首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen in aquatic ecosystems   总被引:6,自引:0,他引:6  
Rabalais NN 《Ambio》2002,31(2):102-112
Aquatic ecosystems respond variably to nutrient enrichment and altered nutrient ratios, along a continuum from fresh water through estuarine, coastal, and marine systems. Although phosphorus is considered the limiting nutrient for phytoplankton production in freshwater systems, the effects of atmospheric nitrogen and its contribution to acidification of fresh waters can be detrimental. Within the estuarine to coastal continuum, multiple nutrient limitations occur among nitrogen, phosphorus, and silicon along the salinity gradient and by season, but nitrogen is generally considered the primary limiting nutrient for phytoplankton biomass accumulation. There are well-established, but nonlinear, positive relationships among nitrogen and phosphorus flux, phytoplankton primary production, and fisheries yield. There are thresholds, however, where the load of nutrients to estuarine, coastal and marine systems exceeds the capacity for assimilation of nutrient-enhanced production, and water-quality degradation occurs. Impacts can include noxious and toxic algal blooms, increased turbidity with a subsequent loss of submerged aquatic vegetation, oxygen deficiency, disruption of ecosystem functioning, loss of habitat, loss of biodiversity, shifts in food webs, and loss of harvestable fisheries.  相似文献   

2.
3.
Endosulfan, one of the major pesticides used in cotton-growing, is of environmental concern because of its toxicity to fish and its apparent persistence in the environment. This study examines the distribution and degradation pathways for endosulfan in an aquatic system and the processes by which it is removed. In the alkaline waters of the cotton region, hydrolysis is the dominant degradation process. By this mechanism alone, the expected half-lives for the alpha- and beta-endosulfan isomers were found to be 3.6 days and 1.7 days, respectively. Partitioning studies showed, however, that the major proportion of endosulfan would associate with the sediments (log Koc(alpha) 3.6 and log Koc(beta) 4.3). Field studies confirmed the presence of high concentrations in sediments. Microcosm experiments showed that loss of endosulfan was slower than predicted from hydrolysis rates. Models are presented to explain how desorption from sediment limits the loss of endosulfan from a system.  相似文献   

4.
5.
While factors influencing perceptions of drinking water have been well studied, those of aquatic ecosystems have been to lesser extent. We conducted a review to improve awareness of these factors. Environmental factors found to influence public perceptions of aquatic ecosystems were presence/absence of water plants and algae, presence/absence of floating debris, the odor, movement (for flowing waters) and clarity/turbidity of the water, and the type, condition, setting, naturalness, and overall aesthetic appeal of the ecosystem. Sociocultural factors found to influence public perceptions of aquatic ecosystems included age, education, gender, and place-based knowledge. We provide perspectives of how managers can better meet the diverse social demands placed on aquatic ecosystems. The importance and benefits of considering these perspectives may be especially beneficial where significant multi-generational and culturally relevant place-based knowledge exist.  相似文献   

6.
利用水生生态系统治理水体污染是污水处理领域的研究热点之一.综述了水生生态系统在处理污水中的应用现状,分析了影响处理效果的主要因素,并探讨了水生生态系统处理废水的运行机理,展望了水生生态系统的发展前景.  相似文献   

7.
水生生态系统在污水处理中的应用   总被引:2,自引:0,他引:2  
利用水生生态系统治理水体污染是污水处理领域的研究热点之一.综述了水生生态系统在处理污水中的应用现状,分析了影响处理效果的主要因素,并探讨了水生生态系统处理废水的运行机理,展望了水生生态系统的发展前景.  相似文献   

8.

Background, aim, and scope  

Phosphorus loss from terrestrial to the aquatic ecosystems contributes to eutrophication of surface waters. To maintain the world's vital freshwater ecosystems, the reduction of eutrophication is crucial. This needs the prevention of overfertilization of agricultural soils with phosphorus. However, the methods of risk assessment for the P loss potential from soils lack uniformity and are difficult for routine analysis. Therefore, the efficient detection of areas with a high risk of P loss requires a simple and universal soil test method that is cost effective and applicable in both industrialized and developing countries.  相似文献   

