首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 4 毫秒
1.
Spontaneous ignition of pressurized hydrogen release through a tube into air is investigated using a modified version of the KIVA-3V CFD code. A mixture-averaged multi-component approach is used for accurate calculation of molecular transport. Autoignition and combustion chemistry is accounted for using a 21 step kinetic scheme. Ultra fine meshes are employed along with the Arbitrary Lagrangia–Eulerian (ALE) method to reduce false numerical diffusion. The study has demonstrated a possible mechanism for spontaneous ignition through molecular diffusion.

In the simulated scenario, the tube provided additional time to achieve a combustible mixture at the hydrogen–air contact surface. When the tube was sufficiently long under certain release pressure, autoignition would initiate inside the tube at the contact surface due to mass and energy exchange between low temperature hydrogen and shock-heated air through molecular diffusion. Following further development of the hydrogen jet downstream, the contact surface became distorted. Turbulence plays an important role for hydrogen/air mixing in the immediate vicinity of this distorted contact surface and led the initial laminar flame to transit into a stable turbulent flame.  相似文献   


2.
Fuel cell vehicles (FCV) and other hydrogen systems with pressurized hydrogen has a safety hazard of spontaneous ignition during its sudden release into the tube. Tube parameter is a key factor affecting the spontaneous ignition of pressurized hydrogen. In this paper, a numerical study on the spontaneous ignition of pressurized hydrogen during its sudden release into the tube with varying lengths and diameters is conducted. The models of Large Eddy Simulation (LES), Eddy Dissipation Concept (EDC), Renormalization Group (RNG), 10-step like opening process of burst disk and 18-step detailed hydrogen combustion mechanism are employed. 6 cases are simulated based on the previous experiments. Numerical results show that the possibility of spontaneous ignition of pressurized hydrogen increases inside the longer and thinner tubes, which agrees with the experimental results. The increasing of tube length has little influence on the shock wave formation and propagation inside the tube. However, there exists critical tube lengths for the generation of Mach disk and the normal shock wave: the maximum and minimum distances for the generation of the Mach disk in 10 mm diameter tube are 7.8 and 6.7 mm, respectively. As for the normal shock wave, these critical values are 22.1 and 19.4 mm, respectively. In addition, the formation times and initial positions of Mach disk and normal shock wave are delayed inside the thicker tube. Due to the shock-affected time increases with the increasing of tube length, the temperature could rise to the critical ignition temperature and triggers the spontaneous ignition due to the sufficient tube length even though the less hydrogen/air mixture and the contact surface with lower temperature is produced inside the thicker tube. Finally, a simple time scale analysis is conducted.  相似文献   

3.
A numerical simulation of the spontaneous ignition of high-pressure hydrogen in a duct with two obstacles on the walls is conducted to explore the spontaneous ignition mechanisms. Two-dimensional rectangular ducts are adopted, and the Navier–Stokes equations with a detailed chemical kinetic mechanism are solved by using direct numerical simulations. In this study, we focus on the effects of the initial pressure of hydrogen and the position of the obstacles on the ignition mechanisms. Our results demonstrate that the presence of obstacles significantly changes the spontaneous ignition mechanisms producing three distinct ignition mechanisms. In addition, the position of the obstacles drastically changes the interaction of shock waves with the contact surface, and spontaneous ignition may take place at a relatively low pressure in some obstacle positions, which is attributed to the propagation direction and interaction timing of two reflected shock waves.  相似文献   

4.
An experimental investigation on the flow structures and the strength of shock waves generated by high-pressure gas release through a tube into air was conducted. The results demonstrated that a leading shock wave was generated in front of the compressed gas jet and the shock wave speed increased firstly, then decreased and finally kept constant with an increase of the propagation distance in the tube. The experimentally measured Mach numbers of shock waves were close to those calculated from the theory of ideal shock tube flow. After spouting out of the tube, the normal shock quickly developed into a hemispherical shape. The Mach disk was observed in the under-expanded jet. For high-pressure combustible gas release, the concept of theoretical critical pressure of ignition was introduced and several theoretical critical pressures of common gaseous fuels were obtained.  相似文献   

5.
In order to explore flame propagation characteristics during wood dust explosions in a semi-closed tube, a high-speed camera, a thermal infrared imaging device and a pressure sensor were used in the study. Poplar dusts with different particle size distributions (0–50, 50–96 and 96–180 μm) were respectively placed in a Hartmann tube to mimic dust cloud explosions, and flame propagation behaviors such as flame propagation velocity, flame temperature and explosion pressure were detected and analyzed. According to the changes of flame shapes, flame propagations in wood dust explosions were divided into three stages including ignition, vertical propagation and free diffusion. Flame propagations for the two smaller particles were dominated by homogeneous combustion, while flame propagation for the largest particles was controlled by heterogeneous combustion, which had been confirmed by individual Damköhler number. All flame propagation velocities for different groups of wood particles in dust explosions were increased at first and then decreased with the augmentation of mass concentration. Flame temperatures and explosion pressures were almost similarly changed. Dust explosions in 50–96 μm wood particles were more intense than in the other two particles, of which the most severe explosion appeared at a mass concentration of 750 g/m3. Meanwhile, flame propagation velocity, flame propagation temperature and explosion pressure reached to the maximum values of 10.45 m/s, 1373 °C and 0.41 MPa. In addition, sensitive concentrations corresponding to the three groups of particles from small to large were 500, 750 and 1000 g/m3, separately, indicating that sensitive concentration in dust explosions of wood particles was elevated with the increase of particle size. Taken together, the finding demonstrated that particle size and mass concentration of wood dusts affected the occurrence and severity of dust explosions, which could provide guidance and reference for the identification, assessment and industrial safety management of wood dust explosions.  相似文献   

6.
To achieve the rapid prediction of minimum ignition energy (MIE) for premixed gases with wide-span equivalence ratios, a theoretical model is developed based on the proposed idea of flame propagation layer by layer. The validity and high accuracy of this model in predicting MIE have been corroborated against experimental data (from literature) and traditional models. In comparison, this model is mainly applicable to uniform premixed flammable mixtures, and the ignition source needs to be regarded as a punctiform energy source. Nevertheless, this model can exhibit higher accuracy (up to 90%) than traditional models when applied to premixed gases with wide-span equivalence ratios, such as C3H8-air mixtures with 0.7–1.5 equivalence ratios, CH4-air mixtures with 0.7–1.25 equivalence ratios, H2-air mixtures with 0.6–3.15 equivalence ratios et al. Further, the model parameters have been pre-determined using a 20 L spherical closed explosion setup with a high-speed camera, and then the MIE of common flammable gases (CH4, C2H6, C3H8, C4H10, C2H4, C3H6, C2H2, C3H4, C2H6O, CO and H2) under stoichiometric or wide-span equivalence ratios has been calculated. Eventually, the influences of model parameters on MIE have been discussed. Results show that MIE is the sum of the energy required for flame propagation during ignition. The increase in exothermic and heat transfer efficiency for fuel molecules can reduce MIE, whereas prolonging the flame induction period can increase MIE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号