首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments on the flame propagation of starch dust explosion with the participation of ultrafine Mg(OH)2 in a vertical duct were conducted to reveal the inerting evolution of explosion processes. Combining the dynamic behaviors of flame propagation, the formation law of gaseous combustion products, and the heat dissipation features of solid inert particles, the inerting mechanism of explosion flame propagation is discussed. Results indicate that the ultrafine of Mg(OH)2 powders can cause the agglomeration of suspended dust clouds, which makes the flame combustion reaction zone fragmented and forms multiple small flame regions. The flame reaction zone presents non-homogeneous insufficient combustion, which leads to the obstruction of the explosion flame propagation process and the obvious pulsation propagation phenomenon. As the proportion of ultrafine Mg(OH)2 increases, flame speed, flame luminescence intensity, flame temperature and deflagration pressure all show different degrees of inerting behavior. The addition of ultrafine Mg(OH)2 not only causes partial inerting on the explosion flame, but also the heat dissipation of solid inert particles affects the acceleration of its propagation. The explosion flame propagation is inhibited by the synergistic effect of inert gas-solid phase, which attenuates the risk of starch explosion. The gas-solid synergistic inerting mechanism of starch explosion flame propagation by ultrafine Mg(OH)2 is further revealed.  相似文献   

2.
Fire and explosion accidents are frequently caused by combustible dust, which has led to increased interest in this area of research. Although scholars have performed some research in this field, they often ignored interesting phenomena in their experiments. In this paper, we established a 2D numerical method to thoroughly investigate the particle motion and distribution before ignition. The optimal time for the corn starch dust cloud to ignite was determined in a semi-closed tube, and the characteristics of the flame propagation and temperature field were investigated after ignition inside and outside the tube. From the simulation, certain unexpected phenomena that occurred in the experiment were explained, and some suggestions were proposed for future experiments. The results from the simulation showed that 60–70 ms was the best time for the dust cloud to ignite. The local high-temperature flame clusters were caused by the agglomeration of high-temperature particles, and there were no flames near the wall of the tube due to particles gathering and attaching to the wall. Vortices formed around the nozzle, where the particle concentration was low and the flame spread slowly. During the explosion venting, particles flew out of the tube before the flame. The venting flame exhibited a “mushroom cloud” shape due to interactions with the vortex, and the flame maintained this shape as it was driven upward by the vortex.  相似文献   

3.
In order to explore flame propagation characteristics during wood dust explosions in a semi-closed tube, a high-speed camera, a thermal infrared imaging device and a pressure sensor were used in the study. Poplar dusts with different particle size distributions (0–50, 50–96 and 96–180 μm) were respectively placed in a Hartmann tube to mimic dust cloud explosions, and flame propagation behaviors such as flame propagation velocity, flame temperature and explosion pressure were detected and analyzed. According to the changes of flame shapes, flame propagations in wood dust explosions were divided into three stages including ignition, vertical propagation and free diffusion. Flame propagations for the two smaller particles were dominated by homogeneous combustion, while flame propagation for the largest particles was controlled by heterogeneous combustion, which had been confirmed by individual Damköhler number. All flame propagation velocities for different groups of wood particles in dust explosions were increased at first and then decreased with the augmentation of mass concentration. Flame temperatures and explosion pressures were almost similarly changed. Dust explosions in 50–96 μm wood particles were more intense than in the other two particles, of which the most severe explosion appeared at a mass concentration of 750 g/m3. Meanwhile, flame propagation velocity, flame propagation temperature and explosion pressure reached to the maximum values of 10.45 m/s, 1373 °C and 0.41 MPa. In addition, sensitive concentrations corresponding to the three groups of particles from small to large were 500, 750 and 1000 g/m3, separately, indicating that sensitive concentration in dust explosions of wood particles was elevated with the increase of particle size. Taken together, the finding demonstrated that particle size and mass concentration of wood dusts affected the occurrence and severity of dust explosions, which could provide guidance and reference for the identification, assessment and industrial safety management of wood dust explosions.  相似文献   