9.
Background, aim, and scope  Dissolved humic substances (HS) usually comprise 50–80% of the dissolved organic carbon (DOC) in aquatic ecosystems. From a trophic and biogeochemical perspective, HS has been considered to be highly refractory and is supposed to accumulate in the water. The upsurge of the microbial loop paradigm and the studies on HS photo-degradation into labile DOC gave rise to the belief that microbial processing of DOC should sustain aquatic food webs in humic waters. However, this has not been extensively supported by the literature, since most HS and their photo-products are often oxidized by microbes through respiration in most nutrient-poor humic waters. Here, we review basic concepts, classical studies, and recent data on bacterial and photo-degradation of DOC, comparing the rates of these processes in highly humic ecosystems and other aquatic ecosystems. Materials and methods  We based our review on classical and recent findings from the fields of biogeochemistry and microbial ecology, highlighting some odd results from highly humic Brazilian tropical lagoons, which can reach up to 160 mg C L−1. Results and discussion  Highly humic tropical lagoons showed proportionally lower bacterial production rates and higher bacterial respiration rates (i.e., lower bacterial growth efficiency) than other lakes. Zooplankton showed similar δ13C to microalgae but not to humic DOC in these highly humic lagoons. Thus, the data reviewed here do not support the microbial loop as an efficient matter transfer pathway in highly humic ecosystems, where it is supposed to play its major role. In addition, we found that some tropical humic ecosystems presented the highest potential DOC photo-chemical mineralization (PM) rates reported in the literature, exceeding up to threefold the rates reported for temperate humic ecosystems. We propose that these atypically high PM rates are the result of a joint effect of the seasonal dynamics of allochthonous humic DOC input to these ecosystems and the high sunlight incidence throughout the year. The sunlight action on DOC is positive to microbial consumption in these highly humic lagoons, but little support is given to the enhancement of bacterial growth efficiency, since the labile photo-chemical products are mostly respired by microbes in the nutrient-poor humic waters. Conclusions  HS may be an important source of energy for aquatic bacteria in humic waters, but it is probably not as important as a substrate to bacterial growth and to aquatic food webs, since HS consumption is mostly channeled through microbial respiration. This especially seems to be the case of humic-rich, nutrient-poor ecosystems, where the microbial loop was supposed to play its major role. Highly humic ecosystems also present the highest PM rates reported in the literature. Finally, light and bacteria can cooperate in order to enhance total carbon degradation in highly humic aquatic ecosystems but with limited effects on aquatic food webs. Recommendations and perspectives  More detailed studies using C- and N-stable isotope techniques and modeling approaches are needed to better understand the actual importance of HS to carbon cycling in highly humic waters.  相似文献   

10.
《Chemosphere》1986,15(7):917-922
Second-order microbial degradation rate constants were developed for the herbicide propanil in lake and water samples from the Union of Soviet Socialist Republics. Variations in calculated second-order rate constants were attributed to differences in bacterial counting methods used. Rate constants determined for propanil transformation in waters investigated in the USSR were similar to those established for natural water systems throughout the United States.  相似文献   

11.
We performed a trace analytical study covering nine hormonally active UV-filters by LC-MS/MS and GC-MS in river water and biota. Water was analysed at 10 sites above and below wastewater treatment plants in the river Glatt using polar organic chemical integrative samplers (POCIS). Four UV-filters occurred in the following order of decreasing concentrations; benzophenone-4 (BP-4) > benzophenone-3 (BP-3) > 3-(4-methyl)benzylidene-camphor (4-MBC) > 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC). BP-4 ranged from 0.27 to 24.0 μg/POCIS, BP-3, 4-MBC and EHMC up to 0.1 μg/POCIS. Wastewater was the most important source. Levels decreased with higher river water flow. No significant in-stream removal occurred. BP-3, 4-MBC and EHMC were between 6 and 68 ng/L in river water. EHMC was accumulated in biota. In all 48 macroinvertebrate and fish samples from six rivers lipid-weighted EHMC occurred up to 337 ng/g, and up to 701 ng/g in 5 cormorants, suggesting food-chain accumulation. UV-filters are found to be ubiquitous in aquatic systems.  相似文献   

12.
Several cesium and strontium bioaccumulation models are used widely in national and international guidance for ecological and human health risk assessments for radiocesium (134Cs and 137Cs) and radiostrontium (90Sr), but have not been used to make predictions of radiological risk from nuclear accidents under variable environmental conditions on broad geographical scales. In this paper, we first present models for predicting the bioaccumulation of cesium and strontium by aquatic biota based on ambient concentrations of dissolved potassium and calcium, respectively, and then test these models using independent data from aquatic ecosystems at Canadian nuclear sites. Secondly, models yielding the best predictions across a wide range of input parameters were selected to estimate bioaccumulation factors (BAFs) for cesium and strontium in aquatic ecosystems across Canada, using trophic level of organisms and dissolved potassium for cesium and calcium concentrations for strontium as predictor variables, and presented as contour maps of radiological risk. The models show that risk from bioaccumulation of cesium and strontium can vary by several orders of magnitude depending on site-specific environmental conditions and trophic ecology. Overall, our results suggest that single-parameter approaches taken by regulatory standards may either over- or under-predict radiological risk at many locations, and are thus not readily suitable to inform siting decisions for new nuclear developments.  相似文献   

13.
Environmental Science and Pollution Research - Turkey is one of the major plastic pollution sources in the Mediterranean and the Black Sea. This review summarizes present information, data, and...  相似文献   

14.
《Chemosphere》1988,17(8):1487-1492
The objectives of regulatory practice have evolved from eliminating all risks of pesticides and toxic chemicals to the environment to reducing risks to acceptable levels. This change in philosophy requires the development of methods for quantifying the risks of toxicant exposure to the exposed biota. Ecological risk assessment models that are comparable those used in human health risk assessment have been developed using methods drawn from ecotoxicology, ecology, statistics, and mathematical modeling. Initial applications have shown that the regulation of pesticides and toxic chemicals can be substantially improved through the use of ecological risk assessment.  相似文献   

