首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental investigation of the influence of inhibitors of various chemical natures on flammability limits in mixtures H2+oxidizer (O2+N2)–suppressant (C2HF5; CHF3; C4F10; inhibitor AKM, which is a mixture of olefins) was carried out. Compositions of N2 and O2 with elevated (25 vol%) and reduced (15 vol%) oxygen concentrations and air were used as oxidizing atmospheres. Experiments were done at room temperature and atmospheric pressure. Flammability limits were determined in a closed vessel of volume of 4.2 dm3 (internal diameter 20 cm). Mixtures were prepared immediately in the preliminary evacuated reaction vessel by partial pressures. The mixtures were ignited by an electrical spark of energy near 1 J in the center of the reaction vessel. A flame propagation was detected by a pressure transducer. Twelve flammability curves were measured, which allowed to compare effectiveness of the inhibitors at various oxygen contents in the atmosphere. A qualitative analysis of the obtained results was done, which showed an important role of an inhibitor regeneration.  相似文献   

2.
The flammability envelope was experimentally determined up to the point of vapor saturation for four flammable liquids: methanol, ethanol, acetonitrile, and toluene. The experimental apparatus consisted of a 20-L spherical chamber with a centrally located 10 J fuse wire igniter. The liquid was injected and vaporized into the chamber via a septum and a precision syringe. Nitrogen and oxygen were mixed from pure components using a precision pressure gauge. Pressure versus time data were measured for each ignition test. Flammability was defined as any ignition resulting in an increase in pressure of 7% over the initial pressure, as per ASTM E 918–83. All data were obtained at an initial temperature of 298 K and 1 atm. The experimental values of the LFL agreed well with published values. Limiting oxygen concentrations (LOC) were also determined—although these were somewhat lower than published values.The calculated adiabatic flame temperature (CAFT) method was used to model the data using a threshold temperature of 1200 K. A reasonable fit of the flammability envelope was obtained, although this could be improved with a higher threshold temperature.  相似文献   

3.
In this study, the dependence of minimum ignition energies (MIE) on ignition geometry, ignition source radius and mixture composition is investigated numerically for methane/air and iso-octane/air mixtures. Methane and iso-octane are both important hydrocarbon fuels, but differ strongly with respect to their Lewis numbers. Lean iso-octane air mixtures have particularly large Lewis numbers. The results show that within the flammability limits, the MIE for both mixtures stays almost constant, and increases rapidly at the limits. The MIEs for both fuels are also similar within the flammability limits. Furthermore, the MIEs of iso-octane/air mixtures with a small spherical ignition source increase rapidly for lean mixtures. Here the Lewis number is above unity, and thus, the flame may quench because of flame curvature effects. The observations show a distinct difference between ignition and flame propagation for iso-octane. The minimum energy required for initiating a successful flame propagation can be considerably higher than that required for initiating an ignition in the ignition volume. For iso-octane with a small spherical ignition source, this effect was observed at all equivalence ratios. For iso-octane with cylindrical ignition sources, the phenomenon appeared at lower equivalence ratios only, where the mixture's Lewis number is large. For methane fuel, the effect was negligible. The results highlight the significance of molecular transport properties on the decision whether or not an ignitable mixture can evolve into a propagating flame.  相似文献   

4.
The flammability limits of binary hydrocarbon mixtures in air were measured in a combustion apparatus using an innovative method developed for this apparatus. The experimental results were obtained at standard conditions (room temperature and ambient atmospheric pressure) with upward flame propagation. The experimentally determined flammability limits for pure hydrocarbons (methane and ethylene) were compared with existing data reported in the literature. Le Chatelier's Law was fit to all experimental data to obtain LFLs and UFLs for various two-component combinations of saturated and unsaturated hydrocarbons (methane, ethylene, acetylene, propane, propylene, and n-butane). A modification of this law was used if experimental observations showed large deviations from Le Chatelier's predictions. Also, experimentally measured flammability limit data of the binary hydrocarbon mixtures were analytically related to the stoichiometric concentrations.  相似文献   