4.
The structure of flame propagating through lycopodium dust clouds has been investigated experimentally. Upward propagating laminar flames in a vertical duct of 1800 mm height and 150×150 mm square cross-section are observed, and the leading flame front is also visualized using by a high-speed video camera. Although the dust concentration decreases slightly along the height of duct, the leading flame edge propagates upwards at a constant velocity. The maximum upward propagating velocity is 0.50 m/s at a dust concentration of 170 g/m3. Behind the upward propagating flame, some downward propagating flames are also observed. Despite the employment of nearly equal sized particles and its good dispersability and flowability, the reaction zone in lycopodium particles cloud shows the double flame structure in which isolated individual burning particles (0.5–1.0 mm in diameter) and the ball-shaped flames (2–4 mm in diameter; the combustion time of 4–6 ms) surrounding several particles are included. The ball-shaped flame appears as a faint flame in which several luminous spots are distributed, and then it turns into a luminous flame before disappearance. In order to distinguish these ball-shaped flames from others with some exceptions for merged flames, they are defined as independent flames in this study. The flame thickness in a lycopodium dust flame is observed to be 20 mm, about several orders of magnitude higher than that of a premixed gaseous flame. From the microscopic visualization, it was found that the flame front propagating through lycopodium particles is discontinuous and not smooth.  相似文献   

5.
To avoid the influence of external parameters, such as the vessel volume or the initial turbulence, the explosion severity should be determined from intrinsic properties of the fuel-air mixture. Therefore, the flame propagation of gaseous mixtures is often studied in order to estimate their laminar burning velocity, which is both independent of external factors and a useful input for CFD simulation. Experimentally, this parameter is difficult to evaluate when it comes to dust explosion, due to the inherent turbulence during the dispersion of the cloud. However, the low inertia of nanoparticles allows performing tests at very low turbulence without sedimentation. Knowledge on flame propagation concerning nanoparticles may then be modelled and, under certain conditions, extrapolated to microparticles, for which an experimental measurement is a delicate task. This work focuses on a nanocellulose with primary fiber dimensions of 3 nm width and 70 nm length. A one-dimensional model was developed to estimate the flame velocity of a nanocellulose explosion, based on an existing model already validated for hybrid mixtures of gas and carbonaceous nanopowders similar to soot. Assuming the fast devolatilization of organic nanopowders, the chemical reactions considered are limited to the combustion of the pyrolysis gases. The finite volume method was used to solve the mass and energy balances equations and mass reactions rates constituting the numerical system. Finally, the radiative heat transfer was also considered, highlighting the influence of the total surface area of the particles on the thermal radiation. Flame velocities of nanocellulose from 17.5 to 20.8 cm/s were obtained numerically depending on the radiative heat transfer, which proves a good agreement with the values around 21 cm/s measured experimentally by flame visualization and allows the validation of the model for nanoparticles.  相似文献   

6.
To reveal the effects of particle characteristics, including particle thermal characteristics and size distributions, on flame propagation mechanisms during dust explosions clearly, the flame structures of dust clouds formed by different materials and particle size distributions were recorded using an approach combining high-speed photography and a band-pass filter. Two obviously different flame propagation mechanisms were observed in the experiments: kinetics-controlled regime and devolatilization-controlled regime. Kinetics-controlled regime was characterized by a regular shape and spatially continuous combustion zone structure, which was similar to the premixed gas explosions. On the contrary, devolatilization-controlled regime was characterized by a complicated structure that exhibited heterogeneous combustion characteristics, discrete blue luminous spots appeared surrounding the yellow luminous zone. It was also demonstrated experimentally that the flame propagation mechanisms transited from kinetics-controlled to devolatilization-controlled while decreasing the volatility of the materials or increasing the size of the particles. Damköhler number was defined as the ratio of the heating and devolatilization characteristic time to the combustion reaction characteristic time, to reflect the transition of flame propagation mechanisms in dust explosions. It was found that the kinetics-controlled regime and devolatilization-controlled regime can be categorized by whether Damköhler number was less than 1 or larger than 1.  相似文献   