15.
In this study, aged aqueous suspensions of C(60) (nC(60)) were investigated in the respirometric OECD test for ready biodegradability. Two suspensions of nC(60) were prepared by stirring and aged under indirect exposure to sunlight for 36 months. ATR-FTIR analyses confirmed the presence of C(60)-structures in the suspensions. Samples of the nC(60) suspensions (20mg/l) were inoculated with activated sludge (30 mgTSS/L) and incubated in a mineral medium under aerobic conditions. Since no mineralisation of nC(60) was observed after 28 days of incubation, 5mg/l sodium acetate was added to the media. After additional 20 days, no mineralisation of nC(60) was observed. However, within a few days sodium acetate was completely mineralised, showing that the biomass was not inhibited by the presence of nC(60). Based on results from this simple approach, aged nC(60) can be classified as not ready biodegradable according to the standard OECD test procedure.  相似文献   

16.

Microplastics are small-size plastic piece scales (particles <?5 mm) in sediments and waters which interact with environment and organisms by various means. Microplastics are becoming a universal ecological concern since they may be a source of hazardous chemicals to marine organisms and environments. Recent research suggests microplastics could enable the transfer of hydrophobic aquatic pollutants or chemical additives to biota. Even though microplastic presence and interactions are recently being detected in marine and freshwater systems, the fate of microplastics is still very poorly understood. This literature review is a summary of the sources and transport of microplastics, their interactions with toxic chemicals and the methodologies for chemical quantification and characterization of microplastics. The environmental outcome and impact of microplastics in wastewater treatment plants were assessed as well as the trends and update on microplastic research in the South African aquatic ecosystem.

  相似文献   

17.
Acidic deposition is comprised of sulfuric and nitric acids and ammonium derived from atmospheric emissions of sulfur dioxide, nitrogen oxides, and ammonia, respectively. Acidic deposition has altered soil through depletion of labile pools of nutrient cations (i.e. calcium, magnesium), accumulation of sulfur and nitrogen, and the mobilization of elevated concentrations of inorganic monomeric aluminum to soil solutions in acid-sensitive areas. Acidic deposition leaches essential calcium from needles of red spruce, making this species more susceptible to freezing injury. Mortality among sugar maples appears to result from deficiencies of nutrient cations, coupled with other stresses such as insect defoliation or drought. Acidic deposition has impaired surface water quality in the Adirondack and Catskill regions of New York by lowering pH levels, decreasing acid-neutralizing capacity, and increasing aluminum concentrations. Acidification has reduced the diversity and abundance of aquatic species in lakes and streams. There are also linkages between acidic deposition and fish mercury contamination and eutrophication of estuaries.  相似文献   

18.
The photodegradation fate of widely used fluoroquinolone (FQ) drugs has been studied both at the water–soil interface and in soil at actual concentrations (500 ng g?1) under natural solar light. Both human and veterinary drugs have been examined, namely ciprofloxacin, danofloxacin, enrofloxacin, levofloxacin, marbofloxacin and moxifloxacin. After spiking and irradiation, samples were submitted to microwave-assisted extraction and analyzed by high-performance liquid chromatography coupled to fluorescence detection (HPLC–FD). FQs degradation was faster in aqueous soil suspension than in neat soil (but lower than in “clean” water). A number of byproducts were identified by HPLC electrospray ionization tandem mass spectrometry after a post-extraction cleanup based on a molecularly imprinted polymer phase, for a more accurate detection. The distribution in the suspension was intermediate between those observed in soils and in aqueous solutions.  相似文献   

19.
The stability of TiO2 nanoparticles in soil suspensions and their transport behavior through saturated homogeneous soil columns were studied. The results showed that TiO2 could remain suspended in soil suspensions even after settling for 10 days. The suspended TiO2 contents in soil suspensions after 24 h were positively correlated with the dissolved organic carbon and clay content of the soils, but were negatively correlated with ionic strength, pH and zeta potential. In soils containing soil particles of relatively large diameters and lower solution ionic strengths, a significant portion of the TiO2 (18.8-83.0%) readily passed through the soils columns, while TiO2 was significantly retained by soils with higher clay contents and salinity. TiO2 aggregate sizes in the column outflow significantly increased after passing through the soil columns. The estimated transport distances of TiO2 in some soils ranged from 41.3 to 370 cm, indicating potential environmental risk of TiO2 nanoparticles to deep soil layers.  相似文献   

20.

Purpose  

Samples from the German Environmental Specimen Bank (ESB) covering particularly the years 1994–1996, 2000–2002, and 2006–2009 were analyzed for perfluorinated compounds (PFC; mainly C4–C13 carboxylic and sulfonic acids) to gain an overview on current PFC levels and patterns in marine, limnetic, and terrestrial biota; to assess their concentrations in different trophic levels; and to investigate whether risk management measures for PFC are successful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号