首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, a physical model of the dust cloud ignition process is developed for both cylindrical coordinates with a straight-line shaped ignition source and spherical coordinates with a point shaped ignition source. Using this model, a numerical algorithm for the calculation of the minimum ignition energy (MIE) is established and validated. This algorithm can evaluate MIEs of dusts and their mixtures with different dust concentrations and particle sizes. Although the average calculated cylindrical MIE (MIEcylindrical) of the studied dusts only amounts to 63.9% of the average experimental MIE value due to reasons including high idealization of the numerical model and possible energy losses in the experimental tests, the algorithm with cylindrical coordinates correctly predicts the experimental MIE variation trends against particle diameter and dust concentration. There is a power function relationship between the MIE and particle diameter of the type MIE ∝ dpk with k being approximately 2 for cylindrical coordinates and 3 for spherical coordinates. Moreover, as dust concentration increases MIE(conc) first drops because of the decreasing average distance between particles and, at fuel-lean concentrations the increasing dust cloud combustion heat; however, after the dust concentration rises beyond a certain value, MIE(conc) starts to increase as a result of the increasingly significant heat sink effect from the particles and, at fuel-rich concentrations the no longer increasing dust cloud combustion heat.  相似文献   

3.
A novel apparatus for testing the minimum ignition energies of flammable dusts is introduced. Unlike the conventional apparatus (the Hartmann tube), this new apparatus employs a vibrating mesh to produce a dust cloud. Using three kinds of powders, namely lycopodium, anthraquinone and polyacrylonitrile, which are designated as the samples for calibration by the International Electrotechnical Commission (IEC, 1994) standards, fundamental characteristics were experimentally investigated. Concerning the minimum ignition energies (MIEs), the new testing apparatus worked well for two samples, lycopodium and polyacrylonitrile. The MIE for anthraquinone, however, was by far larger than the expected value. We concluded that the aggregation of anthraquinone particles is the main cause of the difference and is attributable to both the tribo-charges acquired by the particles when passing through the mesh and the filamentary shape of the crystal. Other essential factors for characterizing the testing apparatus, such as the concentration of dust, the shape and spacing of the sparking electrode system, and the impedance of the sparking circuit are discussed.  相似文献   

4.
This paper presents a numerical model for the prediction of the minimum ignition temperature (MIT) of dust clouds. First, a physical model is developed for the dust cloud ignition in the Godbert-Greenwald furnace. A numerical approach is then applied for the MIT prediction based on the physical model. The model considers heat transfer between the air and dust particles, the dust particle reaction kinetics, and the residence times of dust clouds in the furnace. In general, for the 13 dusts studied, the calculated MIT data are in agreement with the experimental values. There is also great accordance between the experimental and numerical MIT variation trends against particle size. Two different ignition modes are discovered. The first one consists in ignition near the furnace wall for bigger particles characterized by rather short residence times. In the second mode, the ignition starts from the center of the furnace by self-heating of the dust cloud for smaller particles with longer residence times. For magnesium, as dust concentration increases, the lowest ignition temperature of the dust cloud IT(conc) decreases first, then transits to increase at a certain point. The transition happens at different dust concentrations for different particle sizes. Moreover, the MIT of the magnesium dust cloud generally increases as particle size increases, but the increasing trend stagnates within a certain medium particle size range.  相似文献   

5.
6.
Based on existing MIE test results and new measurements, a statistical analysis for the MIE of hydrogen, ethene and propane is made by means of the logistic regression. The conditions necessary to carry out such an approach are discussed. It is shown that MIE values which are connected with a certain ignition probability could be determined adequately and lead to a more sophisticated result, also with regard to measurement uncertainties. This, in turn, leads to a better comparability and a higher informative content. At the same time, the MIEs of hydrogen, ethene and propane are reviewed. In doing so, a useful contribution to the discussion concerning the MIE of propane is made.  相似文献   

7.
The modified Hartmann tube apparatus is recognized to give realistic or safe indications of dust explosion violence. Evidence is presented that results from this apparatus can also be used to indicate minimum ignition energy. Published data show a correlation between minimum ignition energy and minimum explosible concentration, which is refined by also taking into account explosive violence. An empirical model has been derived, relating minimum ignition energy to minimum explosible concentration and explosive violence. The model allows estimation of probabilities of minimum ignition energy falling below specified values, such as those recognized as of practical importance by the relevant British Standard. A limited test of the model suggests that it can be applied to modified Hartmann tube data. It is anticipated that the model will be valuable as a screening tool, especially in the early stages of development of a project.  相似文献   