7.
This study investigates the impact of radiation heat transfer and heat conduction on dust cloud combustion. Radiation plays a very important role in the stability of dust cloud flame, and increasing the amount of radiation drastically raises the possibility of instability and explosion in a dust cloud mixture. Flame speed, which is a function of mixture characteristics, can exhibit a fluctuating behavior. By using the discrete heat source method, it would be possible to study the transient propagation of dust flames. Thus, the propagation speed of flame can be obtained, and as time goes by, the transient speed of dust flame will reach its steady state value. By considering the radiation effect, better agreement is observed between the obtained results and experimental data.  相似文献   

8.
The present study discusses experiments on organic dust explosions in a setup with low wall influence. The proposed apparatus decouples the dust dispersion and the deflagration event in two separate compartments. The use of a continuous-wave laser to illuminate the centre plane of the observation chamber allows capturing both, the dust cloud and the flame during the same experiment and eliminates typical problems caused by the limited dynamic range of high-speed cameras. A k-means clustering method is used for image segmentation to obtain the spatial extent and the propagation velocities of the unreacted particle cloud and the flame zone. Spatially resolved velocities are calculated by the additional use of an optical flow method. The main goal of the presented setup and image processing method is to provide high quality validation data for the development of numerical models on dust deflagration.  相似文献   

9.
To reveal clearly the effects of particle thermal characteristics on flame microstructures during organic dust explosions, three long-chain monobasic alcohols, solid at room temperature and similar in physical-chemical properties, were chosen to conduct experiments in a half-closed chamber. In the experiments, the dust materials were dispersed into the chamber by air to form dust clouds and the hybrids were ignited by an electrical spark. A high-speed optical schlieren system was used to record the flame propagation behaviors. A fine thermocouple and an ion current probe were respectively used to measure the flame temperature profile and the reaction behaviors of the combustion zone. Based on the experimental results, combustion behaviors and flame microstructures in dust clouds with different thermal characteristics were analyzed in detail. As a result, it was found that the dust flame surfaces were completely covered by cellular structures that significantly increased the flame frontal areas. Flame propagated more quickly and the number of the cellular cells increased as increasing the volatility of the particles. On the contrary, maximum temperature and the thickness of the preheated zone decreased as increasing the volatility of the particles. According to the ion current profile, the particles in the preheat zone were pyrolyzed to intermediate radicals and the radicals' fraction in the higher volatile dust flame was higher than that in the lower volatile dust flame.  相似文献   

10.
Flame propagation in hybrid mixture of coal dust and methane   总被引:1,自引:0,他引:1  
To investigate the flame propagation through hybrid mixture of coal dust and methane in a combustion chamber, a high-speed video camera with a microscopic lens and a Schlieren optical system were used to record the flame propagation process and to obtain the direct light emission photographs. Flame temperature was detected by a fine thermocouple. The suspended coal dust in the mixture of methane and air was ignited by an electric spark. The flame propagation speeds and maximum flame temperatures of the mixture were analyzed. The results show that the co-presence of coal dust and methane improves the flame propagation speed and maximum flame temperature notably, which become much higher than that of the single-coal dust flame. The flame front temperature varies with the coal dust concentration.  相似文献   

