首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 1999, two earthquakes in northwest Turkey caused heavy damage to a large number of industrial facilities. This region is the most industrialized in the country, and heavy damage has a significant economic influence. Industrial storage tanks, ruptured by earthquakes, exascerbate damage through the spread of fire. Storage tanks are uniquely structured, tall cylindrical vessels, some supported by relatively short reinforced concrete columns. The main aim of this study is to evaluate the earthquake performance of Turkish industrial facilities, especially storage tanks in terms of earthquake resistance. Modeling a typical storage tank of an industrial facility helps to understand the structure’s seismic response. A model tank structure was modelled as a solid with lumped mass and spring systems. Performance estimation was done with 40 different earthquake data through nonlinear time history analyses. After the time history analyses, fragility analyses produced probabilistic seismic assessment for the tank model. For the model structure, analysis results were evaluated and compared. In the study, vulnerability of storage tanks in Turkey was determined and the probabilistic risk was defined with the results of the analysis.  相似文献   

2.
This study aims to improve the fundamental understanding on the performance of bottom plates in above ground storage tanks (ASTs) during flood events. To this end, fragility models that estimate the probability of material yielding and rupture in the bottom plates were derived. A significant number of ASTs are located in coastal areas and are susceptible to hurricane hazards. Consequently, ASTs have suffered severe damage during past hurricanes resulting in spills with catastrophic environmental and social impacts. Therefore, several failure modes such as flotation, buckling, and sliding have been studied in past research. However, the literature lacks studies that consider the failure of bottom plate due to uplift pressure generated during floods and there are no design guidelines to address this issue. To address this gap, fragility functions that provide the probability of failure as a function of tank geometry, material properties, design parameters, and hazard conditions were developed herein. For this purpose, Latin Hypercube Sampling was performed to span the space of these parameters uniformly. For each parameter combination, maximum stresses in bottom plates were determined using analytical formulations for simply supported and clamped boundary conditions and were compared against two different failure thresholds. The results were used to develop a closed form fragility model using step wise logistic regression. Fragility functions were applied to four case study tanks. Sensitivity analysis were performed to understand the impacts of different probability density functions for various variables on the bottom plates’ fragility. The results provided several insights such as ASTs with larger diameter were vulnerable to bottom plate failure. Comparison with other failure modes revealed that the probability of bottom plate failure was higher than flotation failure for anchored ASTs with clamped boundary condition.  相似文献   

3.
Secondary containment (bunds, drip trays, interceptors/sumps) is an integral part of many chemical, petrochemical, as well as agricultural, food and pharmaceutical facilities. Bunds are the built-in cases for accidental liquid substance spillage where there is a hazard that a substance could leak into the surroundings and the potential of health or environmental damage. The authors focus on the cases installed in large-volume atmospheric tanks storing hazardous chemicals in liquid form, where the bund failure occurred. In the first part of the study, a database of these accidents was created, numbering a total of 15 items. Attention was paid to the course of the accident, its causes and consequences. Several basic representative scenarios of bund failure have also been developed. The second part of the study is devoted mainly to the measures against the bund failure, such as risk assessment, technical and organizational measures. The aim of this study is to provide readers (including experts in the field of safety engineering, maintenance experts and building designers) with the information that can subsequently be used in the risk assessment of bund failure, possibly also for planning the construction of new bunds, or revitalization and maintenance of the existing ones.  相似文献   

4.
Chemical Process Industries usually contain a diverse inventory of hazardous chemicals and complex systems required to perform process operations such as storage, separation, reaction, compression etc. The complex interactions between the equipment make them vulnerable to catastrophic accidents. Risk and failure assessment provide engineers with an intuitive tool for decision making in the operation of such plants. Abnormal events and near-miss situations occur regularly during the operation of a system. Accident Sequence Precursors (ASP) can be used to demonstrate the real-time operating condition of a plant. Dynamic Failure Assessment (DFA) methodology is based on Bayesian statistical methods incorporates ASP data to revise the generic failure probabilities of the systems during its operational lifetime.In this paper, DFA methodology is applied on an ammonia storage unit in a specialized chemical industry. Ammonia is stored in cold storage tanks as liquefied gas at atmospheric pressure. These tanks are susceptible to failures due to various abnormal conditions arising due process failures.Tank failures due to three such abnormal conditions are considered. Variation of the failure probability of the safety systems is demonstrated. The authors use ASP data collected from plant specific sources and safety expert judgement. The failure probabilities of some safety systems concerned show considerable deviation from the generic values. The method helps to locate the components which have undergone more degradation over the period and hence must be paid attention to. In addition, a Bayesian predictive model has been used to predict the number of abnormal events in the next time interval. The user-friendly and intuitive nature of the tool makes it appropriate for application in safety assessment reports in process industries.  相似文献   