8.
Most industrial powder processes handle mixtures of various flammable powders. Consequently, hazard evaluation leads to a reduction of the disaster damage that arises from dust explosions. Determining the minimum ignition energy (MIE) of flammable mixtures is critical for identifying possibility of accidental hazard in industry. The aim of this work is to measure the critical ignition energy of different kinds of pure dusts with various particle sizes as well as mixtures thereof.The results show that even the addition of a modest amount of a highly flammable powder to a less combustible powder has a significant impact on the MIE. The MIE varies considerably when the fraction of the highly flammable powder exceeds 20%. For dust mixtures consisting of combustible dusts, the relationship between the ignition energy of the mixture and the minimum ignition energy of the components follows the so-called harmonic model based upon the volume fraction of the pure dusts in the mixture. This correlation provides results which show satisfactory agreement with the experimental values.  相似文献   

9.
Flammable aerosols have created many fire and explosion hazards in the process industry, but the flammability of aerosols has not been fully understood. The minimum ignition energy has been widely used as an indicator for flammability of combustible mixtures, but the amount of experimental data on the minimum ignition energy of aerosols is very limited. In this work, the minimum ignition energy of tetralin aerosols is predicted using an integrated model. The model applies the flame front propagation theory in aerosol systems to the growth of the flame kernel, which was created during the spark discharge in the ignition process. The aerosol minimum ignition energy was defined as the minimum level of energy in the initial flame kernel to maintain the kernel temperature above the minimum ignition temperature of 1073 K specific for tetralin aerosols during the kernel growth. The minimum ignition energy obtained in the model is influenced by the fuel-air equivalence ratio and the size of the aerosol droplets. For tetralin aerosols of 40 μm diameter, Emin decreases significantly from 0.32 mJ to 4.3 × 10 e−3 mJ when the equivalence ratio rises from 0.57 to 1.0. For tetralin aerosols of 0.57 equivalence ratio, Emin increases from as 0.09 mJ to 0.32 mJ when the droplet diameter rises from 10 μm to 60 μm. The trends are in agreement with previous experimental observations. The method used in current work has the potential to prediction of the minimum ignition energy of aerosol.  相似文献   

10.
在烟草加工的加香工序,挥发的酒精和搅拌混料产生的烟草粉尘形成气粉混合体系,其燃爆特性相较于单相烟草粉尘有较大变化。对20 L爆炸球进行了部分改造,可完成20℃~80℃环境温度、100%LEL以下酒精蒸气浓度、最大2 J电火花能量组合的气粉混合物的最小点火能测试。选用烘丝和加香烟草粉尘做对比,探究了环境温度和酒精蒸气浓度对酒精蒸气/烟草粉尘两相混合体系点火能的影响规律。结果表明:相同环境温度下,加香烟草粉尘的最小点火能比烘丝烟草粉尘低;加香粉尘、烘丝粉尘及混合体系的最小点火能随环境温度变化的趋势一致,均随温度的升高而降低;加入10%LEL的酒精蒸气后,相同温度下气粉混合体系的最小点火能低于单相烟草粉尘。随着环境温度的升高,二者的差值逐渐减小,酒精蒸气诱导烟草粉尘最小点火能降低的能力逐步减小甚至消失;在电点火条件下,当酒精蒸气浓度低于50%LEL时,气粉混合体系较难被点燃,当酒精蒸气浓度高于75%LEL时,混合体系较易被点燃。  相似文献   

11.
To achieve the rapid prediction of minimum ignition energy (MIE) for premixed gases with wide-span equivalence ratios, a theoretical model is developed based on the proposed idea of flame propagation layer by layer. The validity and high accuracy of this model in predicting MIE have been corroborated against experimental data (from literature) and traditional models. In comparison, this model is mainly applicable to uniform premixed flammable mixtures, and the ignition source needs to be regarded as a punctiform energy source. Nevertheless, this model can exhibit higher accuracy (up to 90%) than traditional models when applied to premixed gases with wide-span equivalence ratios, such as C3H8-air mixtures with 0.7–1.5 equivalence ratios, CH4-air mixtures with 0.7–1.25 equivalence ratios, H2-air mixtures with 0.6–3.15 equivalence ratios et al. Further, the model parameters have been pre-determined using a 20 L spherical closed explosion setup with a high-speed camera, and then the MIE of common flammable gases (CH4, C2H6, C3H8, C4H10, C2H4, C3H6, C2H2, C3H4, C2H6O, CO and H2) under stoichiometric or wide-span equivalence ratios has been calculated. Eventually, the influences of model parameters on MIE have been discussed. Results show that MIE is the sum of the energy required for flame propagation during ignition. The increase in exothermic and heat transfer efficiency for fuel molecules can reduce MIE, whereas prolonging the flame induction period can increase MIE.  相似文献   

