首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
Analytical reagents identify and manage metal pollution, a major environmental issue. Regrettably, these compounds' safety concerns, especially when heated, have been neglected. This research examines the thermal hazard of the extremely reactive analytical reagent styphnic acid. Differential scanning calorimetry, thermogravimetric analysis, and accelerating rate calorimetry examined styphnic acid's thermodynamics. Thermogravimetric analysis showed weight loss reactions starting at 127 °C and peaking at 208 °C. Differential scanning calorimetry showed an endothermic peak at 176 °C. The accelerating rate calorimetry test showed that styphnic acid self-accelerates at 237 °C after 196.5 °C. Kissinger, Ozawa-Flynn-Wall, and Kissinger-Akahira-Sunose thermokinetic models calculated apparent activation energy from 131.677 to 155.718 kJ/mol. A nonlinear regression analysis showed that styphnic acid undergoes a two-step autocatalytic reaction during heat degradation. Thermal safety was assessed by measuring time to conversion limit, maximum rate, total energy release, self-accelerating decomposition temperature, and adiabatic temperature rise. Styphnic acid is less stable at higher temperatures and its thermal hazards depend on heating rate. The computed SADT was 109.04 °C, with alarm and control temperatures of 104.04 and 99.04 °C, respectively. The risk matrix analysis based on Tad and TMRad suggests reducing thermal instability. This study on styphnic acid's thermal risks and safe storage and transit during analytical applications is beneficial.  相似文献   

2.
为研究二叔丁基过氧化物(DTBP)热失控危险性,利用C600微量量热仪对DTBP热分解动力学进行试验研究,测定DTBP在不同升温速率下的起始放热温度和分解热,分别用非等转化率法和等转化率法得到DTBP热分解反应的动力学参数。用非等转化率法确定反应的最佳反应级数为1,相应的活化能分别为137.75、132.60、128.61和122.93 kJ/mol,指前因子分别为8.82×1012、6.69×1012、2.06×1012和3.89×10111/s。用等转化率法确定的活化能范围为102~138 kJ/mol,并拟合出活化能与转化率的关系曲线。结合计算出的动力学参数,通过对DTBP分解机理的分析,可以推断其具有热失控危险性。  相似文献   

3.
Thermal degradation of triacetone triperoxide (TATP) was studied using differential scanning calorimetry (DSC) and gas chromatography/mass spectrometry (GC/MS). TATP, a potential explosive material, is powerful organic peroxide (OP) that can be synthesized by available chemicals, such as acetone and hydrogen peroxide in the laboratory or industries. The thermokinetic parameters, such as exothermic onset temperature (T0) and heat of decomposition (ΔHd), were determined by DSC tests. The gas products from thermal degradation of TATP were identified using GC/MS technique.In this study, H2O2 was mixed with propanone (acetone) and H2SO4 catalysis that produced TATP. The T0 of TATP was determined to be 40 °C and Ea was calculated to be 65 kJ/mol. A thermal decomposition peak of H2O2 was analyzed by DSC and two thermal decomposition peaks of H2O2/propanone were determined. Therefore, H2O2/propanone mixture was applied to mix acid that was discovered a thermal decomposition peak (as TATP) in this study. According to risk assessment and analysis methodologies, risk assessment of TATP for the environmental and human safety issue was evaluated as 2-level of hazard probability rating (P) and 6-level of severity of consequences ratings (S). Therefore, the result of risk assessment is 12-point and was evaluated as “Undesirable” that should be enforced the effect of control method to reduce the risk.  相似文献   

4.
过氧化苯甲酰合成工艺热危险性分析   总被引:1,自引:0,他引:1  
采用RC1e反应量热仪对过氧化苯甲酰(BPO)合成工艺危险性进行研究,测试不同Na OH溶液初始浓度(1.96 mol/L、3.93 mol/L、7.14 mol/L)下反应的放热历程,获得BPO合成反应过程中的热危险性参数,并采用PHI-TECⅡ绝热加速量热仪对产物进行热稳定性分析,最后评估该反应热风险。结果表明,Na OH浓度为7.14 mol/L时,反应初期放热速率慢,热累积度大,后期反应剧烈,绝热温升(ΔTad)及热失控时工艺反应达到的最高温度(MTSR)最大。热稳定性试验表明,合成的粗产物BPO初始分解温度、活化能、指前因子、最大放热速率到达时间为24 h时的对应温度(TD24)均低于纯BPO。利用合成粗产物BPO的TD24对反应进行危险度评估,该工艺热危险性等级均为5级,工艺危险性大。  相似文献   