5.
This paper has been prepared by its authors to show the benefits coming from the application of the fire risk assessment methodology prepared by the “LastFire© Project” group of experts. Now a days this methodology seems to be very effective to face the fire risk connected with large atmospheric storage tanks. It has been developed during the period 1997–2005 the HSE & operations experts from experts 16 worldwide operating oil companies. The authors, by “ad hoc” created software package, show the benefit coming from the applications of the LastFire© methodology and how, from this, using the methodology and the supporting tad, realize a coherent fire strategy in the form of a Fire Risk Management System. Same workflow could also be extended to the issues connected with other problems related with large atmospheric tanks storing hydrocarbons, such as environmental impact by soil pollution, to create a common frame walk of assessment not can be shared with authorities as well. The proposed methodology, moving from the original project, sets as an effective “Fire Hazard Management Approach” in line with the most recent trends (even enforced by the regulations) shared at international levels, that propose the integration of risk assessment with prevention and protection measures selection based on achieved risk reduction, costs, time needed, etc.  相似文献   

6.
Fire accidents of chemical installations may cause domino effects in atmospheric tank farms, where a large amount of hazardous substances are stored or processed. Pool fire is a major form of fire accidents, and the thermal radiation from pool fire is the primary hazard of domino accidents. The coupling of multiple pool fires is a realistic and important accident phenomenon that enhances the propagation of domino accidents. However, previous research has mostly focused on the escalation of domino accidents induced by a single pool fire. To overcome the drawback, in this study, the failure of a storage tank under the coupling effect of multiple pool fires was studied in view of spatial and temporal synergistic process. The historical accident statistics indicated that the accident scenario of two-pool fires accounted for 30.6% in pool fires. The domino accident scenario involving three tanks is analyzed, and the typical layout of tanks is isosceles right triangle based on Chinese standard “GB50341-2014”. The thermal response and damage of a target tank heated by pool fires were numerically investigated. The volume of 500 m3, 3000 m3, 5000 m3 and 10000 m3 were selected. Flame temperature was obtained by FDS, and then was input onto the finite element model. The temperature field and stress field of target tanks were simulated by ABAQUS. The results showed that the temperature rise rate of the target tanks under multiple pool fires was higher than that under a single pool fire. The failure time of the tank under the coupling effect of multiple fires was lower than that under the superposition of multiple fires without the first stage. The stress and yield strength were compared to judge the failure of the target tank. The model of failure time for the tank under the coupling effect of pool fires was established. Through the verification, the deviation of this model is 4.02%, which is better than the deviation of 15.76% with Cozzani's model.  相似文献   

7.
为解决储气库注采管柱螺纹失效问题,识别注采管柱螺纹失效致因与后果,基于蝴蝶结和贝叶斯网络方法构建注采管柱螺纹动态失效风险分析模型,采用模糊集理论计算模型变量先验概率,并评估注采管柱失效后果概率,从而推断注采管柱螺纹失效关键致因因素;引入先兆数据,评估注采管柱螺纹动态失效风险态势。结果表明:气体中携带固体颗粒、上螺纹速度过快、注采温度高、地层断裂等13个因素对螺纹失效风险影响较大;螺纹失效概率逐渐增大,螺纹失效后果也越来越严重,需要监控螺纹失效关键致因以降低螺纹失效的风险。  相似文献   