5.
Previous research showed that at certain conditions, close to the flammability range exists a regime where cool flame may develop either due to elevated temperature or it may be initiated by an ignition source. Propagation of the cool flame in a closed test vessel may double the initial pressure. Such pressure increase exceeds recommended ignition criteria for explosion limit determination that are based on 5 or 7% of pressure rise leading to inaccurate classification of the oxidation phenomena, i.e. cool flame propagation may be classified as hot flame propagation.Two mixtures were tested: n-butane-oxygen (extensively) and C1–C2–oxygen (in limited range), which represent a typical composition in ethylene oxide production, at elevated conditions at their upper explosion limits. Flame development was analysed by flame emission spectroscopy and the post-oxidation mixture was analysed by gas chromatography (GC) to characterise the oxidation mechanism of the flame. Additionally explosion pressure rise, flame temperature, and maximum rate of pressure rise were measured. In all experiments with the pressure rise ratio below two the low temperature oxidation mechanism assisted the flame propagation.  相似文献   

6.
The utility and limitations of adiabatic flame temperature calculations and minimum mixture energies in predicting the temperature dependence of flammability limits are explored. The limiting flame temperatures at constant pressure (1 bar) are calculated using a standard widely-used thermodynamic computer program. The computation is based on the calculated limiting flame temperature value at the reference initial temperature and the experimental limit concentration. The values recently determined in large chambers for the lower and upper flammability limits of a variety of simple organic and inorganic gases (methane, ethylene, dimethy lether, and carbon monoxide) are used as the basis for the predictions of the limiting flame temperature concept. Such thermodynamic calculations are compared with more traditional ones based on a limiting mixture energy and a constant average heat capacity of the reactant mixture. The advantages and limitations of the methods are discussed in this paper.  相似文献   

7.
In this study, direct visualization of flow and flame from the ignition of methane/air and propane/air mixtures near the UFL at elevated pressures of up to 2.0 MPa were obtained with a test cell comprised of double-sided plexiglass and a containment vessel with double-sided glass. These visualizations allowed direct observations of ignition and flame near UFL at elevated pressures. Two distinctive features were observed in ignition at elevated pressures that differ from those under ambient pressure: the hot igniter formed a convective plume, rather than a convection cell; and the flame initiated from the top of the test cell and propagated downwards, rather than directly from the igniter. Both these distinctive features are characteristics of convection at high Rayleigh number accompanied with increased gas density at elevated pressures. Our study also shows that visualization of the formation of planar flame provides the most objective criterion for defining flammability limits at elevated pressures.  相似文献   

8.
对低压下的近熄灭极限区域水平纸火蔓延进行了实验研究。通过降低环境压力和氧气浓度,确定了水平纸火蔓延的着火极限,并得出了在极限氧气浓度条件下的火蔓延速度变化规律。在相同氧气浓度下(43%)进行了不同压力的水平纸火蔓延实验。结果表明,火蔓延速度在近熄灭极限区域内非线性增加,通过比较分析前人火蔓延速度实验结果,确定了火蔓延近熄灭极限区域和线性增长区域的分界压力值。此外,得出了压力分界处的火焰变化特征,并根据火焰图像与理论分析,得出了不同区域内的火蔓延传热机制。  相似文献   

9.
The knowledge of the vapor–liquid two-phase diethyl ether (DEE)/air mixtures (mist) on the explosion parameters was an important basis of accident prevention. Two sets of vapor–liquid two-phase DEE/air mixtures of various concentrations were obtained with Sauter mean diameters of 12.89 and 22.90 μm. Experiments were conducted on vapor–liquid two-phase DEE/air mixtures of various concentrations at an ignition energy of 40.32 J and at an initial room temperature and pressure of 21 °C and 0.10 MPa, respectively. The effects of the concentration and particle size of DEE on the explosion pressure, the explosion temperature, and the lower and upper flammability limits were analyzed. Finally, a series of experiments was conducted on vapor–liquid two-phase DEE/air mixtures of various concentrations at various ignition energies. The minimum ignition energies were determined, and the results were discussed. The results were also compared against our previous work on the explosion characteristics of vapor–liquid two-phase n-hexane/air mixtures.  相似文献   