5.
Benzoyl peroxide (BPO) is a typical organic peroxide widely used in food processing, particularly flour bleaching. Due to the unstable nature of the oxygen-oxygen bond in BPO, it readily reacts under even mid-low-temperature conditions. Lower concentrations of BPO are also potentially explosive, even when combined with acid or alkaline additives. Given the history of both potential and documented industrial accidents, this study investigates the thermal stability of various BPO concentrations when mixed with acid or alkaline solutions. In addition, differential and integral kinetic models were applied to verify that the apparent activation energy data from the differential scanning calorimetry experiments were valid. The results of autocatalysis reactions and nth-order reaction simulations presented characteristics consistent with the experimental findings. The findings in this paper can be used as a reference for BPO products that are mediated with either an acid or an alkaline solution during production, storage, transportation, or use.  相似文献   

6.
Electrical apparatuses are prone to arc, which generally causes a fire, even an explosion hazard, when a flammable gas mixture is present, especially during industrial processes. Terrible fire scenes are challenging for fire investigations. In this work, by performing a simultaneous thermal analysis test we simulated a fire environment and found that as the oxygen concentration decreased, the oxidation/exothermic peak temperature of ‘cause’ bead became higher, but the melting temperature was unaffected. Results indicated that the bead pattern underwent oxidation at approximately 831 °C, melting initiated at approximately 1060 °C, and the pattern then disappeared. The melted pattern grain changes were divided into three critical temperature stages: Approximately 600 °C, the onset temperature at which the melted pattern grains began to be equiaxed; approximately 831 °C, at which the grains were interspersed with oxygen-containing material; and 831–1060 °C, when the grains disappeared, which is a criterion for identifying electrical fires. However, the boundaries remained throughout the thermal environment process. Moreover, the bead pattern demonstrated three metallographic regions: Deep layer (Region I), the intermediate layer (Region Ⅱ), and surface layer (Region Ⅲ). Region I was the most thermally sensitive, in which equiaxed crystals first appeared. Region Ⅲ was the thermal reaction lag zone, in which the typical branching crystals finally disappeared, and Region Ⅱ was intermediate between Regions I and Ⅲ. The results may help fire investigators determine the fire scene temperature stages and provide support for fire evidence extraction.  相似文献   

7.
Ammonium peroxydisulfate (APS), one of the most widely used inorganic peroxides in the process industries, is a thermally unstable peroxide and potent oxidizer due to the presence of peroxy bond in the molecule and is incompatible with most substances. To investigate the effect of typical additives on the thermal decomposition of APS, in this paper, diamine phosphate (DAP), monoamine phosphate (MAP), and aluminum hydroxide (AH) were selected as additives; pure APS and samples with 10 wt% and 20 wt% of additives were first tested by differential scanning calorimetry (DSC). The experiments and analysis showed that the samples with 10 wt% of additive had better thermal stability than those with 20 wt% of additive. After screening, the three groups of 10 wt% AH, 10 wt% MAP, and 20 wt% MAP additive conditions could be considered to have a better thermal stability effect on the thermal decomposition of APS. Four groups of samples were, in turn, tested by Phi-Tec II. The adiabatic results showed two discontinuous exothermic processes; 10 wt% AH promoted the weak exothermic effect in the first stage. In contrast, the three groups of additives in the main exothermic stage showed different degrees of inhibition, and the inhibiting effect was ranked as 10 wt% AH, 10 wt% MAP, and 20 wt% MAP in order. Finally, the self-accelerated decomposition temperature (SADT) was calculated under the 25 kg standard package. The adiabatic results, including SADT, were combined to render feasible recommendations for the use of additives, which provides references for the packaging and transportation of additives and their applications.  相似文献   

