首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 8 毫秒
1.
为研究泄爆面积比对泄爆门泄爆特性的影响,运用FLUENT软件建立煤矿井下1:1巷道模型,在不同泄爆面积比的工况下对瓦斯爆炸传播规律及泄爆过程进行模拟,分析其变化特征和封闭泄爆效果.结果表明:S0工况条件下,压力和温度衰减后保持在0.29 MPa和565 K;S1~S4工况条件下,S4比S1,S2和S3达到封闭状态时间快...  相似文献   

2.
A 20 L spherical explosive device with a venting diameter of 110 mm was used to study the vented pressure and flame propagation characteristics of corn dust explosion with an activation pressure of 0.78–2.1 bar and a dust concentration of 400∼900 g/m3. And the formation and prevention of secondary vented flame are analyzed and discussed. The results show that the maximum reduced explosion overpressure increases with the activation pressure, and the vented flame length and propagation speed increase first and then decrease with time. The pressure and flame venting process models are established, and the region where the secondary flame occurs is predicted. Whether there is pressure accompanying or not in the venting process, the flame venting process is divided into two stages: overpressure venting and normal pressure venting. In the overpressure venting stage, the flame shape gradually changes from under-expanded jet flame to turbulent jet flame. In the normal pressure venting stage, the flame form is a turbulent combustion flame, and a secondary flame occurs under certain conditions. The bleed flames within the test range are divided into three regions and four types according to the shape of the flame and whether there is a secondary flame. The analysis found that when the activation pressure is 0.78 bar and the dust concentration is less than 500 g/m3, there will be no secondary flame. Therefore, to prevent secondary flames, it is necessary to reduce the activation pressure and dust concentration. When the dust concentration is greater than 600 g/m3, the critical dust concentration of the secondary flame gradually increases with the increase of the activation pressure. Therefore, when the dust concentration is not controllable, a higher activation pressure can be selected based on comprehensive consideration of the activation pressure and destruction pressure of the device to prevent the occurrence of the secondary flame.  相似文献   

3.
为有效提高无火焰泄放装置产品质量特性和应用技术,避免或减轻爆炸事故发生造成的灾害程度,选择玉米淀粉粉尘为测试粉尘,采用1 m3爆炸罐进行扇形无火焰泄放装置爆炸泄放实验。结果表明:扇形无火焰泄放装置不适合重复使用。当扇形无火焰泄放装置重复进行爆炸泄放实验时,爆炸罐内压力会呈现升高趋势,而外场压力和温度呈现下降趋势,且阻火元件孔隙内残留大量玉米淀粉粉尘燃烧后生成的炭黑以及积聚部分高温燃烧的粉尘,致使阻火元件损坏失效。  相似文献   

4.
为有效防止粉尘爆炸泄爆引起的二次爆炸及火灾问题,基于泄压理论、消火机理,设计开发无火焰泄压装置,装置主要由消火结构、底座、爆破片及夹持机构组成,消火结构由不锈钢金属丝网组成。选择铝粉尘为测试粉尘,通过自建除尘系统试验平台进行试验研究。结果表明:无火焰泄压装置可成功阻止火焰传播,装置释放的冲击波在5 m外均小于5 kPa,除尘系统内部最大泄爆压力为0.1 MPa,装置前端火焰传播速度均大于100 m/s。  相似文献   

5.
Explosion venting is a frequently-used way to lower explosion pressure and accident loss. Recently, studies of vessel explosion venting have received much attention, while little attention has been paid to pipe explosion venting. This study researched the characteristics of explosion venting for Coal Bed Methane (CBM) transfer pipe, and proposed the way of explosion venting to chamber in order to avoid the influence of explosion venting on external environment, and investigated the effects of explosion venting to atmosphere and chamber. When explosion venting to atmosphere, the average explosion impulse 4.89 kPa s; when explosion venting to 0 MPa (atmospheric pressure) chamber, average explosion impulse is 7.52 kPa s; when explosion venting to −0.01 MPa chamber, explosion flame and pressure obviously drop, and average explosion impulse decreases to 4.08 kPa s; when explosion venting to −0.09 MPa chamber, explosion flame goes out and average explosion impulse is 1.45 kPa s. Thus, the effect of explosion venting to negative chamber is far better than that to atmospheric chamber. Negative chamber can absorb more explosion gas and energy, increase stretch of explosion flame, and eliminate free radical of gas explosion. All these can promote the effect of explosion venting to negative chamber.  相似文献   