10.
Premixed ammonia/nitric oxide flame was simulated using the Lindstedt 1994 and Miller–Bowman 1989 reaction mechanisms in CHEMKIN. The predicted laminar burning velocities compared well with limited measured values in the literature. The effects of unburnt mixture temperature and pressure on laminar burning velocity, flammability limits, adiabatic flame temperature and species profiles were studied. The unburnt mixture temperature had a positive impact on both the laminar burning velocity and the adiabatic flame temperature, and it extended the ammonia-rich flammability limit. The pressure had a marginally negative influence on the laminar burning velocity, while it had a slightly positive effect on the adiabatic flame temperature.  相似文献   

11.
The investigation of the ignition conditions of kerosene vapors in the air contained in an aircraft fuel tank contributes to the definition of onboard safety requirements. Civil and military kerosene are characterized by specification. The specification of civil aviation kerosene is based upon usage requirements and property limits. while military kerosene is primarily controlled by specific chemical composition. Characterization of the flammability properties is a first step for the establishment of aircraft safety conditions. Flash point, vapor pressure, gas chromatography analysis, and flammability properties of the kerosene used by the French Military aviation (F-34 and F-35 kerosene) are compared with the flammability properties of civil kerosene. The empirical law established by the Federal Aviation Administration (FAA) in 1998, expressing the ignition energy in terms of fuel, temperature, flash point and altitude is modified and expressed in terms of fuel temperature, flash point and pressure.  相似文献   

12.
The investigation of flame propagation accompanying the explosions of unconfined gaseous reactive clouds which are diluted in atmosphere ambient is a fundamental interest in the analysis of industrial risk assessment.Following the previous work [Sochet, I., Guelon, F., Gillard, P. (2002). Deflagrations of non-uniform mixtures: A first experimental approach, Journal of physics, 12, 7–273, 7–280], an experimental study is conducted on a deflagration of a hydrogen/oxygen gaseous cloud which is released in air. The burning velocity is directly or indirectly measured. The flammability limits of the non homogeneous cloud has been as well investigated.  相似文献   

13.
Flammable aerosols have created many fire and explosion hazards in the process industry, but the flammability of aerosols has not been fully understood. The minimum ignition energy has been widely used as an indicator for flammability of combustible mixtures, but the amount of experimental data on the minimum ignition energy of aerosols is very limited. In this work, the minimum ignition energy of tetralin aerosols is predicted using an integrated model. The model applies the flame front propagation theory in aerosol systems to the growth of the flame kernel, which was created during the spark discharge in the ignition process. The aerosol minimum ignition energy was defined as the minimum level of energy in the initial flame kernel to maintain the kernel temperature above the minimum ignition temperature of 1073 K specific for tetralin aerosols during the kernel growth. The minimum ignition energy obtained in the model is influenced by the fuel-air equivalence ratio and the size of the aerosol droplets. For tetralin aerosols of 40 μm diameter, Emin decreases significantly from 0.32 mJ to 4.3 × 10 e−3 mJ when the equivalence ratio rises from 0.57 to 1.0. For tetralin aerosols of 0.57 equivalence ratio, Emin increases from as 0.09 mJ to 0.32 mJ when the droplet diameter rises from 10 μm to 60 μm. The trends are in agreement with previous experimental observations. The method used in current work has the potential to prediction of the minimum ignition energy of aerosol.  相似文献   