8.
A study has examined the effect of urea on the thermal stability and detonation characteristics of ammonium nitrate (AN). The thermal decomposition temperature and surface morphology of samples were investigated by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). For further research on the thermal sensitivity and shock sensitivity of the samples, the Koenen test and UN gap test were conducted. The results indicate that urea can substantially increase the thermal stability of AN (the greatest exothermic peak is increased by more than 100 °C) and reduce the thermal sensitivity of AN. However, AN-50wt. % urea mixtures can still produce a steady detonation in the UN gap test. Urea cannot reduce the ability to propagate a detonation. Possible explanations for these results are discussed.  相似文献   

9.
In this study, we investigated and analyzed the causes of fire hazards on the basis of actual accidents that occurred during epoxy resin fiberglass-coating operations. Results of this study showed that during this process, two major factors could cause a fire. One factor was related to the heat produced during the mixing of the epoxy resin and a polyamide curing agent. From the results of thermal analysis, it was found that the Tonset of the epoxy resin and the polyamide curing agent was 52.8 °C by DSC and Td10 was 58.9 °C by DT/TGA, causing an exothermic hazard. Further, the results of a pseudo-adiabatic analysis performed in a Dewar vessel showed that the temperature increased from 23.5 °C to 177 °C.The other factor that could increase fire hazard was the illumination source used during the coating operation. Depending on the type of illumination source used, the temperature could increase above 350 °C. The decomposition temperature (Td10) of PVC was 276.3 °C. The experiments involving epoxy resin fiberglass coating using an illumination source showed serious burn marks, and the polyvinyl chloride (PVC) electrical cable emitted small flames. Therefore, it can be concluded that fire was caused by the combination of two factors—the exothermic reaction between epoxy resin and the polyamide curing agent and the effect of prolonged illumination, both of which caused an increase in temperature leading to auto-ignition of the PVC electric cable.  相似文献   

10.
Emulsion explosives are one type of main industrial explosives. The emergence of the large cartridge emulsion explosives has brought new security incidents. The differential scanning calorimeter (DSC) and the accelerating rate calorimeter (ARC) were selected for the preliminary investigation of the thermal stability of emulsion explosives. The results showed that the initial thermal decomposition temperatures were in the range of 232–239 °C in nitrogen atmosphere (220–232 °C in oxygen atmosphere) in DSC measurements and 216 °C in ARC measurements. The slow cook-off experiments were carried out to investigate the critical temperature of the thermal decomposition (Tc) of the large cartridge emulsion explosives. The results indicated that the larger the diameter of the emulsion explosives, the smaller the Tc is. For the large cartridge emulsion explosives with diameter of 70 mm, the Tc was 170 °C at the heating rate of 3 °C h−1. It is a dangerous temperature for the production of the large cartridge emulsion explosives and it should cause our attention.  相似文献   

11.
Lithium-ion batteries with relatively narrow operating temperature range have provoked concerns regarding the safety of LIBs. In this work, a series of experiments were conducted to explore the thermal runaway (TR) behaviors of charging batteries in a high/low temperature test chamber. The effects of charging rates (0.5 C, 1 C, 2 C, and 3 C), and ambient temperature (2 °C, 32 °C and 56 °C) are comprehensively investigated.The results indicate that the cell exhibited greater thermal hazard at the high charging rate and ambient temperature conditions. As the charging rate increased from 0.5 C to 3 C, more lithium intercalated in the anode prompt the TR triggered in advance, the TR onset temperature decreased from 297.5 °C to 264.7 °C. In addition, the charging time decreased with the elevated ambient temperature, resulting in a relatively higher TR onset temperature and lower maximum temperature, and the average TR critical time declined by 115–143 s. Finally, the TR required less heat accumulation with increasing of charging rate and ambient temperature, and the heat generation of side reaction played a substantial role that accounted for approximately 54%∼63%. These results provide an insight into the charging cell thermal runaway behaviors in complex operation environments and deliver valuable guidance for improving the safety of cell operation.  相似文献   