6.
利用球型容器与管道组合,开展连通容器气体爆炸与泄爆实验,分析连通条件下,火焰在管道中的传播过程及其对起爆容器和传爆容器的压力影响。实验结果表明:连通容器气体爆炸中,火焰从起爆容器到传爆容器传播经历了一段不断加速,但加速度不断减小的过程;泄爆过程中,火焰传播过程与密闭爆炸时基本一致。管道中火焰加速传播,使得传爆容器的爆炸压力和强度相较于作为起爆容器时均明显增加,危险更大,采用与起爆容器相同的泄爆面积,无法满足对连通容器中传爆容器的泄爆。同时,泄爆是一个快速的能量泄放过程应选择合理的泄爆方式,防止二次危害。  相似文献   

7.
The coupling effects of venting and CO2 inerting on stoichiometric methane-air mixture explosions were investigated in an isolated vessel and interconnected vessels. The results indicate that venting mitigates the explosion intensity, especially for small vessels. For vessels connected by pipes, a venting design following EN 14994 (2007) and NFPA 68 (2013) could not meet the venting requirements. For an isolated big vessel and interconnected vessels, increasing the CO2 volume fraction (Φ) from 0 to 15.0 vol% decreased the maximum explosion overpressure (Pmax) and maximum rate of overpressure rise ((dP/dt)max) and delayed tmax. For closed interconnected vessels, Pmax varied approximately linearly with Φ. For both isolated vessel and interconnected vessels, the coupling effects of venting and CO2 inerting on methane-air explosion were more efficient than those of individual mitigative method (that is, venting alone or CO2 inerting alone).  相似文献   

8.
针对市政排污管网等典型受限空间内可燃气体爆燃风险,建立由水平管道和竖直分支管道构成的数值模型,研究竖直分支管道不同泄爆开启压力对甲烷爆燃压力的影响.研究结果表明:不同泄爆开启压力条件下,管道内存在爆燃压力积聚和泄放的双重效应;水平管道内各测点压力时程曲线均表现为先增大后减小而后出现亥姆霍兹振荡,随着与爆源距离的增加,初...  相似文献   

9.
Low-concentration gas transported in pipelines may lead to explosion accidents because gas with a concentration of less than 30% is prone to explode. To reduce the incidence of gas explosions, water sealing of fire barriers is implemented, and explosion venting devices are installed along the pipeline. To investigate their suppression effect on low-concentration gas explosion, experiments using methane–air premixed gas under different conditions were implemented on a DN500 pipeline test system. The effects of three types of explosion venting forms (rupture disc, asbestos board, and plastic film) on explosion overpressure and flame were compared and analysed. Results show that the rupture disc, asbestos board, and plastic film can achieve adequate explosion venting, causing the peak decay rates of explosion overpressure to reach 82.37%, 81.72%, and 90.79%, respectively. The foregoing indicates that the greater the static activation pressure of the explosion venting form, the higher the peak explosion overpressure at each measurement point. Moreover, the shorter the explosion flame duration, the greater the flame propagation velocity. The research results provide an essential theoretical foundation for the effective suppression of gas explosion accidents in the process of low-concentration gas transportation.  相似文献   

10.
为解决传统经验公式在预测气体泄爆中最大超压出现时的较大偏差或过于保守的问题,提出使用人工神经网络预测气体泄爆最大超压。基于124组实验数据,采用BP与RBF神经网络,通过优化算法计算与迭代循环对泄爆样本中的影响因素进行降维与选择,并确定2类神经网络本身在学习与计算气体泄爆样本时的相关参数。结果表明:PCA(主成分分析法)在当前样本条件下的降维效果较差,而通过迭代对比确认气体泄爆样本中的5类特征全部保留时神经网络的训练模拟效果最好;通过对124组实验数据进行随机挑选训练集与测试集的训练模拟结果发现,神经网络对气体泄爆中最大超压的预测效果较好;通过对比Molkov提出的和经Fakandu等改进的NFPA 68经验公式以及2类神经网络的预测结果表明,神经网络相比于传统气体泄爆经验公式具有明显优势。  相似文献   