14.
This investigation shows how an increased oxygen concentration influences the performance limits of crimped ribbon deflagration flame arresters at elevated pressures. An evaluation of the maximum experimental safe gap (MESG) as reliable criterion for describing the performance limits under non-atmospheric conditions is given. Measurements of MESGs and flame arrester performance tests were performed. Various fuel/oxygen/air mixtures containing ethylene and propane were used as testing gases. Former studies on the pressure dependence and the influence of oxygen on the MESG were initially confirmed. Furthermore, performance tests using a commercial deflagration flame arrester revealed that such a flame arrester may prevent flame transmission also at non-atmospheric conditions within a limited range. For various oxygen concentrations the performance limits were reached at the same MESG. Hence, it can be assumed that a flame arrester possesses a device- and fuel-specific maximum experimental safe gap for a specific gas mixture in different concentrations and at different pressures. This performance-related maximum safe gap can be used as a parameter for estimating and describing the performance limits of a flame arrester. It offers an attempt to simplify the testing and qualification of deflagration flame arresters for non-atmospheric conditions.  相似文献   

15.
The high-temperature and high-pressure methanol one-step oxidation has been the primary process for the mass production of dimethoxymethane. However, the risk of explosion for this process is still not properly defined. This paper presents new results from the experimental study on the explosion characteristics, including the explosion pressure and the explosion limits for methanol/air mixtures with a variable oxygen level, under an initial pressure between 0.3 MPa and 0.75 MPa and at the initial temperature of 423 K. The upper explosive limits were found to increase along with the initial pressure. If the limits for normal air are known, the oxygen effect on flammability is predictable from the thermal balance method. With a correlation for the pressure effect and a method for the oxygen effect, we can have the flammable range predictable.  相似文献   

16.
Explosion behaviors of typical light metal and carbonaceous dusts induced by different ignition energies were investigated based on systematic experiments in a Siwek 20 L vessel. Comparative analysis reveals that the explosion mechanism of carbonaceous dust is the volatile combustion, whereas the mechanism for light metal dust mainly features the surface heterogeneous oxidation. Influences of ignition energy on severity and flammability limit are much more significant for carbonaceous dust than light metal, especially for the powder with less volatile. An innovative approach was introduced to derive flame thickness from the pressure–time trace. The relation between explosion induction time and combustion duration of ignitor was also analyzed. Results show inappropriate ignition energy will cause under-/over-driving in the thermodynamic/kinetic characteristic measurements. In this way, a dimensionless parameter pressure ratio was introduced to evaluate the under-driving, while two methods by using flame thickness and induction time respectively, were proposed to evaluate over-driving. To improve the accuracy of dust explosion tests, authors advocate that explosion severity determination should be conducted at the critical ignition energy. Moreover, a comparison between the European and Chinese flammability limit determination procedures was also conducted, indicating that EN 14034-3 is suitable for light metal but not for carbonaceous, while GB/T 16425 appears to be slightly conservative for both carbonaceous and light metal dusts.  相似文献   

17.
The aim of this work is to determine the influence of operating parameters such as the dispersion pressure, the ignition delay and height on the dust flammability. A Computational Fluid Dynamics (CFD) simulation, based on an Euler–Lagrange approach, was developed with Ansys Fluent™ and validated experimentally. Such analysis will facilitate the choice of the most conservative conditions for a flammability test. This paper is focused on a case study performed on wheat starch with the modified Hartmann tube. The dispersion process of the powder was studied with granulometric analyses performed in situ and high speed videos. Tests were performed with injections at gas pressure ranging from 3 to 6 bars and the evolution of the particle size distribution (PSD) was recorded at different ignition heights (5, 10 and 15 cm over the dispersion nozzle). The observations highlighted the presence of agglomeration/deagglomeration processes and dust segregation. Besides, a CFD simulation analysis was aimed at evaluating the impact of a set of parameters on the PSD and the local turbulence, which are closely linked to some flammability parameters. For this computational analysis, the CFD simulation was coupled with a collision treatment based on a Discrete Element Method (DEM) in order to consider the cohesive behavior of the combustible dust. Thus the results suggest performing the injection of the gases at approximately 5 bars for the flammability tests of wheat starch in order to obtain the finest PSD at a given ignition height. It is also shown that the finest PSD are obtained at 5 cm over the dispersion nozzle. However, the local instabilities and turbulence levels are so high during the first stages of the dispersion that the flame growth can be disturbed for short ignition delays. Moreover, the stabilization of the bulk of the dust cloud requires longer periods of time when the ignition sources are located at 15 cm. As a result, the recommended height to perform a flammability test is 10 cm in this case. Finally, this study proposes some tools that might improve the procedure of dust flammability testing.  相似文献   