8.
Loss of the underground gas storage process can have significant effects, and risk analysis is critical for maintaining the integrity of the underground gas storage process and reducing potential accidents. This paper focuses on the dynamic risk assessment method for the underground gas storage process. First, the underground gas storage process data is combined to create a database, and the fault tree of the underground gas storage facility is built by identifying the risk factors of the underground gas storage facility and mapping them into a Bayesian network. To eliminate the subjectivity in the process of determining the failure probability level of basic events, fuzzy numbers are introduced to determine the prior probability of the Bayesian network. Then, causal and diagnostic reasoning is performed on the Bayesian network to determine the failure level of the underground gas storage facilities. Based on the rate of change of prior and posterior probabilities, sensitivity and impact analysis are combined to determine the significant risk factors and possible failure paths. In addition, the time factor is introduced to build a dynamic Bayesian network to perform dynamic assessment and analysis of underground gas storage facilities. Finally, the dynamic risk assessment method is applied to underground gas storage facilities in depleted oil and gas reservoirs. A dynamic risk evaluation model for underground gas storage facilities is built to simulate and validate the dynamic risk evaluation method based on the Bayesian network. The results show that the proposed method has practical value for improving underground gas storage process safety.  相似文献   

9.
Dynamic risk assessment using failure assessment and Bayesian theory   总被引:1,自引:0,他引:1  
To ensure the safety of a process system, engineers use different methods to identify the potential hazards that may cause severe consequences. One of the most popular methods used is quantitative risk assessment (QRA) which quantifies the risk associated with a particular process activity. One of QRA's major disadvantages is its inability to update risk during the life of a process. As the process operates, abnormal events will result in incidents and near misses. These events are often called accident precursors. A conventional QRA process is unable to use the accident precursor information to revise the risk profile. To overcome this, a methodology has been proposed based on the work of Meel and Seider (2006). Similar to Meel and Seider (2006) work, this methodology uses Bayesian theory to update the likelihood of the event occurrence and also failure probability of the safety system. In this paper the proposed methodology is outlined and its application is demonstrated using a simple case study. First, potential accident scenarios are identified and represented in terms of an event tree, next, using the event tree and available failure data end-state probabilities are estimated. Subsequently, using the available accident precursor data, safety system failure likelihood and event tree end-state probabilities are revised. The methodology has been simulated using deterministic (point value) as well as probabilistic approach. This Methodology is applied to a case study demonstrating a storage tank containing highly hazardous chemicals. The comparison between conventional QRA and the results from dynamic failure assessment approach shows the significant deviation in system failure frequency throughout the life time of the process unit.  相似文献   

10.
介绍了山东省某化工有限公司苯胺厂的工人在废硫酸罐顶部焊接管线时发生的一起废硫酸罐爆炸事故。通过对事故发生经过及现场情况的调查分析,找出了导致事故发生的原因,由于废硫酸罐耐酸瓷瓦破损,废硫酸渗漏与罐体接触反应产生的氢气,与由苯-稀硫酸萃取分离器串入废硫酸罐的苯或硝基苯蒸气及罐内空气混合形成爆炸性混合物,遇到因违章操作产生的明火、高温发生爆炸。通过对这次事故的详细描述、分析,在吸取事故教训的基础上,提出了相应的预防措施,为预防类似事故的发生提供参考。  相似文献   

11.
Aboveground steel storage tanks are widely utilized in industrial areas such as oil refineries, petrochemical complexes, oil depots, and etc. Assurance of these infrastructure facilities in high seismic areas is a very important engineering consideration. High amplitude fluid sloshing is one of the widespread causes of steel oil storage tanks during strong earthquakes addressed as an important failure mode. This phenomenon generates additional forces impacting the wall and roof of the tanks. Annular baffles can be used as slosh damping devises to control liquid sloshing within a tank. The main objective of this paper is experimental study of annular baffle effects as anti-sloshing damping devices to reduce fluid wave sloshing height in steel storage tanks typically used in oil and petrochemical complexes during an earthquake. Shake table tests have been used on a reduced scale model steel storage tank in two cases of with and without annular baffles. Three real earthquake ground motion records are used as input base motion. Based on the experimental test results, dynamic characteristics of studied tank models with different filling levels and different baffle dimensions and arrangements have been obtained and summarized in this paper. Also, sloshing heights and convective mode damping values are determined from the test results and compared with API650 code recommendations and recommended equations by other researchers. Generally, the results of this study indicate significant effects of the annular baffles in reducing the fluid wave sloshing height as sloshing dependent variable dampers.  相似文献   