12.
6氨基青霉烷酸(6-APA)是生产阿莫西林的重要中间体,在生产过程的离心机分离及干燥等环节存在粉体燃烧爆炸的危险。利用Hartmann管式粉尘最小点火能测试装置,研究6-APA干粉状态及丙酮存在环境粉体最小点火能变化规律。实验结果表明,6-APA粉体在分散质量为0.6g时,最小点火能为14mJ,参照VDI2263的规定,属于一般着火敏感性粉尘。向粉体中加入丙酮溶剂模拟实际生产环境,实验结果显示粉尘云最小点火能下降明显,且混合物着火能力增强。质量为1g的6-APA粉体与0.5mL丙酮溶剂配比条件下,混合物分散质量为0.6g时,最小点火能为6mJ,在此环境中混合粉体属于特别着火敏感性粉尘。实验结果阐明了6-APA在丙酮存在环境条件下混合粉体燃烧的爆炸危险性,为采取相应的爆炸防护措施提供了实验依据。  相似文献   

13.
An experimental device for evaluating the minimum ignition energy (MIE) of LDPE dust/ethylene hybrid mixture was built with the innovative mixing mode. The MIE of the hybrid mixture that contained ethylene below its lower explosive limit (LEL) was studied. The result indicated that adding a small amount of ethylene significantly reduced the MIE of the original dust cloud. All the MIEs with five different particle sizes were found to show similar trends of exponential attenuation with the increase of ethylene concentration; such attenuating effect grew as the dust particle size rose. When ethylene concentration increased and approached to its LEL, the reaction mechanism dominated by combustible dust turned into one dominated by combustible gas. The MIE decreased first and then increased with the dust mass and increased with the dust particle size. A multifactor mathematical correlation model of the MIE with the dust particle size and ethylene concentration was developed.  相似文献   

14.
Although the minimum ignition temperature is an important safety characteristic and of practical relevance in industrial processes, actually only standard operation procedures are available for pure substances and single-phase values. Nevertheless, combinations of substances or mixtures are used in industrial processes and up to now it is not possible to provide a standardised minimum ignition temperature and in consequence to design a process safely with regard to the substances used.In order to get minimum ignition temperatures for frequently used hybrid mixtures, first, the minimum ignition temperatures and ignition frequencies were determined in the modified Godbert-Greenwald furnace for two single phase solids and a liquid substance. Second, minimum ignition temperatures and ignition frequencies were determined for several combinations as hybrid mixture of dust and liquid.In parallel to the determination of ignition temperatures a new camera and computer system to differentiate ignition from non-ignition is developed. First results are promising that such a system could be much less operator depended.By a high number of repetitions to classify regions of ignition the base is laid to decide about a new procedure for a hybrid standard and updating existing ones, too. This is one of the necessary aims to be reached in the Nex-Hys project.A noticeable decrease of minimum ignition temperatures below the MIT of the pure solids was observed for the one hybrid mixture tested, yet. Furthermore more widely dispersed area of ignition is shown. In accordance to previously findings, the results demonstrate a strong relationship between likelihood of explosion and amount of added solvent. In consequence the hybrid mixture is characterized by a lower minimum ignition temperature than the single dust.  相似文献   

15.
Wood products are easy to produce dust in the production and processing process, and have a serious explosion risk. In order to improve the safety of wood products production, the inhibiting effects of magnesium hydroxide (MTH), SiO2, melamine polyphosphate (MPP) on the minimum ignition energy (MIE) and minimum ignition temperature (MIT) of wood dust were experimentally studied. The results showed that the inhibiting effects of inhibitors on the MIE of wood dust show the order of MPP > SiO2>MTH. The order of the inhibiting effects on the MIT of wood dust was MPP > MTH > SiO2. When 10% MPP was added to wood dust, the time when the flame appears (Tappear) and the time when the flame reaches the top of the glass tube (Ttop) obviously rose to 80, 140 ms. Therefore, MPP had the best inhibiting effect on the ignition sensitivity of wood dust.According to thermogravimetry (TG), differential scanning calorimetry (DSC) tests, the introduction of MPP leaded to lower maximum mass loss rate (MMLR), higher temperature corresponding to mass loss of 90% (T0.1), residual mass and heat absorption. In addition, thermogravimetric analysis/infrared spectrometry (TG-IR) results showed that MPP produced H2O (g) and NH3 (g) during the thermal decomposition process, which diluted the oxygen.  相似文献   

16.
为探究混合金属粉尘爆炸危险性及与单一粉体爆炸特性差异,确保车间安全生产,采用粉尘云点火能量测试系统对车间混合金属粉尘及铝粉最小点火能量在不同影响因素下的变化规律及2种粉尘火焰变化特征进行测试。研究结果表明:混合金属粉尘和铝粉最小点火能量在一定范围内(38~96 μm)与粒径呈正相关性,当混合金属粉尘粒径大于75 μm时,所需最小点火能量大于1 000 mJ,其爆炸敏感性迅速降低,此时铝粉仍有较强爆炸敏感性;2种粉尘最小点火能量随质量浓度增加呈先降低后升高的趋势,最小点火能分别为295,15 mJ,对应的敏感质量浓度为600,1 000 g/m3,混合金属粉尘在质量浓度为500~700 g/m3时具有较大爆炸危险性;同铝粉相比,混合金属粉尘点火能量更高、火焰燃烧时间更短、火焰高度更低、爆炸剧烈程度更弱。  相似文献   