12.
The exothermic oxidation of 3-methylpyridine with hydrogen peroxide was analyzed by Reaction Calorimeter (RC1e) in semi-batch operation. Heat releasing rate and heat conversion were studied at different operating conditions, such as reaction temperature, feeding rate, the amount of catalyst and so on. The thermal hazard assessment of the oxidation was derived from the calorimetric data, such as adiabatic temperature rise (ΔTad) and the maximum temperature of synthesis reaction (MTSR) in out of control conditions. Along with thermal decomposition of the product, the possibility of secondary decomposition under runaway conditions was analyzed by time to maximum rate (TMRad). Also, risk matrix was used to assess the risk of the reaction. Results indicated that with the increase of the reaction temperature, the reaction heat release rate increased, while reaction time and exotherm decreased. With the increase of feeding time, heat releasing rate decreased, but reaction time and exotherm increased. With the amount of the catalyst increased, heat releasing rate increased, reaction time decreased and exothermic heat increased. The risk matrix showed that when the reaction temperature was 70 °C, feeding time was 1 h, and the amount of catalyst was 10 g and 15 g, respectively, the reaction risk was high and must be reduced.  相似文献   

13.
Azodicarbonamide (ADC) is a type of azo compound with outstanding application performance, it is always used as a blowing agent in the production of foamed plastics. Based on previous studies, it has been considered harmless in its practical application process. Nevertheless, our research has overturned this standpoint and denoted the special exothermic behavior of ADC under specific use processes, especially when it was placed in a high-pressure system. In this study, a simultaneous thermogravimetric analyzer (STA) was employed to preliminarily evaluate the thermal stability of ADC under atmospheric pressure. Followed with calorimetric experiments by high-pressure differential scanning calorimetry (HP DSC), the exothermic behaviors of ADC under different initial furnace pressures were investigated. The obtained results revealed that the thermal decomposition rate of ADC linearly increases along with increasing testing pressure, which shows a highly autocatalytic characteristic. The peak power of DSC curve breathtakingly reached 73 W/g when the initial testing pressure was set at 4 MPa, and the overall decomposition heat reached 1261 J/g with the scanning rate at 4 °C/min. Furthermore, the decomposition mechanism, thermal hazards, and explosion potential were comprehensively evaluated in this study for the first time.  相似文献   

14.
CL-20是一种高能量、高性能的炸药。为了研究CL-20的热分解性能,分别采用DSC-TG、DSC-TG-QMS联用系统和高压型差示扫描量热仪(DSC 204 HP)对CL-20的热安全性进行了测试分析,并计算了CL-20的热力学参数和动力学参数。结果表明,CL-20固体炸药在不同升温速率下的TG曲线基本相似,都只有一个台阶。在升温速率为10 K/min时,CL-20在放热峰温处的活化焓、活化熵和活化自由能分别是177.26 k J/mol、52.61 J/(K·mol)和149.7 kJ/mol。CL-20热分解后的气体产物主要有NO、CO、CO_2和H_2O,离子流强度约为10-9A,其中H_2O的离子流强度最大。不同压力时CL-20热分解的过程不同,在压力高的情况下CL-20分解放热更多,反应过程越剧烈,热安全性越差。与常压下相比DSC放热峰值温度降低。  相似文献   

15.
16.
Ammonium nitrate (AN) has been widely used as a fertilizer for almost a century because it is an excellent nitrogen source. However, AN related explosions continue to occur time and again, despite the fact that AN has been extensively investigated. There have been more than 70 AN-related incidents during the last century, which reemphasize the dire need for further research on AN reactive hazards. This research focuses on the alternatives to make AN safer as a fertilizer by reducing its explosivity, by studying the effect of inhibitors, confinement, and heating rate on AN thermal decomposition using the Reactive Systems Screening Tool (RSST). First, the thermal decomposition of AN in the presence of different types of additives, including sodium bicarbonate, potassium carbonate, and ammonium sulfate, was studied under two concentrations, i.e., 2.8 wt.% and 12.5 wt.%. The results show that they are good inhibitors for AN. Second, the effect of confinement was tested by observing AN decomposition under five different initial pressures, varying from ambient pressure to 187 psig. It is concluded that confinement is dangerous to AN, which should be avoid in AN storage and transportation. Lastly, the effect of heating rate was studied by heating up AN under two heating rates of 0.25 °C min−1 and 2 °C min−1. The lower the heating rate, the lower the “onset” temperature detected.  相似文献   

