首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenarios for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public–private partnerships through a concerted support of the informal sector.  相似文献   

2.
The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind.  相似文献   

3.
To identify the application and development of country-specific parameters for methane emission estimations from solid-waste disposal sites, National Inventory Reports of 41 Annex I countries and National Communications of ten non-Annex I countries of the United Nations Framework Convention on Climate Change were analyzed. A first-order decay method was applied to 38 out of 41 Annex I countries and to five out of ten non-Annex I countries in national GHG inventory submissions up to 2012. Country-specific parameters were approximately 26 % of the total number of parameters used in the 38 Annex I countries and were mostly developed for degradable organic carbon and reaction constants that cover certain waste compositions. The UNFCCC encourages countries to develop more country-specific parameters reflecting the distinct characteristics of each country in which solid-waste disposal site is a key source. Depending on a country’s condition, a stepwise approach regarding the development of country-specific parameters needs to be done so as to improve the accuracy of methane emission estimates in the solid-waste disposal site category.  相似文献   

4.
The Clean Development Mechanism (CDM) of the Kyoto Protocol aims to reduce greenhouse gas emissions in developing countries and at the same time to assist these countries in sustainable development. While composting as a suitable mitigation option in the waste sector can clearly contribute to the former goal there are indications that high rents can also be achieved regarding the latter. In this article composting is compared with other CDM project types inside and outside the waste sector with regards to both project numbers and contribution to sustainable development. It is found that, despite the high number of waste projects, composting is underrepresented and a major reason for this fact is identified. Based on a multi-criteria analysis it is shown that composting has a higher potential for contribution to sustainable development than most other best in class projects. As these contributions can only be assured if certain requirements are followed, eight key obligations are presented.  相似文献   

5.
Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resulting gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012.  相似文献   

6.
Due to initiatives such as the clean development mechanism (CDM), reducing greenhouse gas emissions for a developing country can offer an important route to attracting investment in a variety of qualifying project areas, including waste management. To date CDM projects have been largely confined to schemes that control emission from landfill, but projects that avoid landfilling are beginning to be submitted. In considering the waste options which might be suitable for developing countries certain ones, such as energy from waste, have been discounted for a range of reasons related primarily to the lack of technical and other support services required for these more sophisticated process trains. The paper focuses on six options: the base case of open dumping; three options for landfill (passive venting, gas capture with flaring, and gas capture with energy production), composting and anaerobic digestion with electricity production and composting of the digestate. A range of assumptions were necessary for making the comparisons based on the effective carbon emissions, and these assumptions will change from project to project. The highest impact in terms of carbon emissions was from using a sanitary landfill without either gas flaring or electricity production; this was worse than the baseline case using open dumpsites. Landfills with either flaring or energy production from the collected gas both produced similar positive carbon emissions, but these were substantially lower than both open dumping and sanitary landfill without flaring or energy production. Composting or anaerobic digestion with energy production and composting of the digestate were the two best options with composting being neutral in terms of carbon emissions and anaerobic digestion being carbon negative. These generic conclusions were tested for sensitivity by modifying the input waste composition and were found to be robust, suggesting that subject to local study to confirm assumptions made, the opportunity for developing CDM projects to attract investment to improved waste management infrastructure is significant. Kyoto credits in excess of 1 tCO2e/t of waste could be realised.  相似文献   

7.
The Clean Development Mechanism (CDM) was introduced by the Kyoto Protocol to provide a financial incentive to establish project activities in developing countries for reducing greenhouse gas emissions while also fostering sustainable development. This article shows that waste management project activities play an important role in achieving the aims of the CDM. It describes how these activities have to prove additionality, how the emission reductions must be calculated and monitored in order to be eligible and in order to lead to Certified Emission Reductions (CERs). The article further provides an analysis about the various challenges that are involved in applying the CDM scheme to waste management project activities, which require a new specific set of technical skills and regulatory standards.  相似文献   

8.
Solid waste generation and its implications for people and the environment are global issues. The complexity of the waste composition and the ever-increasing percapita waste generation is a challenge for waste managers, particularly in developing countries. Thus, the need to have a clear policy on waste management and legislation to realize that policy is imperative. Malaysia is developing rapidly and problems such as the waste generation associated with development and industrialization are evident. The Solid Waste and Public Cleansing Management Bill, which was approved in August 2007 after a 10-year delay, is envisaged to have serious consequences in waste management practices and implementation in Malaysia. This article explores the main features of this all-encompassing bill and its impacts on the waste management scenario in Malaysia. In addition, a comparative evaluation is also discussed to explore the policies/legislation of selected countries vis-àvis the Malaysian bill.  相似文献   

9.
Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO2-eq. can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83–95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the “Avoidance of landfill gas emissions by in situ aeration of landfills” (UNFCCC, 2009). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction.  相似文献   