11.
Fire and explosion accidents are frequently caused by combustible dust, which has led to increased interest in this area of research. Although scholars have performed some research in this field, they often ignored interesting phenomena in their experiments. In this paper, we established a 2D numerical method to thoroughly investigate the particle motion and distribution before ignition. The optimal time for the corn starch dust cloud to ignite was determined in a semi-closed tube, and the characteristics of the flame propagation and temperature field were investigated after ignition inside and outside the tube. From the simulation, certain unexpected phenomena that occurred in the experiment were explained, and some suggestions were proposed for future experiments. The results from the simulation showed that 60–70 ms was the best time for the dust cloud to ignite. The local high-temperature flame clusters were caused by the agglomeration of high-temperature particles, and there were no flames near the wall of the tube due to particles gathering and attaching to the wall. Vortices formed around the nozzle, where the particle concentration was low and the flame spread slowly. During the explosion venting, particles flew out of the tube before the flame. The venting flame exhibited a “mushroom cloud” shape due to interactions with the vortex, and the flame maintained this shape as it was driven upward by the vortex.  相似文献   

12.
Gas explosion is one of the main disasters in coal mining. Plenty of coal gangue are generally distributed in the disaster areas in gob. Experiments were carried out to explore the propagation law of the gas explosion distributed by coal gangue. The variation characteristics of the overpressure, pressure rise rate, and flame shape with void fractions were analyzed. The results showed that the effect of the coal gangue on the explosion intensity changed from suppression to acceleration with the increase of void fraction, the flame front upstream blockage area changed from laminar state to turbulent divergent state, and a reverse flame was formed. When the void fraction of the coal gangue was 0.50–0.65, the maximum overpressure downstream of the blocked area were positively correlated with the void fraction and the critical suppression range was between 0.50 and 0.55. When the void fraction was lower than 0.50, the flame was quenched in the coal gangue, neither the flame nor the pressure could pass through the blocked area. It is helpful to guide the improvement of coal recovery process to avoid the expansion of the explosion impact in coalmine gob.  相似文献   

13.
杨凯    吕鹏飞    胡倩然  庞磊   《中国安全生产科学技术》2018,14(12):21-27
为阐释民用建筑内部大尺度物品与门窗等泄爆面对天然气爆炸灾害的协同作用机制,基于典型厨房空间布局及内部物品特征,借助计算流体动力学技术研究了不同泄爆面开启压力和不同大尺度障碍物体积阻塞率条件下天然气内爆炸火焰速度、爆炸超压的分布规律。研究结果表明:大尺度障碍物与泄爆面对室内天然气爆炸过程具有显著的协同作用,共同促进火焰速度与爆炸超压的显著增长,并缩短峰值超压到达时间;大尺度障碍物的存在虽然显著降低了室内天然气的体积,但从增加房间内湍流源和相对长径比的角度进一步促进了泄爆效应;大尺度障碍物与泄爆面协同作用下,室内火焰速度呈现明显的阶段性特征,并在泄爆面附近发生波动。研究结论可为民用建筑物内气体爆炸事故调查分析和灾害评估提供科学依据。  相似文献   

14.
中小锅炉爆炸事故规律分析与研究   总被引:1,自引:0,他引:1  
为研究中小型锅炉爆炸事故的规律,对中小型锅炉爆炸案例进行调查和分析,并进行了缺水再进水试验和炉胆失稳模拟试验。研究认为,爆炸主要原因是缺水和超压,缺水造成材料性能下降明显,进水汽化造成锅内压力骤升,并给出了立式锅炉爆炸机理。从锅炉结构、水容积、安全附件等方面的爆炸事故因素考虑,对3种中小型锅炉进行安全性分析,并提出了事故预防措施。  相似文献   