17.
Swine excreta were dried by boiling via immersion in hot oil. In this method, moisture in the excreta is replaced with oil or evaporated by turbulent heat transfer in high-temperature oil. The dried excreta can be used in an incinerator like low-rank coal or solid fuel. Refined waste oil and B–C heavy oil were used for drying. Drying for 8 min at 150 °C reduced the water content of raw excreta from 78.90 wt.% to 1.56 wt.% (refined waste oil) or 1.62 wt.% (B–C heavy oil) and that of digested excreta from 79.58 wt.% to 3.40 wt.% (refined waste oil) or 3.48 wt.% (B–C heavy oil). The low heating values of the raw and digested excreta were 422 kJ/kg and ?2,713 kJ/kg, respectively, before drying and 27,842–28,169 kJ/kg and 14,394–14,905 kJ/kg, respectively, after drying. A heavy metal analysis did not detect Hg, Pb, Cd, As, and Cr in the dried excreta, but Al, Cu, and Zn, which occur in the feed formula, were detected. Thermogravimetric analysis before and after drying revealed that emission of volatiles and combustion of volatiles and fixed carbon occurred at temperatures of 250–500 °C when air was used as the transfer gas.  相似文献   

18.
The backdraft experiments involved three full-scale room fire tests that used solid furnishing, loveseats. From experimental data, a backdraft caused two temperature peaks. The first one was below 600 °C. Then, an abrupt opening of the front door led to a supply of a large amount of fresh air, followed by an indication of sudden temperature rise. The second peak temperature was over 600 °C. Meanwhile, the deflagration resulted in the gases heating and expanding within the fire space, thus forcing unburned gases out of the vent ahead of the flame front. Comparing both cases with natural gas and solid loveseat as the fuel in backdraft, the former can achieve pre-mixture state and readily create an instant explosion wave phenomenon; however, this wave disappeared immediately. On the other hand, the solid loveseat used as the fuel in this study produced backdraft within 30–50 s after opening of the door. After the occurrence of backdraft, fire maintained a period of fully developed stage, which was consistent with the conditions in actual fires.  相似文献   

19.
Although the effects of jet fires are often limited to rather short distances, if their flames impinge on a pipe or a vessel collapse can occur in very short times. In such cases, the heat flux on the affected equipment is very high and wall temperature can increase very rapidly. This can happen in parallel pipelines, if a release occurs and impinges on another one. Nevertheless, jet fire impingement has been scarcely studied. In this communication the results obtained from an experimental set-up are presented. Sonic jet fires impinged on a pipe containing stagnant air or water. The temperatures of the flames impinging on it were measured for the worst case (flame front-bright zone), as well as the evolution with time of the pipe wall temperature at different locations. Initial temperature increases up to around twenty °C/s were registered for the air inside, with maximum values of up to 600 °C reached in 2.5 min, and 800 °C in approximately 9 min. In the case of pipe containing water, in the zone of the wall in contact with the liquid the heating rates were much lower, the maximum temperature reached being up to approximately 150 °C. From the temperatures of the jet flames and of the pipe, the heat fluxes reaching the pipe and the corresponding heat transfer coefficients were obtained. The results obtained emphasized that safe distances are essential in pipelines, together with fire proofing and other safety measures.  相似文献   

20.
The bulk polymerization of methyl methacrylate (MMA) is of great importance in chemical industry, but the polymerization process is highly hazardous, and few reports have focused on the effect of initiators on its thermal hazards. In this work, to thoroughly explore the thermal hazard characteristics, the runaway behavior of MMA bulk polymerization is investigated by a combination of thermodynamics experimental and kinetics theoretical methods. The results indicate that the presence of initiator exhibits an undesirable thermal hazard to the MMA bulk polymerization, and its exothermic behavior is also greatly influenced by the type and concentration of initiator. For azobisisoheptanenitrile (ABVN), azodiisobutyronitrile (AIBN) and dibenzoyl peroxide (BPO) initiators as examples, the AIBN-initiated reaction has the shortest adiabatic induction period (39.51 min), whereas the BPO-initiated polymerization exhibits the strongest maximum temperature-rising rate and maximum pressure-rising rate. Under adiabatic runaway, the temperature and pressure change significantly with increasing AIBN concentration, revealing a great potential risk of thermal runaway. Kinetic parameters are calculated to further understand the thermal runaway mechanisms, showing a strong agreement with the adiabatic experimental data. Finally, based on the cooling failure scenario, severity grading is determined by the evaluation criteria. The current work provides extensive data as a reference and guidance for the process design and optimization of MMA bulk polymerization from the perspective of safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号