10.
Since the first landfill gas (LFG) power plant in China was built in 1998, by now more than 10 years have passed. In this period the LFG utilization process has progressed greatly in China. An overall review of the process is presented in this paper, which includes the background of policies, the information about the approval procedure of LFG projects, and the theoretical methods used to estimate the amount of LFG’s generation. Detailed analysis on the project practice, such as LFG collection techniques, LFG utilization condition in China, is made. According to statistic data, before the end of 2008, 26 LFG power projects have been built and put into operation with total power capacity around 56.8 MW, and 2.234 million tons of carbon dioxide equivalent abatement has been achieved annually by all of these LFG projects. The future of LFG industry in China is expected that there is still considerable developing space for LFG utilization in the near coming years, however after 2012, the progress speed may slow down because of some adverse aspects, such as available landfill resource becomes scarce, new laws implemented in China might exclude Chinese landfills from future CDM activities, etc.  相似文献   

11.
我国垃圾焚烧发电CDM项目开发难点与实践分析   总被引:1,自引:0,他引:1  
基于我国目前垃圾焚烧发电CDM项目的开发现状,从不同的角度比较和分析了该类项目的特点,总结了其项目公示阶段出现的问题并对方法学修正内容进行了说明。同时,以实际项目为例,着重探讨了额外性论证中的投资比较分析、普及性分析等难点问题,最终得出结论并提出建议。  相似文献   

12.
Malaysia is facing an increase in the generation of waste and of accompanying problems with the disposal of this waste. In the last two decades, extensive building and infrastructure development projects have led to an increase in the generation of construction waste material. The construction industry has a substantial impact on the environment, and its environmental effects are in direct relation to the quality and quantity of the waste it generates. This paper discusses general characteristics of the construction contractors, the contractors' willingness to pay (WTP) for improved construction waste management, determining factors which affect the amount of their willingness to pay, and suggestions and policy implications in the perspective of construction waste management in Malaysia. The data in this study is based on contractors registered with the construction industry development board (CIDB) of Malaysia. Employing the open ended contingent valuation method, the study assessed the contractors' average maximum WTP for improved construction waste management to be RM69.88 (1US$=3.6 RM) per tonne of waste. The result shows that the average maximum WTP is higher for large contractors than for medium and small contractors. The highest average maximum WTP value is RM88.00 for Group A (large contractors) RM78.25 for Group B (medium-size contractors) and RM55.80 for Group C (small contractors). One of the contributions of this study is to highlight the difference of CIDB registration grade in the WTP for improved construction waste management. It is found that contractors' WTP for improved waste collection and disposal services increases with the increase in contractors' current paid up capital. The identified factors and determinants of the WTP will assist the formulation of appropriate policies in addressing the construction waste problem in Malaysia and indirectly improve the quality of construction in the country.  相似文献   

13.
The current and future projections of energy utilisation and related environmental impact has been given. Due to the heavy dependance on low grade lignites and imported hard coal, Turkey is going to have problems in the control of CO2 emissions. Turkey was at first included as an Annex I country according to Kyoto Protocol. Later, it has been removed from the list which is justified considering the previous international environmental impact control applications and relatively much lower energy utilisation in Turkey, compared to Annex I countries. Therefore, Turkey has been removed from the Annex I list.Turkish power generation, industrial and transportation sector will be facing a difficult challenge over the coming 20 yr in complying with environmental impact levels. The developments in the liberalisation of Turkish energy sector since the 1980's is a positive step to overcome the problems.  相似文献   

14.
Construction and demolition (C&D) waste is a pressing issue not only in Malaysia, but it is also a worldwide concern including the developed countries as well. C&D waste should be managed throughout the construction cycle. The concept of circular economy (CE) is an emerging notion that has the potential to be utilized as waste minimization approach. This paper aims to assess the potentials of incorporating the CE concept as an approach to minimizing C&D wastes, by developing a CE-based theoretical framework for C&D waste management in Malaysia. In line with this objective, a systematic review has been conducted to determine how CE can be operationalised as a strategy to minimize wastes, while considering it as a key factor for mitigating the environmental impacts. Based on the literature review, a CE-based theoretical framework has been proposed using Malaysia as a case study. The framework has been developed following a three-layer approach namely micro-, meso-, and macro-levels. Waste minimization strategies have been identified for each level taking into account the main stages in the construction industry, i.e., planning, designing, procurement, construction, and demolition. The different stakeholders involved at each stage and their interactions in the stages have also been identified.  相似文献   

15.
In the last years, the European Union (EU) has been focused on the reduction of construction and demolition (C&D) waste. Specifically, in 2006, Spain generated roughly 47million tons of C&D waste, of which only 13.6% was recycled. This situation has lead to the drawing up of many regulations on C&D waste during the past years forcing EU countries to include new measures for waste prevention and recycling. Among these measures, the mandatory obligation to quantify the C&D waste expected to be originated during a construction project is mandated. However, limited data is available on civil engineering projects. Therefore, the aim of this research study is to improve C&D waste management in railway projects, by developing a model for C&D waste quantification. For this purpose, we develop two equations which estimate in advance the amount, both in weight and volume, of the C&D waste likely to be generated in railway construction projects, including the category of C&D waste generated for the entire project.  相似文献   

