flag leaves of the four cultivars. The sensitivity to O3 of growth, yield and leaf gas exchange rates was not significantly different among the four cultivars. The present study suggests that the sensitivity to O3 of yield of the four Bangladeshi rice cultivars is greater than that of American rice cultivars and is similar to that of Japanese rice cultivars and that O3 may detrimentally affect rice production in Bangladesh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号