11.
The effect of CaCO3 powder, a typical inert dust, on the flame spread characteristics of wood dust layers was studied using an experimental device to understand the ignition characteristics of and develop inert explosion-proof technology for deposited wood dust. The results showed that the flame spread velocity (FSV) of the mixed dust layer was affected by the dispersion effect of CaCO3 powder and physical heat absorption. As the CaCO3 powder mass fraction increased, the FSV of the dust layer first increased and then decreased, reaching a peak at a 50% mass fraction. Moreover, the front-end temperature of the flame gradually decreased, and the red spark faded. The combustion reaction of the mixed dust layer could be more completed, and the colour of the combustion residue changed from charcoal black to charcoal grey. The coupling effect of the initial temperature and wind speed can promote an increase in the FSV in the mixed dust layer. The Gauss–Amp model of the FSV of the wood dust layer and mass fraction of CaCO3 powder showed that the peak of the FSV occurred when the mass fraction of CaCO3 powder was between 40 and 50%. Thus, a good inerting and explosion-proof effect can be achieved by using CaCO3 powder with a mass fraction of more than 50%; it can improve the whole inerting process. Inert explosion-proof technology should be considered when assessing fire and explosion risk of dust in real process industry situations.  相似文献   

12.
为了进一步探究瓦斯煤尘耦合爆炸火焰的传播规律,用自行搭建的半封闭垂直管道爆炸试验系统,研究障碍物对瓦斯煤尘耦合爆炸火焰传播规律的影响。研究结果表明:障碍物能显著提高瓦斯煤尘爆炸火焰的传播速度,其加速机理主要是障碍物诱导的湍流区会促进火焰的传播;火焰在传播过程中的加速度不是一直增加,随着火焰速度的增加会出现上下波动;煤尘的加入会使瓦斯爆炸产生的火焰传播速度显著增大及速度的最大值距离点火端较远;通过障碍物时爆炸产生的火焰形状发生较大的改变,出现拉伸和褶皱现象。  相似文献   

13.
To explore the inhibitory effects of CF3I and CO2 gas on the explosion pressure and flame propagation characteristics of 9.5% methane, a spherical 20 L experimental explosion device was used to study the effect of the gas explosion suppressants on the maximum explosion pressure, maximum explosion pressure rise rate and flame propagation speed of methane. The results indicated that with a gradual increase in the volume fraction of the gas explosion suppressant, the maximum explosion pressure of methane and maximum explosion pressure rise rate gradually decreased, and the time taken to reach the maximum explosion pressure and maximum explosion pressure rise rate was gradually delayed. At the same time, the flame propagation speed gradually decreased. Additionally, the time taken for the flame to reach the edge of the window and the time taken for a crack as well as a cellular structure to appear on the flame surface was gradually delayed. The fluid dynamics uncertainty was suppressed. The explosion pressure and flame propagation processes were markedly suppressed, but the flame buoyancy instability was gradually enhanced. By comparing the effects of the two gas explosion suppressants on the pressure and flame propagation characteristics, it was found that at the same volume fraction, trifluoroiodomethane was significantly better than carbon dioxide in suppressing the explosion of methane. By comparing the reduction rates of the characteristic methane explosion parameters at a volume fraction of 9.5%, it was observed that the inhibitory effect of 4% trifluoroiodomethane on the maximum explosion pressure was approximately 4.6 times that of the same amount of carbon dioxide, and the inhibitory effect of 4% trifluoroiodomethane on the maximum explosion pressure rise rate and flame propagation speed was approximately 2.7 times that of the same amount of carbon dioxide. The addition of 0.5%–1.5% trifluoromethane to 4% and 8% carbon dioxide can improve the explosion suppression efficiency of carbon dioxide. This enhancing phenomenon is a comprehensive manifestation of the oxygen-decreasing effect of carbon dioxide and the trifluoroiodomethane-related endothermic effect and reduction in key free radicals.  相似文献   