17.
为防止木材加工中木质粉尘燃爆事故的发生,以纤维板生产中常见的原材料速生杨木粉尘作为研究对象,在分析粉尘粒径分布、元素分析、工业分析及形貌特征的基础上,采用1.2 L哈特曼管对3种不同粒径(0~50,>50~96,>96~180 μm)速生杨木粉尘进行最小点火能实验,探究点火延迟时间、喷粉压力、质量浓度和粒径分布对速生杨木粉尘最小点火能的影响及变化规律。研究结果表明:在质量浓度为500 g/m3时,分别增加点火延迟时间和喷粉压力,最小点火能都先减小后增大;最佳点火延迟时间和最佳喷粉压力分别为120 ms和120 kPa;粒径对最佳点火延迟时间和最佳喷粉压力无显著影响。在点火延迟和喷粉压力分别为120 ms和120 kPa条件下,最小点火能随质量浓度的增加先减小后增大。粉尘粒径与最小点火能呈正相关性,3种样品的最小点火能分别为1~3,1~3和7~13 mJ,对应的敏感质量浓度分别为500 ,750和1 250 g/m3,属于特别着火敏感性粉尘。  相似文献   

18.
为了预防蔗糖粉尘爆炸,利用1.2 L哈特曼管研究了NH4H2PO4与Al(OH4对蔗糖粉尘爆炸的抑制作用。在蔗糖粉尘质量分数一定的条件下,通过改变 NH4H2PO4与Al(OH)4的粒径和质量分数,测定其对蔗糖粉尘爆炸的抑制效果。结果表明:随着NH4H2PO4和Al(OH)4质量分数的增加,粒径的减小,蔗糖粉尘的最小点火能均逐渐增大,当惰性粉体增加到一定质量时,蔗糖粉尘被完全惰化,在蔗糖粉尘中分别加入粒径为48~74,38~47,25~37 μm的NH4H2PO4和Al(OH)4,3种粒径的NH4H2PO4使蔗糖粉尘完全惰化的质量分数分别为40%,35%,30%,3种粒径的Al(OH)3使蔗糖粉尘惰化的质量分数均为60%。因此(NH4)H2PO4抑制蔗糖粉尘爆炸的效果比Al(OH)3更显著。  相似文献   

19.
As a useful method of preventing dust explosions, nitrogen (N2), an incombustible gas, has been applied to an explosive atmosphere. This paper is a report that quantitatively determines whether the minimum ignition energy of powder depends on the nitrogen (or oxygen) concentration in the air. Hartman vertical-tube apparatus and six sample powders were used in this study. The results show that the minimum ignition energies of all of the powders used in this study increased with increased amounts of N2 in the air. However, the effects were different in all of the sample powders. We finally suggest that the N2 concentration of 84% (or above) prevents dust explosions due to electrostatic discharges in the industrial process with the sample powders used in this experiment.  相似文献   

20.
In the last decade, the use of renewable resources has increased significantly in order to reduce the energetic dependence on fossil fuels, as they have an important contribution to the global warning and greenhouse gasses effect. Because of that, research on biofuels has been increased in the last years as its characteristics of use match those of the conventional fuel's: solid biomass can be used instead of coals, and biodiesel could replace diesel. Research on solid biomass ignition properties has been considerably developed because of the amount of industrial accidents related to the treatment and use of solid biomass (self-ignition, dust explosions, etc.). On the other hand, thermogravimetric analysis (TGA) is becoming and important characterization technique as it can be used to determine a wide spectrum of properties, such as kinetics, composition, proximate analysis, etc. This research aims to combine thermal analysis and ignition properties, by using the TGA to obtain the elemental composition of lignocellulosic biomass and compare those results to Minimum Ignition Energy (MIE) values test output, so a relation between composition and MIE can be found.To achieve this aim, biomass samples from different origins have been used: oil palm wastes (empty fruit bunches, mesocarp fiber and palm kernel shell), agricultural wastes (straw chops) and forestry wastes (wood chips and wood powder). Also, raw materials and torrefied biomass were compared. The hemicellulose/cellulose ratio was calculated and compared to different flammability properties, finding out that the greater the ratio and the lower the onset temperature (temperature at which the pyrolysis reaction accelerates), the lower was the minimum ignition energy. From this basis it was possible to define “tendency areas” that grouped the samples whose MIE values were similar. Three tendency areas were found: high minimum ignition energy, medium minimum ignition energy, and low ignition energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号