12.
The performance of energy infrastructures under extreme loading conditions, especially for blast and impact conditions, is of great importance despite the low probability for such events to occur. Due to catastrophic consequences of structural failure, it is crucial to improve the resistance of energy infrastructures against the impact of blasts. A TNT equivalent method is used to simulate a petroleum gas vapor cloud explosion when analyzing the dynamic responses of a spherical tank under external blast loads. The pressure distribution on the surface of a 1000 m3 spherical storage tank is investigated. The dynamic responses of the tank, such as the distribution of effective stress, structural displacement, failure mode and energy distribution under the blast loads are studied and the simulation results reveal that the reflected pressure on the spherical tank decreases gradually from the equator to the poles of the sphere. However, the effects of the shock wave reflection are not so evident on the pillars. The structural damage of the tank subjected to blast loads included partial pillar failure from bending deformation and significant stress concentration, which can be observed in the joint between the pillar and the bottom of the spherical shell. The main reason for the remarkable deformation and structural damage is because of the initial internal energy that the tank obtained from the blast shock wave. The liquid in the tank absorbs the energy of impact loads and reduces the response at the initial stage of damage after the impact of the blast.  相似文献   

13.
Major earthquakes have demonstrated that Natech events can be triggered by liquid overtopping in liquid storage tanks equipped with floating roofs. Thus, research on the dynamic behaviour of steel storage tanks with floating roofs is still required. In this paper, the seismic risk against liquid overtopping in a real steel storage tank with a floating roof was analysed using a simplified model that was validated by a refined finite element model based on the arbitrary Lagrangian-Eulerian approach. The simplified model utilizes the Lagrangian of a floating roof-fluid system and is capable of providing a response history of the floating roof. It was demonstrated that it could predict the maximum vertical displacement very accurately, while some differences were observed in the response history of vertical displacement. The computational time for a single response history analysis based on the simplified model amounted to a few minutes, which is significantly less demanding compared to hours required for response history analysis in the case of the refined FE model. The simplified model is thus appropriate for the seismic fragility analysis considering the overtopping limit state. It is shown that the fragility curves are significantly affected by the liquid filling level. The risk for liquid overtopping is quite high in the case of a full tank. However, by considering the variation of filling level during the year, the overtopping risk was observed reduced by approximately 30%. Alternatively, the approximate fragility analysis for the liquid overtopping can be performed by utilizing the Eurocode formula for the vertical displacement of liquid. This approach is straightforward, but the formula does not account for the higher mode effects, which may result in overestimated seismic intensity causing overtopping, as discussed in the paper.  相似文献   

14.
通过现场的调研与事故树分析相结合的手段对某厂聚乙烯醇车间聚合罐区火灾爆炸事故的危险因素进行了识别与分析.以该罐区可能发生的火灾爆炸事故作为顶上事件,对可能引发顶上事件的21个基本事件及一个条件事件构建事故树,利用最小割集、最小径集及结构重要性计算手段进行事故风险程度分析,从而确定醋酸乙烯暴聚是聚合罐区的首要危险源,而促发醋酸乙烯暴聚的物料长时间停留、气相氧含量过高、温度控制失效、阻聚剂含量不足等四个基本事件是导致聚合罐区火灾爆炸事故的最危险因素.本文对以上聚合罐区发生火灾爆炸事故的风险因素进行详细定性分析,并在此基础上有针对性的提出了相应的安全预防控制措施.同时,该聚合罐区的事故树分析结论也可以为同类别化工单位罐区的日常运行、设计改造、维护保养等工作提供理论依据.  相似文献   

15.
Most risk assessment methods have problems such as uncertainty, static structure, and lack of validation. Also, in most of these studies, less attention has been paid to human, managerial, and organizational issues. Therefore, this study proposes a risk assessment method based on the Fuzzy Bayesian Network (FBN) to prevent failure of firefighting systems (FFSs) in the atmospheric Storage Tanks of a Petrochemical Industry. The first stage of the study is the development of a fault tree (FT) and investigation of basic events (BEs). In this study, content validity indices and brainstorming technique were used to validate the FT structure and reduce the uncertainties of Completeness, Modeling, and Parameter. After determining the probability of basic events (BEs) by the expert team opinions and fuzzy logic, events were transmitted to the Bayesian Network (BN) and then analyzed with deductive and inductive reasoning, followed by sensitivity analysis in the GeNIe software. Finally, results of a case study in the Atmospheric Storage Tanks of the Methanol Floating Roof of a Petrochemical Industry showed that FBN simulation and FT validation could provide a practical way to determine FFSs probabilities, identify impactful events, and reduce the above uncertainties. Also, taking account of hidden factors of events, such as organizational and managerial factors, can help managers to prevent FFSs in tanks.  相似文献   