14.
The effect of monoammonium phosphate (NH4H2PO4) particles on 5 μm aluminum dust flames is investigated experimentally and computationally. NH4H2PO4 in three particle size is employed to determine the inhibition efficiency on aluminum flame propagation. Flame inhibition mechanism considering both gas and surface chemistry of aluminum particles is developed. Results show that the inhibition effectiveness monotonously increases as NH4H2PO4 particle size is reduced to 25 μm. Flame morphology and flame microstructure change with the addition of different particle size NH4H2PO4. Small NH4H2PO4 particles within the range studied have a greater reduction in average flame propagation compared to the coarser one. Meanwhile, the fine NH4H2PO4 particles almost decompose completely during the penetration of aluminum flame and then undergo a sufficient chemical interaction with the flame. The simulations indicate that the decomposition products of NH4H2PO4 particles obstruct the oxidation of aluminum particles through flame radical consumption. Additionally, the addition of NH4H2PO4 can reduce the vaporization rate and surface reaction rate of aluminum particles.  相似文献   

15.
Numerical study of dust lifting in a channel with vertical obstacles   总被引:5,自引:0,他引:5  
In the paper, several results of numerical computation of multiphase flows in a channel with complex geometry are considered. The objective of the research was to study the dust lifting process from a layer behind a shock wave in a rectangular channel with vertical obstacles in the upper part of the tube. It is to be shown that that kind and also any sort of geometry may crucially change the whole phenomena of dust enhancement and of combustion. This is very important for safety in, for example, coal mines where channels are usually of more sophisticated structure than is usually assumed by most researchers.  相似文献   

16.
Experiments using an open space dust explosion apparatus and a standard 20 L explosion apparatus on nano and micron polymethyl methacrylate dust explosions were conducted to reveal the differences in flame and pressure evolutions. Then the effect of combustion and flame propagation regimes on the explosion overpressure characteristics was discussed. The results showed that the flame propagation behavior, flame temperature distribution and ion current distribution all demonstrated the different flame structures for nano and micron dust explosions. The combustion and flame propagation of 100 nm and 30 μm PMMA dust clouds were mainly controlled by the heat transfer efficiency between the particles and external heat sources. Compared with the cluster diffusion dominant combustion of 30 μm dust flame, the premixed-gas dominant combustion of 100 nm dust flame determined a quicker pyrolysis and combustion reaction rate, a faster flame propagation velocity, a stronger combustion reaction intensity, a quicker heat release rate and a higher amount of released reaction heat, which resulted in an earlier pressure rise, a larger maximum overpressure and a higher explosion hazard class. The complex combustion and propagation regime of agglomerated particles strongly influenced the nano flame propagation and explosion pressure evolution characteristics, and limited the maximum overpressure.  相似文献   

17.
Dust explosion severities are closely associated with dust dispersion behaviors. To characterize the dispersion process of dust cloud, visualization experiments were conducted by using a transparent Siwek 20-L chamber. Dispersion processes of typical carbonaceous dust were recorded by a high-speed camera and, with the image processing technique, the qualitative analysis based on the transmission of dust cloud was carried out. Results have evidenced the three consecutive stages of dust dispersion process: the fast injection stage of dust particles, the stabilization stage and the sedimentation stage of dust cloud. The motion of dust particles and the variations of dust cloud in space and time can be clearly distinguished. In the stabilization stage, the good uniformity of dust dispersion is achieved when the deviation of transmission data at different locations reaches to the minimum value. Under different nominal dust concentrations, the time periods for dust dispersion stabilization are found to be significantly different, suggesting that different dust concentrations should correspond to different ignition delay in order to accurately measure the explosion characteristics in the Siwek 20-L chamber. Moreover, it is found that the decrease trend of transmission with increasing nominal dust concentration will become gradually leveling off, different from the inversely proportional relationship according to the Bouguer's law, and this indicates that the actual dust concentration will be lower than the nominal concentration or the dust cannot be fully dispersed at the case of high dust concentration. According to the experiment, when the nominal dust concentration exceeds to 1000 g/m3, the transmission will no longer vary visibly.  相似文献   