18.
Explosion pressures are determined for rich methane–air mixtures at initial pressures up to 30 bar and at ambient temperature. The experiments are performed in a closed spherical vessel with an internal diameter of 20 cm. Four different igniter positions were used along the vertical axis of the spherical vessel, namely at 1, 6, 11 and 18 cm from the bottom of the vessel. At high initial pressures and central ignition a sharp decrease in explosion pressures is found upon enriching the mixture, leading to a concentration range with seemingly low explosion pressures. It is found that lowering the ignition source substantially increases the explosion pressure for mixtures inside this concentration range, thereby implying that central ignition is unsuitable to determine the explosion pressure for mixtures approaching the flammability limits.  相似文献   

19.
The safe operation of hydrocarbon liquid-phase oxidation by air or oxygen requires the knowledge on the flammability of hydrocarbon/oxygen mixtures in both the vapor space and vapor bubbles. The latter is of particular importance in situation where pure oxygen is used as the oxidant as most bubbles are expected to be flammable and explosive. New experimental findings are presented for ignition and explosion in cyclohexane liquid under oxygen oxidation conditions. A bubble column is constructed and fitted with multiple igniters. Experiments were performed at liquid temperatures between 373.15 and 423.15 K under various flow rates of pure oxygen. Two drastic different ignition and explosion behaviors were observed. The first is a typical bubble explosion from the direct ignition of the flammable bubbles in the liquid. The explosion occurs immediate following the ignition and do not produce significant energy that endanger the system. The other is a remote, delayed ignition and explosion in the vapor space that can produce significant overpressure and endanger the system. The explosion is attributed to the ignition of flammable vapor space by active free radicals from cyclohexyl hydroperoxide decomposition. A mechanism is proposed for the remote, delayed ignition to occur in the oxidation system. It is concluded that explosion in an oxidizing, bubbly liquid is not only a likely scenario but also a severe scenario, and cyclohexane oxidation should not be carried out directly with pure oxygen and without any inerting.  相似文献   

20.
Experiment-based investigations of magnesium dust explosion characteristics   总被引:1,自引:0,他引:1  
An experimental investigation was carried out on magnesium dust explosions. Tests of explosion severity, flammability limit and solid inerting were conducted thanks to the Siwek 20 L vessel and influences of dust concentration, particle size, ignition energy, initial pressure and added inertant were taken into account. That magnesium dust is more of an explosion hazard than coal dust is confirmed and quantified by contrastive investigation. The Chinese procedure GB/T 16425 is overly conservative for LEL determination while EN 14034-3 yields realistic LEL data. It is also suggested that 2000-5000 J is the most appropriate ignition energy to use in the LEL determination of magnesium dusts, using the 20 L vessel. It is essential to point out that the overdriving phenomenon usually occurs for carbonaceous and less volatile metal materials is not notable for magnesium dusts. Trends of faster burning velocity and more efficient and adiabatic flame propagation are associated with fuel-rich dust clouds, smaller particles and hyperbaric conditions. Moreover, Inerting effectiveness of CaCO3 appears to be higher than KCl values on thermodynamics, whereas KCl represents higher effectiveness upon kinetics. Finer inertant shows better inerting effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号