16.
The gas pipeline network is an essential infrastructure for a smart city. It provides a much-needed energy source; however, it poses a significant risk to the community. Effective risk management assists in maintaining the operational safety of the network. The risk management of the network requires reliable dynamic failure probability analysis. This paper proposes a methodology of condition monitoring and dynamic failure probability analysis of urban gas pipeline network. The methodology begins with identifying key design and operational factors responsible for pipeline failure. Subsequently, a causation-based failure model is developed as the Bowtie model. The Bowtie model is transformed into a Bayesian network, which is analyzed using operational data. The key contributory factors of accident causation are monitored. The monitored data is used to analyze the updated failure probability of the network. The gas pipeline network's dynamic failure probability is combined with the potential consequences to assess the risk. The application of the approach is demonstrated in a section of the urban gas pipeline.  相似文献   

17.
Rare events often result in large impacts and are hard to predict. Risk analysis of such events is a challenging task because there are few directly relevant data to form a basis for probabilistic risk assessment. Due to the scarcity of data, the probability estimation of a rare event often uses precursor data. Precursor-based methods have been widely used in probability estimation of rare events. However, few attempts have been made to estimate consequences of rare events using their precursors. This paper proposes a holistic precursor-based risk assessment framework for rare events. The Hierarchical Bayesian Approach (HBA) using hyper-priors to represent prior parameters is applied to probability estimation in the proposed framework. Accident precursor data are utilized from an information theory perspective to seek the most informative precursor upon which the consequence of a rare event is estimated. Combining the estimated probability and consequence gives a reasonable assessment of risk. The assessed risk is updated as new information becomes available to produce a dynamic risk profile. The applicability of the methodology is tested through a case study of an offshore blowout accident. The proposed framework provides a rational way to develop the dynamic risk profile of a rare event for its prevention and control.  相似文献   

18.
为降低城市物流无人机(UAV)失效坠落风险,通过考虑其运行环境和系统故障等因素的影响,以城市物流无人机运行数据为基础,从系统故障、运行环境和人为因素3方面提取失效诱因;分析物流无人机失效模式,并构建意外坠落事故的贝叶斯网络;基于所建网络和失效诱因发生概率分别计算不同工况下意外坠落事故及各中间事件概率,并基于网络拓扑结构展开反向推理,推演事故的主要失效诱因。结果表明:物流无人机正常运行时发生安全事故的概率为6.54×10-3;其中,电池电量不足、桨叶失效和电池故障是坠落事故的主要诱因,计算结果可为无人机运行安全风险防控提供依据。  相似文献   

19.
Failure of Leak Detection System (LDS) to detect pipeline leakages or ruptures may result in drastic consequences that could lead to excessive financial losses. To minimize the occurrence of such failure, the functionality of the LDS and the integrity of the pipeline should be assessed on a priority basis. This paper presents an integrated risk-based assessment scheme to predict the failure and the failure consequences of offshore crude oil pipelines. To estimate risk, two important quantities have to be determined, the joint probability of failure of the pipeline and its LDS and the consequences of failure. Consequences incorporate the financial losses associated with environmental damage, oil spill cleanup and lost production. The assessment provides an estimate of the risk in monetary value and determines whether the estimated risk exceeds a predefined target risk. Moreover, the critical year for the asset can be determined. In essence, the outcome of the assessment facilitates an informed decision-making about the future of the asset.  相似文献   

20.
尾矿库溃坝风险定量评价方法探讨   总被引:3,自引:0,他引:3  
针对目前尾矿库安全评价中无定量评价尾矿库溃坝风险的现状,坝体稳定性计算中未考虑到坝体实际为非均质体的特点,本文提出将容重、内摩擦角和凝聚力三者视为随机变量,采用蒙特卡洛模型计算尾矿坝溃坝失效概率;综合运用水文学、水动力学、非牛顿流体的运动理论,建立尾矿库溃坝后尾矿下泄模型,以计算溃坝淹没范围;综合考虑尾矿库溃坝后生命损失、财政损失和环境损失,计算尾矿库溃坝风险损失度;最终确定尾矿库溃坝风险度,以期提高尾矿库安全评价技术、确保尾矿库安全健康运行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号