15.
In this work, the effect of spatial distribution and values of the turbulent kinetic energy on the pressure-time history and then on the explosion parameters (deflagration index and maximum pressure) was quantified in both the standard vessels (20 L and 1 m3).The turbulent kinetic energy maps were computed in both 20 L and 1 m3 vessels by means of CFD simulations with validated models. Starting from these maps, the turbulent flame propagation of cornstarch was calculated, by means of the software CHEMKIN. Then, the pressure-time history was evaluated and from this, the explosion parameters.Calculations were performed for three cases: not uniform turbulence level as computed from CFD simulations, uniform turbulence level and equal to the maximum value, uniform profile and equal to the minimum value. It was found that the cornstarch in the 20 L vessel get variable classes (St-1, St-2, St-3) with respect to the 1 m3 (St-1). However, simulations performed on increasing the ignition delay time, shown that the same results can be attained only using 260 ms as ignition delay time in the 20 L vessel.  相似文献   

16.
为分析地铁上覆管道爆炸对乘客安全影响,采用基于超压冲击波阀值数值模拟,通过将泄漏气体能量等效为TNT当量,分析不同泄漏模式爆炸冲击波对地铁隧道及人员安全影响.结果表明:爆炸产生的超压冲击波对隧道及人员影响小于限值,不会造成人员伤亡,研究结果可为地下工程下穿油气管线安全影响分析提供理论支撑.  相似文献   

17.
为探究影响多孔球形材料阻火抑爆性能的主要因素,采用气体爆炸模拟软件FLACS建立多孔球形结构中湍流燃烧模型,对填充多孔球形材料后丙烷/空气预混气体燃烧爆炸过程进行数值模拟。研究结果表明:多孔球形材料能够有效衰减爆燃压力波、阻隔火焰传播,起到阻火抑爆作用,且压力波衰减程度和火焰阻隔效果与多孔球形材料的尺寸、孔径及填充密度密切相关。当多孔球形材料的直径为25 mm、孔径为3 mm、填充密度为20层时,压力波衰减程度最大,火焰阻隔效果最明显,说明直径和孔径越小,填充密度越大,材料的阻火抑爆性能越强。  相似文献   

18.
为了掌握瓦斯爆炸冲击载荷在煤岩巷道壁面钻孔下的传播衰减规律,揭示煤岩巷道壁面钻孔减震吸能机理,提高巷道系统的安全稳定性能,基于一维平面应力波理论和节理刚度模型分析了煤矿井下巷道围岩钻孔的减震吸能机理,解释了煤岩壁面钻孔的存在对应力波传递的减弱和阻隔作用。为了深入研究巷道壁面钻孔的减震吸能性能,利用ANSYS/LS- DYNA建立方形巷道模型,模型壁面设置有钻孔,针对巷道右壁面和顶板布置相应监测点,对瓦斯爆炸冲击载荷作用下巷道壁面钻孔的减震吸能性能进行了数值模拟。结果表明:由于介质的非连续性和不同介质之间特性存在差异,煤岩体巷道壁面钻孔有效消减了钻孔后煤岩体质点中波的强度及速度,具有一定的减震吸能作用。研究煤岩巷道壁面钻孔在冲击载荷作用下的减震吸能性能,为研究瓦斯爆炸冲击载荷对巷道系统安全性和稳定性提供依据。  相似文献   

19.
为更系统地归纳安全氛围与安全绩效的关系,探究安全氛围、安全绩效及安全结果间的影响机制,采用Meta分析方法,通过2000—2020年54篇文献的55个独立研究样本进行定量综合分析,并进一步探讨安全氛围与安全绩效各维度间的关系,同时运用Meta二元回归探究潜在调节变量对2者间关系的调节作用。结果表明:安全氛围显著正向影响安全绩效,在高危行业中安全氛围对安全绩效影响更大;安全氛围与安全参与、安全遵守均显著正相关,且安全氛围对安全参与的影响强于对安全遵守的影响;安全氛围和安全绩效均与安全结果显著负相关,且安全绩效对安全结果的影响强于安全氛围对安全结果的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号