18.
The current work examines regimes of the hydrogen–oxygen flame propagation and ignition of mixtures heated by radiation emitted from the flame. The gaseous phase is assumed to be transparent for the radiation, while the suspended particles of the dust cloud ahead of the flame absorb and reemit the radiation. The radiant heat absorbed by the particles is then lost by conduction to the surrounding unreacted gaseous phase so that the gas phase temperature lags that of the particles. The direct numerical simulations solve the full system of two phase gas dynamic time-dependent equations with a detailed chemical kinetics for a plane flames propagating through a dust cloud. It is shown that depending on the spatial distribution of the dispersed particles and on the value of radiation absorption length the consequence of the radiative preheating of the mixture ahead of the flame can be either the increase of the flame velocity for uniformly dispersed particles or ignition either new deflagration or detonation ahead of the original flame via the Zel'dovich gradient mechanism in the case of a layered particle-gas cloud deposits. In the latter case the ignited combustion regime depends on the radiation absorption length and correspondingly on the steepness of the formed temperature gradient in the preignition zone that can be treated independently of the primary flame. The impact of radiation heat transfer in a particle-laden flame is of paramount importance for better risk assessment and represents a route for understanding of dust explosion origin.  相似文献   

19.
为研究分支管道位置对丙烷爆炸火焰传播的影响规律,通过多组数值模拟与已有实验数据对比,分析不同工况下三通管内火焰传播形态变化特征及温度变化。结果表明:向右传播的爆炸气流在支管左侧形成湍流旋涡,火焰受到拖拽及壁面制约,贴支管右侧壁面呈尖刀状传播;封闭管道中,火焰传播受主管道高速前驱压力波回波影响更显著,垂直支管中火焰与高温风险更大;实验支管位置距离点火源5.6 m时岔口处监测点温度高达2 214.08 K,支管位置增加至5.71 m时,支管处湍流旋涡拖拽火焰,使火焰出现中断,支管移至5.825 m后高温火焰无法传播至支管口,支管中的爆炸风险显著降低。研究结果为工业生产三通管支管位置的选择和支管内二次爆炸风险预测提供科学参考。  相似文献   

20.
This work aimed to experimentally evaluate the effects of a carbon monoxide-dominant gas mixture on the explosion characteristics of methane in air and report the results of an experimental study on explosion pressure measurement in closed vessel deflagration for a carbon monoxide-dominant gas mixture over its entire flammable range. Experiments were performed in a 20-L spherical explosion tank with a quartz glass window 110 mm in diameter using an electric spark (1 J) as the ignition source. All experiments were conducted at room temperature and at ambient pressure, with a relative humidity ranging from 52 to 73%. The peak explosion pressure (Pmax), maximum pressure rise rate ((dp/dt)max), and gas deflagration index (KG) were observed and analyzed. The flame propagation behavior in the initial stage was recorded using a high-speed camera. The spherical outward flame front was determined on the basis of a canny method, from which the maximum flame propagation speed (Sn) was calculated. The results indicated that the existence of the mixture had a significant effect on the flame propagation of CH4-air and increased its explosion risk. As the volume fraction of the mixed gas increases, the Pmax, (dp/dt)max, KG and Sn of the fuel-lean CH4-air mixture (7% CH4-air mixture) increase nonlinearly. In contrast, addition of the mixed gas negatively affected the fuel-rich mixture (11% CH4-air mixture), exhibiting a decreasing trend. Under stoichiometric conditions (9.5% CH4-air mixture), the mixed gas slightly lowered Pmax, (dp/dt)max, KG, and Sn. The Pmax of CH4-air mixtures at volume fractions of 7%, 9.5%, and 11% were 5.4, 6.9, and 6.8 bar, respectively. The Sn of CH4-air mixtures at volume fractions of 7%, 9.5%, and 11% were 1.2 m/s, 2.0 m/s, and 1.8 m/s, respectively. The outcome of the study is comprehensive data that quantify the dependency of explosion severity parameters on the gas concentration. In the storage and transportation of flammable gases, the information is required to quantify the potential severity of an explosion, design vessels able to withstand an explosion and design explosion safety measures for installations handling this gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号