16.
The Consortium for Risk Evaluation with Stakeholder Participation (CRESP) was asked by the United States Department of Energy (US DOE) to consider the root causes of remediation projects that fail to entirely achieve their goals and then to offer suggestions to assist the Department. To begin this project, CRESP held several meetings at which the group defined problematic outcomes, the early symptoms of problematic outcomes, and the root causes of failing to meet expectations. The five root causes are complex science, engineering, and technology; ambiguous economics; project management shortcomings; political processes and credibility; and history and organizational culture. This article, while focusing on the US DOE, provides a larger context for many remediation projects that have failed to entirely live up to their sponsors' expectations. © 2007 Wiley Periodicals, Inc.  相似文献   

17.
The need to recover and recycle valuable resources from Waste Electrical and Electronic Equipment (WEEE) is of growing importance as increasing amounts are generated due to shorter product life cycles, market expansions, new product developments and, higher consumption and production rates. The European Commission (EC) directive, 2002/96/EC, on WEEE became law in UK in January 2007 setting targets to recover up to 80% of all WEEE generated.Printed Wire Board (PWB) and/or Printed Circuit Board (PCB) is an important component of WEEE with an ever increasing tonnage being generated. However, the lack of an accurate estimate for PCB production, future supply and uncertain demands of its recycled materials in international markets has provided the motivation to explore different approaches to recycle PCBs.The work contained in this paper focuses on a novel, dry separation methodology in which vertical vibration is used to separate the metallic and non-metallic fractions of PCBs. When PCBs were comminuted to less than 1 mm in size, metallic grades as high as 95% (measured by heavy liquid analysis) could be achieved in the recovered products.  相似文献   

18.
The present paper describes the development, performance and conclusions derived from three know-how and technology transfer projects to South American countries. The first project comprised a collaborative study by European and South American universities to find sustainable solutions for Chilean and Ecuadorian leather tanneries which had underachieving process performances. The second project consisted of investigations carried out in a Brazilian municipality to enhance its municipal solid waste management system. The final collaborative programme dealt with the initial identification, evaluation and registration of suspected contaminated sites in an industrial region of Chile. The detailed objectives, methods and procedures applied as well as the results and conclusions obtained in each of the three mentioned projects are presented, giving special attention to the organizational aspects and to the practical approach of each programme, concluding with their main advantages and disadvantages for identifying a set of qualitative and quantitative suggestions, and to establish transferable methods for future applications.  相似文献   

19.
In situ aeration by means of the Airflow technology was proposed for landfill conditioning before landfill mining in the framework of a reclamation project in Northern Italy. A 1-year aeration project was carried out on part of the landfill with the objective of evaluating the effectiveness of the Airflow technology for landfill aerobization, the evolution of waste biological stability during aeration and the effects on leachate and biogas quality and emissions.The main outcomes of the 1-year aeration project are presented in the paper.The beneficial effect of the aeration on waste biological stability was clear (63% reduction of the respiration index); however, the effectiveness of aeration on the lower part of the landfill is questionable, due to the limited potential for air migration into the leachate saturated layers.During the 1-year in situ aeration project approx. 275 MgC were discharged from the landfill body with the extracted gas, corresponding to 4.6 gC/kgDM. However, due to the presence of anaerobic niches in the aerated landfill, approx. 46% of this amount was extracted as CH4, which is higher than reported in other aeration projects. The O2 conversion quota was lower than reported in other similar projects, mainly due to the higher air flow rates applied.The results obtained enabled valuable recommendations to be made for the subsequent application of the Airflow technology to the whole landfill.  相似文献   

20.
Most of the existing solid waste landfill sites in developing countries are practicing either open dumping or controlled dumping. Proper sanitary landfill concepts are not fully implemented due to technological and financial constraints. Implementation of a fully engineered sanitary landfill is necessary and a more economically feasible landfill design is crucial, particularly for developing countries. This study was carried out by focusing on the economics from the development of a new landfill site within a natural clay area with no cost of synthetic liner up to 10 years after its closure by using the Fukuoka method semi-aerobic landfill system. The findings of the study show that for the development of a 15-ha landfill site in Malaysia with an estimated volume of 2,000,000 m(3), the capital investment required was about US 1,312,895 dollars, or about US 0.84 dollars/tonne of waste. Assuming that the lifespan of the landfill is 20 years, the total cost of operation was about US 11,132,536 dollars or US 7.15 dollars/tonne of waste. The closure cost of the landfill was estimated to be US 1,385,526 dollars or US 0.89 dollars/tonne of waste. Therefore, the total cost required to dispose of a tonne of waste at the semi-aerobic landfill was estimated to be US 8.89 dollars. By considering an average tipping fee of about US 7.89 dollars/tonne of waste in Malaysia in the first year, and an annual increase of 3% to about US 13.84 dollars in year-20, the overall system recorded a positive revenue of US 1,734,749 dollars. This is important information for the effort of privatisation of landfill sites in Malaysia, as well as in other developing countries, in order to secure efficient and effective landfill development and management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号